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SECTIONS OF SURFACE BUNDLES
AND LEFSCHETZ FIBRATIONS

R. INANC BAYKUR, MUSTAFA KORKMAZ, AND NAOYUKI MONDEN

ABSTRACT. We investigate the possible self-intersection numbers for sections
of surface bundles and Lefschetz fibrations over surfaces. When the fiber genus
g and the base genus h are positive, we prove that the adjunction bound 2h —2
is the only universal bound on the self-intersection number of a section of any
such genus g bundle and fibration. As a side result, in the mapping class group
of a surface with boundary, we calculate the precise value of the commutator
lengths of all powers of a Dehn twist about a boundary component, concluding
that the stable commutator length of such a Dehn twist is 1/2. We furthermore
prove that there is no upper bound on the number of critical points of genus—g
Lefschetz fibrations over surfaces with positive genera admitting sections of
maximal self-intersection, for g > 2.

1. INTRODUCTION

Surface bundles over surfaces and, more recently, Lefschetz fibrations, have con-
stituted a rich source of examples of smooth, symplectic, and complex manifolds.
The current article explores the existence and the diversity of surface bundles and
Lefschetz fibrations which admit sections of maximal possible self-intersection.

Fixing the fiber and the base genera of a surface bundle over a surface, or a
Lefschetz fibration, the first question we will tackle is the following: What are the
constraints on self-intersection numbers of sections of all such maps? The fun-
damental obstruction hinges on the fact that the total spaces of these maps are
symplectic 4-manifolds and comes from an application of the adjunction inequality
for Seiberg-Witten invariants (Proposition H). Namely, for a given genus—g Lef-
schetz fibration over a surface ¥, of genus h with g,h > 1, the self-intersection of
a section S of this fibration can be at most 2h — 2. For a surface bundle, the self-
intersection number of S is also bounded below by 2—2h. (In this article, whenever
we talk about a Lefschetz fibration, we will assume the presence of critical points, so
as to make a clear distinction.) We refer to these bounds as adjunction bounds and
to sections attaining maximal self-intersection numbers allowed by the adjunction
bounds as mazimal sections.

The natural question to ask, therefore, is whether or not the adjunction bounds
are the only universal constraints on the self-intersection number of sections for
surface bundles or Lefschetz fibrations with fixed fiber and base genera. We take
up this problem in Section [3] for surface bundles over surfaces. We prove that the
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adjunction bounds are the only global bounds on self-intersections of sections for
all g > 2 and h > 1. That is, we prove that

Theorem 1. Let h > 1. For every g > 2 and 2 — 2h < k < 2h — 2, there exists a
X -bundle over ¥y, admitting a section of self-intersection k and, in particular, a
mazximal section.

We, moreover, construct ¥,-bundles over ¥, which admit disjoint sections that
attain all the possible self-intersection numbers between 2 — 2h and 2h — 2 for any
g >8h—8and h > 1 (Theorem [I§]). These constructions make use of the mapping
class group relations we present in the same section.

For the remaining values of g and h, we have a complete treatment, which
demonstrates a contrast with our results mentioned above. When g or h is zero,
the conclusions are classical: For g = 0, we have ruled surfaces, that is, S-bundles
over Yy, which can admit sections with arbitrary self-intersections, and for g > 1
and h = 0, there is indeed a unique ¥,~bundle over 52 given by projection onto
the second factor of 3, x S2. On the other hand, in the case of g =1 and h > 1,
we observe that another extreme situation arises: The sections of these elliptic
surface bundles always have self-intersection zero (Proposition 20), even though
the adjunction bounds hand us a larger range from 2 — 2h to 2h — 2 for h > 1.

A side result of particular interest is given in Theorem [I5] where we compute
the commutator length of powers of the Dehn twist about a boundary component
and, in turn, the stable commutator length of such a Dehn twist. Namely we show:

Theorem 2. Let g > 2, n > 1 and let ¥ be a compact connected oriented surface
of genus g with boundary. If § is one of the boundary components of 3, then the
commutator length of t§ is [(|n| + 3)/2| and the stable commutator length of ts is
1/2.

What follows is a stable calculation which is in great contrast with a result
of Kotschick, who showed that the stable commutator length function vanishes
when one considers the stable mapping class group of compact surfaces with one
boundary component [I4]. It follows from our result that the stable commutator
length function does not vanish when one works with the stable mapping class group
of compact surfaces with more than one boundary component instead. These results
are given in Subsection Some computations and estimates on the commutator
length and the stable commutator length of a (multi-)twist were obtained in [I3][7
111, 151 [5].

Lastly, we address the following question: For fixed fiber and base genera, is there
an upper bound on the number of singular fibers of a relatively minimal Lefschetz
fibration admitting a section of maximal self-intersection? As the maximal self-
intersection number for a Lefschetz fibration (again, with critical points) over the
2-sphere is —1 [20, 23], when the base genus A = 0 this question is due to Ivan Smith
(presented by Denis Auroux in [I]). For fiber genus g > 2 and base genus h > 1,
we show that the answer to this question is negative by proving the following:

Theorem 3. Let g > 2 and h > 1 be fized integers. For any positive integer M,
there exists a relatively minimal genus—g Lefschetz fibration over a surface of genus

h admitting a mazimal section such that the number of critical points is greater
than M.

These results are collected in Section [l
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2. PRELIMINARIES

2.1. Lefschetz fibrations and monodromy representations. In this article,
all manifolds are assumed to be smooth and oriented, and all maps are assumed
to be smooth. We denote by X7, a compact oriented surface of genus g with s
boundary components and r marked points in the interior. The mapping class
group, I'y ., of 37 . is the group of isotopy classes of orientation-preserving self-
diffeomorphisms of ¥7 | fixing r marked points and the points on the boundary.
s . are assumed to fix the marked points and the points on the

The isotopies of X7 .
O X5 =25 and Xy = XY ;. We also

boundary. For simplicity, we write X, , = X
use the similar simplified notation for the corresponding mapping class groups.

We start by reviewing some basic definitions and properties of Lefschetz fibra-
tions and surface bundles over surfaces.

Let X and ¥ be compact connected manifolds of dimensions four and two, re-
spectively. A Lefschetz fibration is a map f: X — ¥ such that f~1(9%) = X, the
set C' = {p1,p2,...,pr} of critical points of f lies in the interior of X, and around
each p; and f(p;) there are orientation-preserving charts making f conform to the
complex model f(z1,22) = z122. The genus g of a regular fiber F' = ¥/ of f is called
the genus of the fibration. We will assume that the critical points lie in different
fibers, called singular fibers, which can be achieved after a small perturbation of any
given Lefschetz fibration. When there are no critical points, f : X — X is nothing
but a surface bundle over a surface, so f always restricts to a surface bundle over
Y\ f(C)on X\ f71(f(C)) and, in particular, over 9% on 9X. Below, whenever we
talk about a Lefschetz fibration, we will assume that the critical locus is nonempty,
so as to make a clear distinction from surface bundles over surfaces.

A singular fiber is called reducible if the complement of the critical point in the
fiber is disconnected and is called irreducible otherwise. Lefschetz singularities lo-
cally correspond to 2-handle attachments to D? x F with framing —1 with respect
to the fiber framing, where the attaching circles of these 2-handles are embedded
curves in a regular fiber F' and are called wvanishing cycles. With this in mind,
a reducible (resp. irreducible) singular fiber is given by a separating (resp. non-
separating) vanishing cycle on F. So a reducible fiber consists of two surfaces of
self-intersection —1 intersecting each other at the critical point. If one of these two
surfaces is a 2-sphere, that is, if the vanishing cycle is null-homotopic on F', then
one gets a new Lefschetz fibration by blowing-down this sphere without altering
the rest of the fibration, and vice versa. Therefore, we may consider only relatively
minimal Lefschetz fibrations, i.e. fibrations which do not contain any sphere of
self-intersection —1 in its fibers.

Lefschetz fibrations can be described combinatorially by means of their mon-
odromy. For a smooth surface bundle f: F — ¥ with fibers diffeomorphic to F,
the monodromy representation of f is defined to be the map ¥: m(X) — I, relative
to a fixed identification ¢ of F' with the fiber over the base point of X: For each
loop v: I — ¥ the bundle f,: v*(E) — I is canonically trivial, inducing a diffeo-
morphism f1(0) — f(1) up to isotopy. Using ¢ to identify f'(0) and f*(1)
with F', we get the element U(y) € I'y. Changing the identification ¢ changes ¥
by a conjugation with an element of I'y. Here the map ¥: m(X) — I'y is an an-
tihomomorphism rather than a homomorphism, because for the multiplication in
the mapping class group we use the functional notation, i.e. for fi, fo € I'y, the
product f; fo means that we first apply fo and then f;.
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For a relatively minimal, genus—¢g Lefschetz fibration f: X — X with a regular
fiber F', we define the monodromy representation (or simply monodromy) to be the
monodromy factorization of the fiber bundle X \ f~1(Q) — £\ Q, where Q = f(C)
is the set of critical values. For f: X — X as above, the monodromy representation
U: m(X\ Q) — I'y determines f up to isomorphism, except in the cases of sphere
and torus bundles over closed surfaces. This is due to the fact that for g > 2 the
space of self-diffeomorphisms of F' isotopic to the identity is contractible.

It turns out that the monodromy of a Lefschetz fibration f: X — D? over the
disk with a single critical point is a right Dehn twist along the vanishing cycle cor-
responding to the singular fiber. Therefore, the monodromy of a Lefschetz fibration
f: X — Xy is given by a factorization of the identity element 1 € Iy as

(1) 1_HtULHa],5J
i=1 j=1

where v; are the vanishing cycles of the singular fibers and t,, is the right (or posi-
tive) Dehn twist about v;. This factorization of the identity is called the monodromy
factorization. In particular, for F' = X, a product H?Zl [as, b;] of h commutators in
', gives a ¥,-bundle over the surface ¥} of genus h with one boundary component.
The mapping classes a; and b; specify the monodromies along a free generating sys-
tem (o, B1, ..., an, Bp) of m1(X}) such that H:.L:l [av;, B;] is parallel to the boundary
component of ¥} . If H?Zl[ai,ﬂi] =1in Ty, we get a ¥,~bundle X — X;,. The
bundle is uniquely determined by this factorization of the identity once g > 2.

Conversely, a product Hle t; € I'y with ¢; right Dehn twists provides a genus—g
Lefschetz fibration X — D? over the disk with fiber F 2 .. So if Hle t, =1
in the mapping class group I'y, then the fibration closes up to a fibration over the
sphere S? and the closed—up manifold is uniquely determined by the word Hle t;
once g > 2. By combining the above two constructions, a word

h

w = Ht H ai, i
=1 j=1

gives a Lefschetz fibration over ¥j, \ D?, and if w = 1 in I', we get a Lefschetz

fibration X — X,

For a Lefschetz fibration or a surface bundle f : X — ¥, amap 0: ¥ — X is
called a section if foo = idy. Suppose that a fibration f: X — ¥ admits a section
o. Set S =o0(X) C X. We will also say that S is a section of f. This section S
provides a lift of the representation ¥ from m (X \ @) to the mapping class group
I'g1. One can then fix a disk neighborhood of this section preserved under the
monodromy and get a lift to I‘;.

Conversely, every such representation with a lift determines a fibration with
a section: Gluing a disk with a marked point to a surface with one boundary
component along the boundary and by extending self-diffeomorphisms of the surface
by the identity on the disk, we obtain a surjective homomorphism p: F; —Tg1. It
is well known that ker p is isomorphic to Z, generated by the right Dehn twist ¢s
along a simple closed curve § parallel to the boundary. If the factorization

1= HtULHaJ,/BJ
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lifts from I'y to I'y ;1 as a factorization of 1 in the latter group in a similar form,
then the corresponding fibration has a section. Moreover, if we lift this product to

I’; we get
tgn = Htv; H[agaﬁ;]
i j
for some m. Here, ¢,/ is a Dehn twist mapped to ¢,, under F}] — I'y. Similarly, oz;-
and 61’- are mapped to «; and §;, respectively. An elementary observation is that the
power m of t5 in the above factorization in I‘; is the negative of the self-intersection
number of the section S that we obtain. (See for instance [20].)

2.2. Background results. There are three basic operations we are going to use
to construct new surface bundles and Lefschetz fibrations from given ones:

(1) Let f : X — Xj be a Lefschetz fibration with regular fiber £,. If X is an
orientation-preserving self-diffeomorphism of ¥, then Ao f : X — ¥, is also a
Lefschetz fibration with regular fiber 3. If f : X — X is a ¥,-bundle, then one
can take the diffeomorhism A above to be orientation-reversing as well to get a new
Yg-bundle Ao f: X — 3.

(2) For i = 1,2, let f; : X; — Xp, be two genus—g Lefschetz fibrations. We can
then remove a fibered neighborhood of a regular fiber ¥, from each fibration and
glue the resulting 4-manifolds along their boundaries using a fiber—preserving and
orientation-reversing diffeomorphism ¢ of S' x ¥, to get a new oriented 4-manifold
X. The result is a new genus-g Lefschetz fibration f = fi#4f2 : X — Xp, 4n, called
the fiber sum of f; and fs. Moreover, if S; is a section of f; with self-intersection
k; for ¢ = 1,2, then one can perform this fiber sum operation so that there is
a section S7#95s, restricting to S; on each fiber sum component, of the fibration
[ = Ffi#sfo : X = Xh,+n, with self-intersection k& = ki + k2. In this case, we say
that the pair (f,S) is the fiber sum of (f1,S1) and (f2,S2).

(3) Let f; : X; — X be a genus—g; Lefschetz fibration with the regular fiber
Y4, with a self-intersection zero section S; for each ¢ = 1,2. We can then remove a
D? fibered neighborhood of each S; in X; and glue the resulting 4-manifolds along
their boundaries using a fiber-preserving orientation-reversing diffeomorphism ¢ of
St x ¥j,. The result is a new Lefschetz fibration f = fi#4f2 : X — ¥, with the
regular fiber g, 4g,.

The constructions (2) and (3) above are both instances of the generalized fiber
sum construction, although they appear to be “orthogonal” to each other in nature.
When the fibers are homologically essential (in particular, when the fiber genus
g # 1), these Lefschetz fibrations can be equipped with symplectic forms that
make the fibers and any prescribed finite collection of disjoint sections symplectic,
allowing us to perform this generalized fiber sum construction symplectically and
handing us a new symplectic Lefschetz fibration at the end. It is not hard to express
all these operations in terms of factorizations and lifts in appropriate mapping class
groups.

The next proposition prescribes the adjunction bounds for self-intersection num-
bers of sections of surface bundles and of Lefschetz fibrations:

Proposition 4 (Adjunction bounds). Let f : X — X be a surface bundle or a
Lefschetz fibration with regular fiber ¥4, and g,h > 1. Suppose that f admits a
section S. Then the self-intersection of S satisfies [S]> <2h —2. If f: X — X, is
a ¥4 bundle, then this bound improves to | [S]*| < 2h — 2.
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Proof. 1If f is a surface bundle over a surface with positive fiber and base genera, we
easily deduce from the homotopy exact sequence of a fibration that the total space X
is acyclic and, in particular, minimal. On the other hand, if f is a Lefschetz fibration
which is not relatively minimal, then we can always blow-down the exceptional
spheres on the fibers and pass to a relatively minimal genus g Lefschetz fibration
over a genus h surface. Since a section intersects each fiber positively at one point,
it either intersects each one of these exceptional spheres positively once or misses it.
We therefore obtain a relatively minimal Lefschetz fibration with a section whose
self-intersection number is greater than or equal to the self-intersection number
of the original section. Thus, it suffices to prove the proposition for a relatively
minimal Lefschetz fibration f, which we will assume from now on. Then it follows
from [22] that the total space of this fibration is minimal. To sum up: in all cases
we can assume that we are working with a minimal X.

Since the fibration admits a section, the fibers are homologically essential, al-
lowing us to equip X with a symplectic form using Gompf-Thurston construction.
We therefore have a minimal symplectic 4-manifold X in hand. In particular,
b (X) > 1.

The case b (X) > 1. The proof in this case will follow at once from an application
of the adjunction inequality for Seiberg-Witten basic classes. As shown by Taubes,
the canonical class K of any symplectic form we choose on X is a Seiberg-Witten
basic class. Applying the adjunction inequality we get

—Xx(8) > [S]*+|K - S].
It follows that 2k — 2 > [S]?, proving the first claim of the proposition in this case.
The case bt (X) = 1. First observe that if F = X is a regular fiber, then for any
r > 1[[S]?| the class r[F] + [S] has a positive square, whereas r[F] — [S] has a
negative square. So b~ (X) > 1. Moreover, from the exact sequence
m(F) = m(X) B m(Th) = 1,

we get b1(X) > b1(Zr) = 2h. (See for instance [§].)

Second, we show that X is not ruled. From b;(X) > 2h, it is fairly easy to see
that X can only be a ruled surface over ¥,, with n > h. In this case, from the Euler
characteristic calculation 4(g — 1)(h — 1) + m = 4 — 4n, where m is the number of
Lefschetz critical points, we get

0§%=—9h+g+h—n§g(1—h)éo-

Hence, m = 0 (and h = n = 1), i.e. f should be a surface bundle over a surface.
Since the base and the fiber genera are positive, this in turn implies that 7 (X) = 0,
so X cannot be ruled.

Since X is a minimal symplectic 4-manifold with b*(X) = 1 and since it is not
(irrational) ruled, as shown by Liu in [16], we have the inequality

0 < c2(X)=2e(X) + 3sign(X),

where e(X) and sign(X) are the Euler characteristic and the signature of X, re-
spectively. From this equation we derive that

0<4—4by(X)+5bT(X) b~ (X) =9 —4by (X) — b~ (X).
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Therefore, we get
0<8h+b (X)<4b(X)+b (X) <9,

giving us b1(X) = 2,h = 1 and b~ (X) = 1. In particular, the Euler characteristic of
X is e(X) = 0. Calculating the Euler characteristic from the handle decomposition
of X we have

Ag—1)(h—1)+m =0,

where m is the number of singular fibers of the Lefschetz fibration f (considering
the surface bundle as a Lefschetz fibration with no singular fiber). We conclude
that m = 0, that is, we have an honest X,-bundle over the torus T2

Let [S]? = s. This hands us a relation ¢;* = [/, '] in the mapping class group
F; of a surface E_(l] with one boundary component, which is a lift of the monodromy
factorization [, 5] = 1 in I'y of the surface bundle f. Here ¢ is the boundary
curve Z;. Gluing a torus with one boundary component to E_(l] along § gives an
embedding Z; — Yg+1, which in turn induces an injection F}] — I'gy1. Thus we get
the relation t,* = [, 8”] in I'y41, where ¢’ is a homotopically nontrivial separating
simple closed curve on X,11. However, it was shown by Endo and Kotschick in [7]
that no nontrivial power of a Dehn twist along a separating simple closed curve is
a commutator. Therefore, [S]? = 0, concluding the proof of the first claim.

If f is an honest ¥,-bundle over ¥} with a section S of self-intersection k, then
we have

(a1, Bilas, Ba] -+ [own, Bn] = t5 "

in F;, where ¢ is the boundary component. By inverting this equation we obtain
the relation

[Bh, an] - - [B2, 2] [B1, 1] = t§

which gives another X,~bundle over X5, namely the reflection of f. This bundle
has a section of self-intersection —k. By the result above —k < 2h — 2; thus
[[S]?| < 2h — 2, concluding the proof. O

While circulating an earlier version of this article, we found out that such an
adjunction bound in the case of surface bundles of fiber genera g > 2 was inde-
pendently obtained by Bowden (Proposition 3.2 in [3]), where the author studies
multi-sections of surface bundles.

Note that when we have a Lefschetz fibration there is indeed no lower bound
on the self-intersection of a section. This can be seen for instance by taking fiber
sums with appropriate Lefschetz fibrations over the 2-sphere with negative square
sections while patching the sections.

When the base genus is h = 0, a maximally self-intersecting section for a Lef-
schetz fibration (again with nonempty critical locus) has self-intersection —1, as
shown in [20, 23]. In light of the above proposition, we make the following defini-
tion:

Definition 5. Let f : X — 3;, be a Lefschetz fibration with the regular fiber 3,
and let S be a section of this fibration. Then S is called a mazimally self-intersecting
section, or a mazimal section for short, if [S]? = 2h — 2 when h > 1 and [S]? = —1
when h = 0.
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Let us now define:

Definition 6 (Fiber sum indecomposability for pairs). Let f be a surface bundle or
a Lefschetz fibration over ¥;, with the regular fiber 3, and let S be a section of this
fibration. If (f,.S) can be expressed as the fiber sum of (f1,.S1) and (f2, .S2) for some
surface bundles or Lefschetz fibrations f; : X; — ¥, with sections S; such that
neither one of (f;,S;) is the trivial ¥,~bundle over S?, then (f, S) is said to be fiber
sum decomposable. The pair (f,S) is called fiber sum indecomposable otherwise.
Fiber sum indecomposability for a fibration f alone (without any mentioning of a
section) is defined similarly.

Proposition 7. Let g,h > 1. If f : X — X} is a surface bundle or a Lefschetz
fibration with the regular fiber ¥, admitting a mazimal section S, then the pair
(f,S) is fiber sum indecomposable.

Proof. Let (f,S) be the fiber sum of two genus—g fibrations (f1,S1) and (f2,52)
over surfaces of genera hy and hs, respectively. Assume that 0 < hy < hy < h. We
have [S1]? + [S2)? = [S]? = 2h — 2 and h; + hy = h. However, by Proposition 4l
[Si]? < 2h; — 2 for i = 1,2, yielding a contradiction. So now assume that h; = 0
and hy = h. Once again by Proposition d] [S3]? < 2h — 2. It follows that [S;]? = 0,
so f1 is the trivial 3,-bundle [20,23]. Thus (f, S) is fiber sum indecomposable. O

Remark 8. If the section S has self-intersection 2h — 3, that is, one less than the
maximum possible self-intersection, then the first part of the above proof still works
and shows that the pair (f,.S) cannot be decomposed as a fiber sum of two Lefschetz
fibrations over surfaces. However, we shall note that this does not exclude the
possibility of the fibration f decomposing as a nontrivial fiber sum; our observation
here points out when a fibration and a section are not obtained from fiber summing
nontrivial fibrations while pacing their sections.

Lastly, the following proposition will be handy when addressing the main ques-
tions of our paper in the case of fiber genus g = 1:

Proposition 9. Let X} be a torus with one boundary component 6 and let n be an
integer. In the mapping class group T'} of X1,

o if n <0, then t§ cannot be written as a product of commutators and right
nonseparating Dehn twists,

o ifn >0 and if t§ is a product of commutators and m right nonseparating
Dehn twists, then m = 12n.

Proof. The mapping class group I'} is isomorphic to the braid group on three
strands and is generated by t,,t, for any two nonseparating simple closed curves
intersecting at one point. The first integral homology group H;(I'%) is isomorphic
to Z (cf. [10] Theorem 5.1). Let us identify H;(I'}) with Z so that the Dehn twist
about a nonseparating curve represents 1 € Z.

Note that we have the equality ts = (t,t;)° so that ¢5 represents 12 in Hy(T'}) =
Z. 1t follows that if tj is written as a product of h commutators and m right
nonseparating Dehn twists, then 12n = m. The proposition follows from this. [
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3. COMMUTATOR LENGTHS AND SURFACE BUNDLES
WITH MAXIMAL SECTIONS

If z and y are elements of a group G, then we write [z,y] = zyz~ly~! and call

it a commutator. The purpose of this section is to write the powers of the Dehn
twist about a boundary component on a surface as a product of the least possible
number of commutators. More precisely, we will compute the commutator length
and the stable commutator length of such a Dehn twist. We then apply it to surface
bundles in this section and to Lefschetz fibrations in the next section.

The following lemma will be useful for us. The case k = 1 was used in [13].

Lemma 10. Let X be a compact connected oriented surface. Let a,b,c,d be simple
closed curves on S such that there exists a diffeomorphism f mapping (a,b) to (d,c).
Then t’;t;ktlgt;k s a commutator.

Proof. tht, Rkt F = tht, Ft = tht, (Rt f = [tk £ O

k 4k
70 f(a)
3.1. Commutator length of the Dehn twist about a boundary component.

Lantern relation and its generalization. Let D’ be a disk with boundary ¢’ from
which the interior of three disjoint disks D} are removed. Let af,aj,as be the
resulting boundary components, i.e., a, = 9Dj. Consider the simple closed curves
ah, xh, x5 on D' shown in Figure[[[(i). Then we have the lantern relation

(2) ts Loy taytay, = tarta tay

We note that by the Dehn twist about a boundary component we mean the Dehn
twist about a simple closed curve parallel to that boundary component.

Suppose now that D is a disk with boundary § from which the interior of four
disjoint disks D; are removed. Let aq, a2, a3, aq be the resulting boundary compo-
nents, i.e., a; = dD;. Consider the simple closed curves x1,x2, x3,24,y1,y2 on D
shown in Figure [I(ii).

(ii)

FIGURE 1. The curves of the lantern relation and the generalized
lantern relation.

Proposition 11. Referring to the simple closed curves in Figure[ll(ii), the following
generalization of the lantern relation holds in the mapping class group of the four-
holed disk D:

(3) t% laytastagtay = taytaslagla,-
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Proof. Note that the simple closed curves 6, a1, as and yo bound a sphere with four
holes. By the lantern relation we have

(4) tstalasty, =ty ta ta,-

Note also that d,¥1,a3 and a4 also bound a sphere with four holes. Again by the
lantern relation we have

(5) ts ty1 tagla, = t13t14ty2'
From the relations (@) and (), we get
(6) t§ laytastagtasty, by, = by tay taytagta, by, -

By canceling t,, and t,, from equation (6)) we obtain the desired result, the equality
@). O

Remark 12 (Generalized lantern relation). The above proof can be generalized in
a straightforward fashion to obtain the relation

2 tartay  ta, = toyte, oty

n

on a disk with n boundary components
We are now ready to prove the following theorem:

Theorem 13. Let g > 2, n > 1 and let X be a compact connected oriented surface
of genus g with boundary. Let 0 be one of the boundary components of X.. Then the
nt" power t¥ of the Dehn twist about § is a product of |(n + 3)/2] commutators,
where |(n 4+ 3)/2| is the largest integer not greater than (n + 3)/2.

Proof. First, we rewrite ([3]) as

2o tastastasty) = to, toglas.

aqvxy
The Dehn twists on the left—-hand side of the above equality commute with each
other. So for each positive integer k, we obtain

ki k 4k 4k 4k 4—k k
t(% taltagtagta4tm4 = (tl’ltl’ztl’z)
2 k—1
= (tl’ltl’z)(twltmz)tmg (tmltmz)t% "'(tmltmz)t% t];:3
k -
= (H(tzltm)% )tig

=1
or

k
i—1
0 i, = (Tt )t
i=1
Here, t! denotes the conjugation ft,f~!. By multiplying both sides of () by
tolt ke ke we get
k
i—1
(8) tgk = <H(tmlta21t$2ta11)tzs ) (tigt;4kt§4t;3k)'
i=1
Consider the four-holed disk D in Figure [Il(ii) embedded in the surface ¥ of
genus g > 2 as in Figure (i), so that a1 = ay.

1 As Burak Ozbagci kindly pointed out to us, this generalized lantern relation is equivalent to
a relation obtained by Plamenevskaya and Van Horn-Morris in [I8].
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X2 a1= a4 a3

(i)

FIGURE 2. The curve labeled i is ¢; for i =1,2,...,2g9 — 2.

Suppose first that n = 2k. It follows from Lemma [0 that ¢% ¢ FtF t% is a
commutator, and so is tmlt;;tmt;ll. Since a conjugate of a commutator is again a
commutator, we have expressed t§ as a product of k£ + 1 commutators, proving the
theorem for even n.

Suppose now that n = 2k + 1. We rewrite the lantern relation () as
- —1,— -1
9) bty = toy by to iyt .
From (8) and (@), we get

k
—1,2k - N k p—k—1,k+1,—k— -
t:cgltg i = (H(tzlta21t1’2ta11)tz3 ) (tmgta4 1tmjlta3 1)(ty2ty11)

i=1
or
k .
k - 1\t - - -
(10) t? i = (H(twltazltﬁztall)tl3> (tﬁjltm}k 1t§jlta3k 1)(ty2ty11)'
=1

It follows again from Lemma [0 that each of the elements t,,t,'t,,t; ' and

thilg o k=lgh bl k=1 s a commutator. Since ty,t, ! is also a commutator, it fol-
lows that t?k“ is a product of k + 2 commutators.

This proves the theorem. O

Corollary 14. Let g > 2, h > 1, and let ¥ be a compact connected oriented surface
of genus g with boundary. Let § be one of the boundary components of . Then for
each 2 —2h < k < 2h — 2, t’g s a product of h commutators.

3.2. Stable commutator lengths in mapping class groups of surfaces with
boundary. Let G be a group and let [G, G| denote the commutator subgroup of
G, the subgroup generated by the set of all commutators [x,y] = zyx~ly~! for
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x,y € G. Let x be an element in [G, G| so that it can be written as a product of
commutators. The commutator length cl(z) of z in G is defined as the minimal
number of commutators needed to express x as a product of commutators. The
stable commutator length of x is the limit

cl(a™)

scl(z) = lim
n— o0 n

This limit exists since the function cl is subadditive: cl(z"*™) < cl(z") + cl(z™).
Note also that cl(yzy~!) = cl(z), cl(x~!) = cl(x) and scl(z¥) = |k|scl(z) for any
z € [G,G] and y € G. For more on the functions cl and scl, we refer to [0].

Theorem 15. Let g > 2 and let 3 be a compact connected oriented surface of genus
g with at least one boundary component. Let § be one of the boundary components
of ¥. Then for any nonzero integer n the commutator length of t§ is

cl(ty) = [(In| +3)/2].
In particular, we have scl(ts) = 1/2.

Proof. Since cl(t;") = cl(t}) we may assume that n is positive. By Theorem [I3]
c(ty) < [(n+3)/2].

Suppose, on the other hand, that c(t}) = h. Writing ¢§ as a product of h
commutators gives us a genus—g surface bundle over a surface of genus h with a
section of self-intersection —n. By Proposition @, we get n < 2h — 2. Hence, we
have ¢(t§) > (n+2)/2. The theorem follows from this. O

Theorem [[3] computes the first precise nonzero value of the stable commutator
length of an element in the mapping class group of a surface. In earlier works
bounds on stable commutator lengths of elements of mapping class groups were
established without such an explicit calculation [7], [I].

Remark 16 (An alternative proof of scl(ts) < 1). The inequality scl(ts) < & may
alternatively be obtained by using quasimorphisms: Given a group G, a function
¢ : G — R is called a quasimorphism if there exists a least constant Dy > 0,
called the defect of ¢, such that |p(zy) — ¢(x) — ¢(y)| < Dy for all z,y € G. A
quasimorphism ¢ is called homogeneous if it satisfies the additional property that
d(z™) = n¢(zx) for all x € G and integers n. For more on quasimorphisms, we refer
to [6].

We recall the basic properties of homogeneous quasimorphisms we use. If ¢ is a
homogeneous quasimorphism, then ¢ is constant on conjugacy classes. Therefore,
a homogeneous quasimorphism on the mapping class group takes the same value
on Dehn twists about nonseparating simple closed curves. For any two elements
x,y in G, if xy = yx, then

6ay) — 6(x) — 6(u)| = lim [6(ay) — b(x) — o(y)
— lim S [g((ay)") — B(z") — B(y")

n—o00 N

— lim l\qﬁ(m"y") — ¢(@") — o(y")|

n—oo N
1

S lim —D¢
n—oo N

= 0.
Hence ¢(zy) = ¢(x) + ¢(y).
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Let @ be the set of homogeneous quasimorphisms on G. Bavard’s main theorem

in [2] states that for any z € [G, G|,
[¢(z)]
(11) scl(z) = sup ——.
peQ 2Dy

Now, the proof proceeds as follows: Let ¢ be a homogeneous quasimorphism
on the mapping class group of X, which is a surface of genus g > 2. Let § be a
boundary component. We may choose six nonseparating curves a1, as, as, 1,2, T3
on ¥ such that we have the lantern relation tst,, ta,ta; = to,tayts,. We then have

¢(tw1tw2) = ¢(t5ta1tazta3t;31)
= ¢(t5) + ¢(tal) + ¢(ta2) + ¢(ta3) - ¢(t€173)
= ¢(ts) + 2¢(ta,)-

From the definition of a quasimorphism and the properties of ¢,

Dy = |p(tarte,) = ¢tz,) — O(ta, )]
= [6(ts) + 20(ta,) — d(ta)) — ¢(ta,)|
= [o(ts)].
Thus, by Bavard’s result ([T, we have scl(ts) < 3.

Remark 17. The last part of our theorem on the stable commutator length
scl(ts) = 3 can be compared to the calculation of the “vertical euler class” |le|| = %

2
by Morita in [I7].

Lastly, we look at the relevant stable mapping class group. Let E]g“ denote the
surface of genus g with & > 2 boundary components. Let us distinguish a boundary
component 0. By attaching a torus 7" with two boundary components to Z’g along 0,
we obtain a surface E’; 11 of genus g+ 1 with a distinguished boundary component,
0, the common boundary component of 7" and Z’;H, and an injection 1"’; — I";H.
By taking the direct limit we get a group

it = Jim Iy,
The group I'*>! is the group of isotopy classes of compactly supported diffeo-
morphisms of a one-ended countable infinite genus surface with £ — 1 boundary
components.

If 6 is a boundary component of E’; other than 0, then the Dehn twist ¢5 may
be seen as an element of T'%;!. Theorem [[5] implies that the stable commutator
length of ¢5 in T*;! is 2. The same conclusion holds if one stabilizes the surface
along possible different boundary components but not along §. (In this case the
stable mapping class group depends on the stabilization.) In particular, scl(ts) is
stable. This may be compared with Harer’s homology stability [9] and contrasts a
result of Kotschick [I4] who showed that the function scl vanishes on I's, = T'%,.

3.3. Surface bundles with maximal sections. We note that in any group G,
if a; commutes with b;, then [a1, az][b1,ba] = [a1b1, asbs]. This fact will be used
repeatedly below.

Theorem 18. Let h > 1. For every g > 2 and 2 — 2h < k < 2h — 2, there exists
a Xg-bundle over Xy, admitting a section of self-intersection k and, in particular,
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a mazximal section. Moreover, provided g > 8h — 8, there exists a ¥,-bundle over
Y1, admitting 4h — 3 disjoint sections S; with [S;)> =i, for 2 —2h <i < 2h — 2.

Proof. Let ¥ be a compact connected oriented surface of genus g with one boundary
component §. By Theorem [[3] we may express tg_zh as a product of h commutators
in I‘;. Capping off the boundary component ¢ of ¥ gives us a relation in I'y which is
the monodromy representation of a genus—g surface bundle over a genus—h surface
with a section, and the self-intersection number of this section is 2h —2. This proves
the first assertion of the theorem.

For the second part of the theorem, let Z be a compact connected oriented
surface of genus [ > 0 with 4h — 3 boundary components, d;, 2 — 2h <1i < 2h — 2.
For each 2 — 2h < i < 2h — 2 with i # 0, let Z; be a compact connected orientable
surface of genus two with two boundary components d; and ¢;. Glue each Z; to Z by
identifying d; and d; to obtain a connected oriented surface ¥ of genus g = 8h —8+1
with 4h — 3 boundary components §;, where dy = dy.

By Corollary [[4] there are diffeomorphisms fi1, gi1, fi2, gizs - - - » fin, gin of X sup-
ported on the subsurface Z; such that

ts, = [fir, girllfiz, gizl - - [fin» Gin)-
Note that if ¢ # j, then f;; and g;s commute with f;; and g;:. It now follows that

2h—2

11 %

1=2—2h

is a product of h commutators. Hence, we obtained a relation yielding a monodromy
representation for a surface bundle with the desired properties. ([l

Remark 19. The second construction in our proof of Theorem can be derived
from the first one geometrically. To do so, we first take the separate >4, ~bundle f;
over X, with a section S; of self-intersection [S;]? = i for each integer i in the interval
[2 — 2h,2h — 2], for any chosen collection of g; > 2 satisfying ) . g; = g > 8h — 8.
Then we observe that the relations handed us by Corollary [[4 hold on surfaces with
more than one boundary component as well. Thus we can get self-intersection zero
sections of each f; disjoint from S;. Hence, we can section sum the f; along these

self-intersection zero sections to obtain a ¥,~bundle over X, provided g > 8h — 8.

We now look at the remaining cases for the fiber and the base genera not covered
by Theorem [I8

If g =0, h > 0, then the total space of the bundle is an S?>-bundle over %,
which is classified by the Euler number k and the base genus h. Each bundle
corresponding to Euler number £ admits a section of self-intersection k. When
g = 1, we swing to another extreme situation: By Proposition [0 a section of a
T?-bundle over any ¥ can only attain a zero self-intersection number.

When the base genus h = 0, there is a unique ¥, -bundle over S2 for g >
1, namely the trivial bundle X, x S? given by the projection onto the second
component. There are many T2-bundles over S?, however only one of them admits
a section: the trivial bundle on T2 x S2. (See for instance [4] (Lemma 10).) So
the self-intersection number of a section of a ¥,~bundle over S? for g > 1 is always
Zero.
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These observations in the remaining cases can be summarized as:

Proposition 20. For any k € Z and h > 0, there exists an S%-bundle over ¥y,
admitting a section S with [S]?> = k. For any g > 1, the only ¥,-bundle over S?
admitting a section S is the trivial one, for which [S)? is necessarily zero. For any
h >0, any section S of a T?~bundle over ¥, has [S]?> = 0.

4. LEFSCHETZ FIBRATIONS WITH AN ARBITRARILY LARGE NUMBER
OF CRITICAL POINTS

In this section, we focus on the following problem: For fized nonnegative integers
g and h, is there an upper bound on the mumber of critical points of a relatively
minimal genus—g Lefschetz fibration over a genus—h surface, admitting a mazimal
section?

One can easily inflate the number of critical points of Lefschetz fibrations with
fixed fiber and base genera by introducing reducible fibers or by performing fiber
sums with the same genus fibrations over the 2-sphere. Our assumptions on rel-
ative minimality of the fibrations and on the existence of maximal sections (see
Proposition [7)) are therefore essential. On the other hand, it was shown by Ivan
Smith [20] and independently by Andras Stipsicz [23] that the self-intersection of
a section of a nontrivial Lefschetz fibration over the 2-sphere can be at most —1,
which is achieved by many Lefschetz fibrations, and most importantly by those that
are obtained from Lefschetz pencils. So the case h = 0 of our question is the one
in [I.

The problem is vacuous for g = 0 because of our natural assumption on the
minimal relativity. For g = 1, and for any fixed h > 0, Proposition [@ implies that
the number of critical points m of a Lefschetz fibration is determined by the self-
intersection number n of a section by the equation m = —12n. In particular, every
section should have the same self-intersection number. So the number of critical
points is bounded in this case. As shown by Ivan Smith [21] (also see [19]), the
number of critical points is also bounded when h = 0 and g = 2. Our main theorem
in this section shows that this fails to be true when the base genus h is positive:

We will need the following well-known lemma in the proof of our main theorem
of this section:

Lemma 21. Let ¢1,ca,...,co41 be a sequence of simple closed curves on an ori-
ented surface such that ¢; and c; are disjoint if |i — j| > 2 and that ¢; and c;q1
intersect at one point. A regular neighborhood of c; UcoU---Ucory1 1S a subsurface
of genus | with two boundary components, say di and do. We then have the chain
relation

(tertey -+ temy, )
Theorem 22. Let g > 2 and h > 1 be fized integers. For any positive integer M,
there exists a relatively minimal genus—g Lefschetz fibration over a surface of genus
h admitting a section of mazimal self-intersection such that the number of critical
points is greater than M.

=tqtq,.

Proof. By Proposition [l the self-intersection of a maximal section of a genus—g
Lefschetz fibration over a surface of genus h > 1 is 2h — 2. Therefore, it suffices to
write t§72h as a product of h commutators and a number of right Dehn twists such
that the number of right Dehn twists is at least M.
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Suppose first that h > 2. Consider the surface E}] in Figure 2(ii) and the curves
on it. By (&), we have the following equality the mapping class group of Z;:

k
—2k k j—kik ,—k - BN
(12) t5 2 = (th 1Rk k) (H(taltletaztxl )tes > .
i=1
By writing k = h — 1, Cpoy = i 3 "0 00", C = Loyt ety and C; =
t;,,Ct), 1 <i < h—2, we may rewrite (I2) as
(13) 372 = O, 1O - CoC1C,
where each C; is a commutator.
On the other hand, by Lemma[2I] we have the relation (talt,atb)4 =ty ta,. From
this we easily get

(14) trta, totr (taytity)” = tugtagtal.
Let T} denote the left-hand side of the equality (Id)) so that Tj is a product of 10
right Dehn twists. Thus, for any integer m, we have

m o __ gmogm g—2m
7} - thtagtal

or

(15) T e2me, " = 1.

ay

By Lemma 21| we also have the relation

2
(16) (tertes ey, stesy ats) = tata,.

The left-hand side of this equality may be written as T (t.,tc, - - - t02g73)2g_2, where

T5 is a product of right Dehn twists. (The number of Dehn twists in 75 is 8g — 6.)
Applying Lemma [2T] once again, we see that it is also equal to Tat,,t.,. Hence, we
obtain from (@) that

e

Ty a1 “az
or
(17) to "ttt Ty = 1.

Finally, by using (I3l and ([IT), we write C as
C = taty oty

ai1vxo Ya2%xq
=t e ta,

xo Yy
= (Tt o o U ay s (5 0™ i T5™)
= Tt e e
= (T7t e ) T
If we let C(gm) = T (ty "y m et TT™, then C’ém) is a commutator.
By (I3), we then have
127 = Oy Cha - CoC1 Oy T,

so that t?;_% is expressed as a product of h commutators and 4(2¢g + 1)m right
Dehn twists. Taking m large enough completes the proof of the theorem in the case
h > 2.
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Suppose now that h = 1 so that 2h — 2 = 0. Consider the surface E; and the
curves on it given in Figure 2ii) once again. Let 2 < < g and let dy and dy be
the boundary components of a regular neighborhood of ¢; Uco UegU---U e,
where cag_1 = b and cyg = 7.

By Lemma 2I] we have the relation (tcltC2 . ~tC2171)21 = ta,ta,. From this we
get
201—2 —1,-1
(18) (tcz T t02171) (tcltcz T tczl—l) (tcl tCz T t02172) = tdl td’ztcl tczl,l'

Let T(I) denote the left-hand side of ([I8) so that T'(I) is a product of right Dehn
twists. Thus, for any integer m we have

(T()™ =ty tat "t

C21—1
or
(19) ty =1 =tymt e, (T()™
If welet C(1) =t,™t, "teite:, |, then C(I) is a commutator. By (I9), we then have
(20) 10 =1 = C)T)™
Again, taking m large enough completes the proof in the case h = 1. ]

Remark 23. It should be evident that the techniques used in the proof of The-
orem fall short in covering the remaining case h = 0, and thus the question
remains open for h =0 and g > 3.

Remark 24. Proposition [ implies that the Lefschetz fibration and section pairs
we construct in Theorem are fiber sum indecomposable. It is a priori unclear
whether or not these fibrations (but not the pairs) can be decomposed as fiber
sums where one of the fibrations is over the 2-sphere. We shall note, however, by
employing slightly different manipulations of mapping class group relations, that
we can construct examples as in Theorem 22, meeting these additional conditions
as well, relying on Smith’s fillability criterion in [20]. Nevertheless, we will skip this
rather repetitive inclusion here, which does not seem to relate to the core problem
in question.

Remark 25. Theorem 22] shows the existence of genus—g Lefschetz fibrations with
maximal sections over surfaces of positive genera, similar to our result cast in

Theorem [I8
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