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This paper details the application of an adaptive neural network based limit de-

tection and avoidance algorithm for envelope protection on the autonomous Yamaha

R-Max unmanned helicopter test bed. Software-in-the-loop and flight test results are

presented. The envelope protection system is implemented as a mid-level controller com-

ponent into the unmanned helicopter software infrastructure, called the Open Control

Platform (OCP). The method utilizes an observer type adaptive neural network loop

for the estimation of limit parameter dynamics. The constructed model is then used to

predict dynamic trim response and corresponding command margins. Standard sensor

measurements are used in the adaptation process and no off-line training of the networks

is necessary. The command margin information is used to avoid prescribed limits.

Introduction

An aircraft’s maneuvering capability is restricted
by a set of envelope limits. Advanced flight control
systems for autonomous Unmanned Aerial Vehicles
(UAV) enable autonomous maneuvering that can chal-
lenge a UAV’s flight envelope.1,2 As a result, the
development of automatic flight envelope protection
systems emerge as an important element in the de-
velopment of autonomous UAV’s.3,4 While envelope
protection systems will improve the overall confidence
and safety of UAV’s, it will become essential when
aggressive maneuvering close to envelope limits is de-
sired. Therefore the capability of being aware and
reacting automatically to approaching limits will be
an important feature of future autonomous UAV’s.

Recent studies, both for piloted and unmanned
flight, have proposed various limit avoidance systems
for the safe operation of a vehicle close to the edges of
its flight envelope.3–8 Some of these techniques rely on
model based predictions and off-line training of neu-
ral nets with dynamic trim data.3,5 In dynamic trim,
the fast states, such as angular rates, are assumed to
change fast and reach their steady state values quickly,
while the slow states, such as forward speed, etc.,
are assumed to change slowly with time. The con-
dition when fast states have reached a steady state
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corresponds to dynamic trim. A map representing the
dynamic trim state is stored using an off-line trained
neural network. Control margins are then calculated
by perturbing the neural network. This approach gives
the advantage of directly estimating the maximum re-
sponse of limit parameters to current control inputs.
The application of this technique to unmanned sys-
tems is presented in Ref. 3. However, the methods
proposed in Refs. 3,5 suffer from system uncertainties
and the need for the generation of large amounts of
dynamic trim data for off-line training of neural nets.
Though some utilize adaptation,6 their capabilities are
limited, since a-priori knowledge of some system dy-
namics are still assumed.

Another family of methods calculate fixed-horizon
predictions, where the usefulness is limited by the pre-
diction time-step, which is typically a fraction of a
second.7,8

In Refs. 9–12, an adaptive limit detection method
for on-line estimation of dynamic trim values of a
pre-selected set of limit parameters and correspond-
ing control margins is developed. Neural networks
are used for on-line adaptation. As off-line training
of network weights is not used, the method has the
advantage of adapting to varying flight conditions and
different vehicle configurations. The method predicts
dynamic trim parameters on-line and calculates the
corresponding command or control margins for limit
detection and avoidance. This technique is evaluated
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in simulation by combining an artificial pilot model
and an active-force-feel model in the Generalized Tilt
Rotor Simulation (GTRSIM) program.12 In Ref. 4 the
method is extended to automatic limit detection and
avoidance applications. Software-in-the-loop simula-
tions results using limit avoidance via control limiting
and limit avoidance via command limiting for un-
manned aerial vehicles were presented.
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Fig. 1 Mission Intelligence Flow

An ongoing study under the DARPA sponsored
Software Enabled Control (SEC) program at the Geor-
gia Institute of Technology is considering applications
of advanced control technologies to complex dynamic
systems, in particular, to the control of intelligent un-
manned aerial vehicles.13 An objective of this project
is to develop mid-level controllers and combine them
with flight controllers in the lower level (Fig.1). In this
context, flight modes are selected in the high and mid-
level blocks of the overall control system and passed to
the low level controller.14 The low level controller is
used to carry out those flight modes in a smooth and
safe way. The low level controller needs a continuous
knowledge of ’how far’ the vehicle is from its structural
and performance limit boundaries for safe maneuver-
ing of the vehicle. If a ’fly safe’ region violation in the
flight envelope is foreseen, controller commands need
to be modified automatically. This will guarantee a
safe flight, regardless of the commands from the high-
and mid-level controller blocks in the chain.

The applications conducted on the unmanned he-
licopter test-bed at Georgia Tech incorporate a new
software infrastructure, called the Open Control Plat-
form (OCP), also developed under the SEC program.
The OCP aims to provide a software environment
for complex systems that coordinate and support dis-
tributed interaction among diverse components and
support dynamic reconfiguration and customization of

the components in real time.15 The envelope pro-
tection system is integrated through the OCP as a
mid-level controller component.

This paper presents the implementation of the adap-
tive limit detection and avoidance algorithms as an
envelope protection system to the Yamaha R-Max
Unmanned helicopter (GTMAX) test bed at Georgia
Tech. The algorithms were tested using software-in-
the-loop and hardware-in-the-loop simulations. The
implementation involved the integration of the en-
velope protection algorithms with the existing algo-
rithms through the OCP. Flight tests were conducted
to avoid rotor stall limits during fast accelerations and
decelerations in forward flight. The Expected Retreat-
ing Indicated Tip Speed (ERITS) factor was used as
a measure for rotor stall.

Methodology

The adaptive limit detection and avoidance methods
of Refs. 4,9–12 is based on establishing a functional re-
lationship between the limit parameter response and
a set of measurable states and control variables. The
idea is to utilize these relationships in predicting dy-
namic trim response of the limit parameter. Further-
more, the model developed for the limit parameter
dynamics is used in computing the control or command
limit values, that would cause an envelope violation.
The method is applied both for manned and unmanned
aircraft.

In an unmanned vehicle application, where enve-
lope protection is to be automated, the system can
be set-up in two different ways. One way to achieve
automatic limit avoidance is to calculate the allowable
control travel of each control channel and limit the
controller outputs (u) artificially. Here, the modeling
is done between the controller output and the limit
parameter (yp) (Fig. 2).

Fig. 2 System modeling for control limiting.

Problems associated with the use of control limit-
ing are similar to those of actuator saturation. For
instance, issues related to closed loop stability need to
be re-assessed.
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An alternative to control limiting is the use of com-
mand limiting. In developing a relationship between
the limit parameter or the fast states and an input,
it is possible to view the system to be modeled as the
combination of the low level controller and the vehicle,
instead of the vehicle only. A block diagram represen-
tation of this approach is shown in Fig. 3. Then the
controller inputs (uc) can be limited and closed loop
stability can still be assured.

Fig. 3 System modeling for command limiting.

Following is a detailed development of the method
for command limiting for automatic limit detection
and avoidance. In this paper, the method is applied
to limit parameters, whose sensor measurements are
available and reach their maximum values in steady
state. In cases, where direct sensor measurements of
limit parameters is not available the method can still
be applied by constructing approximate adaptive mod-
els for the fast states and estimating their dynamic
trim values.11 The fast states required for the calcu-
lation of the dynamic trim can be measured through
standard sensors.

Automatic Limit Detection and Avoidance via

Command Limiting

Let us represent the closed loop dynamics of an air-
craft with the following nonlinear state equation:

ẋ = f(x, uc); x(t0) = x0, x ∈ �n, uc ∈ �i

(1)
where x is the state vector with unknown initial condi-
tion x0, and uc ∈ U is the controller command vector.
The function f is assumed to be continuous and sat-
isfying the global Lipschitz condition. Moreover, for
any finite initial condition the solution of eqn. 1 does
not escape in finite time.

The state x can be divided into fast and slow vari-
ables with their representative dynamic equations,

ẋf = f1(xf , xs, uc) (2)

ẋs = f2(xf , xs, uc) (3)

Here xf denotes the fast states and xs the slow states
of the aircraft.

Let a dynamic controller be represented in the fol-
lowing form:

ẋc = f3(xc, xf , xs, uc) (4)

u = g1(xc, xf , xs, uc) (5)

where xc is the controller state vector and u the con-
troller output (Fig.4). f1, f2, f3 satisfy the same as-
sumptions as f .

Fig. 4 Block diagram representation of controller

and vehicle dynamics.

Flight parameters such as forward speed and Euler
angles can be considered as slow states, whereas the
angular rates and angle of attack can be taken to be
fast states. If a dynamic controller is used, the con-
troller states are also assumed to be fast and therefore
can be included in the fast state vector xf . In general,
the dynamic trim condition then corresponds to

ẋf = 0 (6)

Let us also assume a vector yp consisting of limit pa-
rameters as

yp = g(xf , xs, uc) , yp ∈ �m (7)

When the limit parameters in yp can be mapped to
fast states as in eqn. 7, in dynamic trim the limit pa-
rameters yp will also reach a quasi-steady condition.
Therefore, the dynamic trim values of the limit pa-
rameters may be obtained using

ypDT
= g(xfDT

, xs, u) (8)

The subscript ’DT’ denotes dynamic trim. Thus the
dynamic trim response of the limit parameter (ypDT

),
can be calculated using the dynamic trim estimates of
the fast states.

First-order Approximation for the Limit Parameter

A large class of limits reach their maximum value in
steady state. Their dynamic behavior can be approx-
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imated using first-order differential equations. Con-
sider the following form for the dynamics of yp :

ẏp = h̃(yp, uc) (9)

In eqn. 9 the function h̃ represents the local dynamic
behavior of the limit parameter yp to the command in-
put uc. In an effort to construct a global model, slow
states might be added as inputs. Slow states could
also include changes in parameters like weight, alti-
tude, C.G. location. Indeed, slow states will appear as
an input to the system. Finally, a first order differen-
tial equation of the following form is considered:

ẏp = h(yp, xs, uc) (10)

The function h satisfies the same conditions as func-
tion f . The fast states do not appear in the above
equations as their contribution is inherent in the first-
order behavior of yp. Here, only limits that reach their
maximum values in steady state and show no coupled
dynamics with the fast states are considered. Implic-
itly, a unique mapping between the fast states and the
limit parameter is assumed. Moreover, a steady state
condition of the limit parameter also corresponds to a
steady state of the fast variables, and therefore to the
dynamic trim condition. Now, a linear approximation
for the function h of eqn. 10 can be written as

ẏp = Ayp + Buc + ξ(yp, xs, uc) (11)

where ξ is the modeling error and the remaining terms
represent a linear approximation for the function h.
An adaptive neural network with appropriate weight
update laws can be developed to approximate this
modeling error. If νad represents the output from such
a network, then eqn. 11 can be approximated as:

˙̂yp = Aŷp + Buc + νad(yp, xs, uc) (12)

where ŷp is the approximation of yp.
The dynamic trim response of the limit parameter

(ŷpDT
) could then be computed by setting ˙̂yp = 0 and

solving the nonlinear equation:

AŷpDT
+ Buc + νad(ŷpDT

, xs, uc) = 0 (13)

Also using eqn. 12 the command limit ûclim
could be

obtained by solving the following nonlinear equation:

Fig. 5 Block diagram of limit avoidance via com-

mand limiting.

Fig. 6 Block diagram of limit avoidance via control

limiting architecture.

Ayplim + Bûclim
+ νad(yplim, xs, ûclim

) = 0 (14)

The command margin than can be defined as:

ûcmarg.
= ûclim

− uc (15)

If an appropriate weight update law can be devel-
oped for an adaptive neural network so as to obtain
a good functional approximation of the limit param-
eter dynamics, than one could estimate and predict
the dynamic trim response behavior and the command
margins on-line.

Figure 5 is a block diagram representation of the
limit avoidance via command limiting architecture.
The limit detection block receives the current values of
the slow states and the current command inputs. The
dynamic trim predictions leading the actual response,
are used to calculate the command margin vector and
then limit the command inputs to the controller ac-
cordingly.

As an alternative, Fig. 6 is a block diagram repre-
sentation of the limit avoidance via control limiting
architecture. The limit detection block receives the
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current values of the slow states and the current con-
trol inputs. The dynamic trim predictions are used
to calculate the control margin vector and they are
passed to the low level controller as artificial control
saturation limits.4

Adaptive Architecture

The proposed architecture consists of one adaptive
loop to construct approximate limit parameter dynam-
ics (see Fig. 7) and two algebraic loops (see eqns. 17
and 18) to solve for dynamic trim and command limit
values. Figure 7 is a block diagram representation of
eqn. 12 with an additional error feedback term. As
will be seen in the Lyapunov analysis, the proportional
feedback of error is for the faster convergence of the
error dynamics. Note that, the approximate model
dynamics for ŷp now becomes:

˙̂yp = Aŷp + Buc + νad(yp, xs, uc) + Ke (16)

The adaptive neural network utilized in this observer
loop is a nonlinearly parameterized single hidden layer
network with sigmoid basis functions. The input to
the network are the slow states, controller command
and the limit parameter measurement. The network
weights adapt based on the model error. The neural
network weight adaptation laws are derived in the next
section.

Fig. 7 Observer loop with adaptive neural network

for model of limit parameters.

In eqns. 13 and 14 the variables to be solved, ŷpDT

and ûclim
appear inside the nonlinear function νad

which complicates an analytic solution. However,
fixed-point solutions can be guaranteed to exist to
these equations, when the neural network is guaran-
teed to have bounded outputs. A fixed-point solution
for these can be obtained by using the following equa-
tions:

ûclimi+1
= − B−1[Ayplim + νad(yplim, xs, ûclimi

)

+ Ke] (17)

ŷpDTi+1
= − A−1[Buc + νad(ŷpDTi

, xs, uc) + Ke]

(18)

In practice, however, separate iterative loops for
eqns. 17 and 18 are not needed if used along with the
neural network weight update.10 Since the number of
equations for ŷp will be the same as the number of el-
ements in ŷp, A is a square matrix. Moreover, for a
unique solution to exist, it has to be invertible. De-
pending on the number of input parameters uc and the
number of limit parameters, the inversion of B might
not be always possible. The above is possible, if the
number of limit parameters are associated with the
same number of controls and B is invertible. A least
squares approach could be used for cases where the
number of control inputs is larger than the number of
limit parameters.11

Single Hidden Layer Artificial Neural

Network Augmentation

A neural network is a parallel structure of intercon-
nected neurons or neural processors. Given x ∈ �N , a
three layer NN has an output given by:

yi =
N2∑
j=1

[mijσ(
N1∑
k=1

njkxkθnj) + θmi], i = 1, . . . , N3 (19)

where σ is the activation function, njk are the first
to second layer interconnection weights, mij are the
second to third layer interconnection weights, N2 is
associated with the number of neurons in the hidden
layer, θnj and θmi are bias terms. Such an architecture
can approximate any continuous nonlinearities with
“squashing” activation functions.16,17 Hence any gen-
eral function f(x) ∈ C, x ∈ D ⊂ �n can be written
as:

f(x) = MT σ(NT x) + ε(x) (20)

where ε(x) is known as the function reconstruction er-
ror.

The nonlinear approximation νad in eqn. 16 can be
replaced by using a so-called single hidden layer neural
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network of the form of eqn. 19. In matrix form, the
approximation can be written as,

νad = M̂T σ(N̂T µ̄) (21)

where M̂ and N̂ are the adaptive NN weights and µ̄ is
the normalized network input vector. Following is the
development of the tuning law of the weights M̂ and
N̂ of eqn. 21.

Weight update law

Lyapunov analysis technique is used to derive the
update laws for the neural network weights.

The error equation, obtained using eqns. 11 and 16,
can be written as:

ė = Ae − [MT σ(NT µ̄) − Mo
T σ(No

T µ̄) + ε] − Ke (22)

where e = yp−ŷp and Mo, No are ideal network weights
which best approximates the modeling error ξ.

Using the Taylor series expansion for MT σ(NT µ̄)
eqn. 22 can be expanded as:

ė = Ae − [M̃T (σ − σ′NT µ̄) + MT σ′ÑT µ̄ + w] − Ke

where M̃ = M − Mo and Ñ = N − No. Also,

w = ε + Mo
T [σo − σ + σ′ÑT µ̄] + M̃T σ′No

T µ̄

Consider the following Lyapunov candidate func-
tion,

L =
1
2
[eT Pe + tr(M̃T F−1M̃) + tr(ÑT G−1Ñ)] (23)

and the weight update laws:

Ṁ = −F [(σ − σ′NT µ̄)(eT P ) + κ||e||M ] (24)

Ṅ = −G[µ̄((eT P )MT σ′) + κ||e||N ] (25)

In eqn. 23 the matrix P is the solution of the Lya-
punov equation,

AT P + PA = −Q (26)

and is known to be unique for any given positive defi-
nite matrix Q when all eigenvalues of A have negative
real part. Taking the derivative of Lyapunov candi-
date function with respect to time and substituting
the update laws in eqns. 24 and 25 the following is
obtained:

L̇ = −eT Qe

2
− eT Pw − eT Ke − κ||e||tr(Z̃T Z) (27)

where Z =

[
M 0
0 N

]
and Z̃ =

[
M̃ 0
0 Ñ

]
. Using

the relation −tr(Z̃T Z) ≤ ||Z̃||||Zo|| − ||Z̃||2 and the
fact that norm of w is upper bounded as:

||w|| ≤ co + c1||Z̃|| + c2||e||||Z̃|| + c3||Z̃||2 (28)

where co, c1, c2, c3 are constants. The derivative of
Lyapunov function can be written as:

L̇ ≤ −λmin(Q)
2

||e||2 + ||e||||P ||||w|| − K||e||2

−κ||e||||Z̃||2 + κ||e||||Z̃||Z̄ (29)

=⇒ L̇ ≤ −λmin(Q)
2

||e||2 − (κ − ||P ||c3)||e||||Z̃||2

+ao||e|| + a1||e||||Z̃|| − (K − c2||P ||||Z̃||)||e||2 (30)

where ao = co||P || and a1 = c1||P || + κZ̄. Z̄ is the
upper bound on the norm of the ideal weight matrix
Zo, i.e ||Zo|| ≤ Z̄

If K ≥ c2||P ||||Z̃|| and κ ≥ ||P ||c3 then L̇ ≤ 0 when,

||Z̃|| ≥ Zm =
a1 +

√
a2
1 + 4ao(κ − ||P ||c3)
(κ − ||P ||c3)

(31)

or, when

||e|| ≥ ao + a1Zm
1
2λmin(Q)

(32)

Hence by appropriate choice of λmin(Q) and K

along with network parameters F,G, κ the derivative
of Lyapunov function L can be made negative ev-
erywhere outside a compact set D̄. Thus for initial
conditions within this compact set, the model error
e and weights Z̃ are uniformly ultimately bounded,
when the weight update laws of eqns. 24 and 25 are
used.

Application to the Yamaha R-Max

Unmanned Helicopter Test-bed

As part of the ongoing DARPA sponsored Software
Enabled Control (SEC) program a Yamaha R-MAX
helicopter is modified to serve as a test-bed (GTMAX)
for enabling technologies for unmanned autonomous
helicopters (Fig. 8). Recent testing included mid-level
controller algorithms. The design and testing of the
automatic envelope protection system was one among
them.

The integration of the envelope protection system
to the GTMAX test bed involved its testing and ver-
ification with the software-in-the-loop simulation and
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Fig. 8 GTMAX, autonomous helicopter test bed
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Fig. 9 GTMAX adaptive neural net based con-

troller architecture.

the onboard computer software and hardware. As the
envelope protection system would modify trajectory
commands that enter the low-level controller the in-
tegration of the system with the existing low level
controller was essential.

In Ref. 1 the baseline flight controller for the GT-
MAX was presented. A simplified block diagram of
this low level controller architecture along with a mid-
level trajectory generator is shown in Fig. 9. The
input to the trajectory generator are trajectory set
points, which is a set of position and heading com-
mands. Then continuous acceleration commands (ac)
are generated and integrated to obtain velocity (vc)
and position commands (pc) to be used in the out-
erloop. Hence, in the present architecture, acceler-
ation commands from the trajectory generator can
be viewed as the independent inputs. Based on the
method explained in previous sections for adaptive
limit detection and avoidance, a functional represen-
tation between the limit parameter and the trajectory
acceleration commands is assumed. Then the accelera-
tion command limits (alim) can be computed. The ac-

celeration commands are then modified to avoid limit
violations. The acceleration command ultimately in-
put to the outer loop (ainp) is calculated as follows:

ainp = ac + KA(alim − ac) (33)

where ac is the command that would have gone
through without limit avoidance, alim is the predicted
acceleration command limit and ainp is the modified
acceleration command input. KA is a function of
alim − ac. (Ref.4)

A block diagram representation of this limit avoid-
ance architecture is shown in Fig. 10.

T
ra

je
ct

o
ry

g
en

er
at

o
r

Trajectory

setpoints

Adaptive neural

net controller

C
o

m
m

an
d

fi
lt

er

Command

hedging states

control

inputs

Vehicle

A
c

t
u

a
t

o
r

s

Sensors

Vehicle

A
c

t
u

a
t

o
r

s

Sensors

cp

cv

ca

cp

cv

ca

Adaptive

Limit

prediction

Command Limiting

And

Smoothing Logic

Command Limiting

And

Smoothing Logic

command limit:

command

Inputs:

lima
slow states

ca

Fig. 10 Proposed limit detection and avoidance ar-

chitecture for the GTMAX unmanned helicopter.

For the testing of the system, the Expected Retreat-
ing Indicated Tip Speed (ERITS) factor is considered
as a measure of rotor stall limit and used as the limit
parameter. The ERITS factor is estimated using the
following equation:7

ERITS =
Vtip

ρ
ρs

− vcas

Nz
(34)

where Vtip is the rotor tip speed, vcas is the calibrated
airspeed, Nz is the load factor and ρ

ρs
is the relative

air density. All the data required to calculate the ER-
ITS number was available from sensor measurements
onboard the unmanned helicopter.

In the software-in-the-loop simulations and flight
tests presented in this paper, the limit parameter (ER-
ITS) is limited using one command input, namely act

the acceleration command component laying in the x-y
plane of the vehicle carried frame. Once the command
limit for act

is calculated, it is resolved into its appro-
priate components and used as command limits in the
trajectory generator.

System Integration Using the Open Control

Platform

One of the objectives of the DARPA sponsored
SEC program is the design and development of an
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Open Control Platform (OCP) and to demonstrate
its benefits.15 The OCP would provide a base for
control systems with features such as adaptability
whereby, for instance, individual components can dy-
namically reconfigure themselves to provide optimal
system performance during extreme maneuvers. The
OCP based control systems would also allow interop-
erability, which means control algorithms running on
different software hardware platforms, different pro-
cessors etc. would still be able to interact and commu-
nicate with each other. Other main features provided
by the OCP are Plug-and-Play extensibility and open-
ness.15,18
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Fig. 11 Block diagram representation of the setup

used for flight evaluation of the limit detection and

avoidance algorithms on the OCP.

The SEC program aims to develop and inte-
grate mid-level and high-level control algorithms and
demonstrate benefits when used through the OCP.
As part of achieving this goal the envelope protec-
tion component is integrated through the OCP as a
mid-level component into the GTMAX software de-
sign. The GTMAX avionics design incorporates two
onboard computers. The primary computer runs the
low level flight controller and the secondary computer
runs other software components, such as the the mid-
level controller components. In the implementation,
the envelope protection system is run on the secondary
computer. The OCP-datalink component was used
to exchange data between the ethernet UDP ports of
the primary and secondary flight computers. The pri-
mary flight computer supports the architecture shown
in Fig. 9 with the low-level controller and trajectory

generator. First, the OCP was compiled on a com-
puter running the QNX operating system, with a limit
avoidance module and a datalink component. The ex-
ecutable code was then made to run on the secondary
flight computer of the GTMAX also running the QNX
operating system. The final setup with the primary
and secondary flight computers is shown in Fig. 11. In
Fig. 11 the datalink component of the OCP receives an
encoded signal from the ethernet UDP port of the pri-
mary flight computer. This signal is decoded within
the datalink and contains the necessary information
required by the components within the OCP, in this
case the limit avoidance module.

The envelope protection module is set up to prevent
limit violations of the ERITS factor. Based on sen-
sor information provided through the OCP the ERITS
factor is computed and an adaptive nonlinear model
is developed. The acceleration command limits are
computed from the model and then sent through the
datalink. The datalink encodes this signal and sends
it to the primary flight computer as shown in Fig. 11.

Software-in-the-loop Simulation and

Flight Test Results

In moving towards a successful flight test all soft-
ware is first tested in a software-in-the-loop (SITL)
simulation.19 In this section, the results of the SITL
evaluations of the adaptive limit detection and avoid-
ance algorithm on the GTMAX unmanned helicopter
test bed is presented. Rotor stall limits are considered
as the limit parameter.
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Fig. 12 SITL simulation results. Limit avoidance

OFF.

In this simulation, a lower limit of 375 ft/sec is
assumed for the ERITS factor. The load factor is
estimated using the filtered sensor measurements of
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Fig. 13 SITL simulation results. Limit avoidance

ON.

the body accelerations. The filter used is a first order
low pass filter with a cut off frequency of 2Hz. The
calibrated airspeed is computed using the measured
velocity components along the three body axes.

The simulation starts from an initial hovering condi-
tion. After around 10 seconds into the simulation the
trajectory module generates the position, velocity and
acceleration commands to fly the vehicle to a point
500ft north of the current position and hover. A func-
tional representation of the limit parameter dynamics
with respect to the acceleration command (act

) is gen-
erated. The maneuver is first run with limit avoidance
OFF, but limit detection ON. The results for this case
are presented in Fig. 12. The upper figure of Fig. 12
shows the actual ERITS factor response along with
the dynamic trim response violating the assumed lower
limit of 375 ft/sec. The lower figure of Fig. 12 shows
the command limit as estimated by the limit detection
algorithm along with the acceleration command. Note
that, the command limit violation precedes the limit
parameter violations. Also, the dynamic trim estima-
tion shown in Fig. 12 leads the actual response.

Next, the same maneuver is run with both the limit
detection and limit avoidance ON. Plots in Fig. 13
present those results. When the limit avoidance rou-
tines are turned ON, the ERITS factor response is
forced to stay above the lower boundary of 375 ft/sec.
Figure 13 also shows the modified acceleration com-
mand staying within the predicted command margin.
Slight system induced oscillations could be avoided
through further adjustment of the limit avoidance rou-
tines.

The software-in-the-loop simulation results pre-
sented above illustrated the effectiveness of the pro-
posed adaptive limit detection and avoidance scheme
and brought confidence to flight tests.

Flight Tests

Figure 14 is a concise representation of the setup
used for flight test evaluations. The rate of commu-
nication between the primary flight computer and the
secondary flight computer through the OCP datalink
component is 50Hz. Also, the datalink and limit
avoidance components within the OCP exchange in-
formation at the same rate. The signal LimitInfo
from the datalink to the limit avoidance module con-
tains the following sensor measurements of the vehicle:
The main rotor RPM, position, velocity, acceleration
and time from the onboard primary flight computer.
The limit avoidance component sends back the signal
LimitDecl which contains the computed acceleration
command limit values.

Low Level
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Limit
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LimitInfo

LimitDecl

Secondary Flight ComputerPrimary Flight
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Fig. 14 Reference architecture for flight testing

of the limit detection and avoidance algorithms on

the GTMAX.

The maneuver considered was a forward dash to a
point 600ft from the initial hover point and a back-
ward flight to the starting point. The maneuver ended
in hover. This maneuver required accelerations and
decelerations, that resulted in exceedance of the pre-
scribed rotor stall limits.

Two flight tests were conducted. First the limit
avoidance routine was OFF and the limit detection was
ON. During this maneuver the vehicle violated its limit
boundary. Fig. 15 shows results of the dynamic trim
estimation and the command limit prediction. The
limit detection algorithm did predict a command limit
violation, when the dynamic trim response exceeded
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Fig. 15 Flight test results. Limit Avoidance OFF.
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Fig. 16 Flight test results. Limit avoidance ON.

the limit.
Next, both routines were switched ON and the same

maneuver was executed (see Fig. 16). The vehicle
was successful in staying within the prescribed lim-
its. Comparing Figs. 15 and 16 it can be observed
that, when the limit avoidance routine is switched
ON the acceleration command follows the command
limit when a limit violation is foreseen. By modifying
the acceleration command the limit parameter corre-
sponding to rotor blade stall (ERITS) is kept within
the limit boundary.

Conclusions

A previously developed neural network based adap-
tive limit detection and avoidance algorithm is inte-
grated into the unmanned helicopter test bed at Geor-
gia Tech. Successful flight test results demonstrated
the effectiveness of the system when used as an en-
velope protection system on a UAV as a mid-level

controller component. The limit detection algorithms
have successfully predicted dynamic trim conditions,
limit and command margins. The envelope protection
system interacted with low level controller commands
and adjusted them such that the aircraft stays in its
prescribed limit boundaries. Procedures followed prior
to flight tests increased system confidence and cut the
development time. The capabilities of the open con-
trol platform were effective in the ease of integration
and the flexibility in changing, developing and inter-
connecting software components.

The ERITS number was used as a measure for ro-
tor stall. Therefore one limit parameter was controlled
using one effective input channel. Currently, the sys-
tem is being extended to be able to limit multiple limit
parameters using multiple command control channels.
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