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MHD convection flow in a constricted channel

M. Tezer-Sezgin and Merve Gürbüz

Abstract

We consider the steady, laminar, convection flow in a long channel
of 2D rectangular constricted cross-section under the influence of an
applied magnetic field. The Navier-Stokes equations including Lorentz
and buoyancy forces are coupled with the temperature equation and are
solved by using linear radial basis function (RBF) approximations in
terms of the velocity, pressure and the temperature of the fluid. RBFs
are used in the approximation of the particular solution which becomes
also the approximate solution of the problem. Results are obtained for
several values of Grashof number (Gr), Hartmann number (M) and the
constriction ratios (CR) to see the effects on the flow and isotherms for
fixed values of Reynolds number and Prandtl number. As M increases,
the flow is flattened. An increase in Gr increases the magnitude of the
flow in the channel. Isolines undergo an inversion at the center of the
channel indicating convection dominance due to the strong buoyancy
force, but this inversion is retarded with the increase in the strength of
the applied magnetic field. When both Hartmann number and constric-
tion ratio are increased, flow is divided into more loops symmetrically
with respect to the axes.

1 Introduction

Flow and heat transfer from irregular surfaces have attracted the considerable
interest of many researchers due to the wide range of engineering applications

Key Words: MHD convection flow, RBF, constricted channel.
2010 Mathematics Subject Classification: Primary 76W05, 76R99; Secondary 65M70.
Received: November, 2016.
Revised: March, 2017.
Accepted: June, 2017.

267



MHD CONVECTION FLOW IN A CONSTRICTED CHANNEL 268

such as micro-electronic devices, flat-plate solar collectors, geophysical appli-
cations, cooling system etc. Kolodziej et al. [1] have solved laminar convection
flow in a wavy channel using the method of fundamental solution and RBFs. In
[2], the mixed convection heat transfer in a lid-driven cavity with a sinusoidal
wavy bottom surface is analyzed by using finite element formulation based on
the Galerkin method. They showed that average Nusselt number increases as
the amplitude of the wavy surface and Reynolds number increase. Transient
convective heat transfer for Rayleigh Benard convection flow is studied by
Cetindag et al. [3] in an air-filled shallow enclosure. The magnetic effect on
mixed convection flow in a lid-driven cavity has been added by Nasrin et al. [4].
MHD mixed convection boundary layer flow on inclined wavy plate has been
analyzed by Wang et al. [5]. They indicated that the heat transfer rate and
the skin-friction coefficient increase with an inclined magnetic field. Colaço et
al. [6] have applied multiquadratic RBF approximation to convection flow in a
square cavity under the influence of horizontal magnetic field. Computations
are carried out for several Hartmann number and Grashof number values at
fixed Pr = 0.71. The effects of magnetic field on free convection flow is also
analyzed by Lo [7]. The numerical results are obtained for different values of
Hartmann number by taking Pr = 0.71. Mößner et al. [8] have studied the
effects of stationary magnetic fields on 3D natural convection in liquid metals.
They showed that the number of convection rolls in the cavity increases as
Hartmann number increases or Rayleigh number decreases.

In this study, we apply the linear polynomial RBF approximation to MHD
convection flow in a constricted rectangular enclosure. A uniform magnetic
field is applied x- or y-direction. In [9], simulation Stokes flow (Re << 1)
in a constricted channel with a moving left wall in the presence of vertically
applied magnetic field is presented. The aim of this study is to investigate
the effect of magnetic field, buoyancy force, constriction and the length of the
channel on the flow and the temperature of the fluid. The results are depicted
in terms of stream function, vorticity, temperature, and the pressure of the
fluid.

2 Mathematical formulation

The steady convection flow of an electrically conducting fluid is considered in a
constricted channel. Flow is subjected to a uniform magnetic field. The phys-
ical properties of the fluid are assumed to be constant except for the buoyancy
term in the momentum equations [10]. Induced magnetic field, joule heat-
ing, viscous dissipation and volumetric energy are neglected due to the small
magnetic Reynolds number, small electrical conductivity, absence of internal
energy and other sources of volumetric energy release, respectively. Thus,
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the continuity, momentum and energy equations are given in non-dimensional
form as
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by using the dimensionless variables defined as

x→ xL, u→ uU0, H→ HH0,

p→ pρνU0/L, T − Tcold → T (Thot − Tcold)

where u = (u, v), p, H = (Hx, Hy) and T are the velocity, pressure, the
magnetic field and the temperature of the fluid, respectively.

The non-dimensional parameters are the Reynolds number Re = LU0/ν,
the Hartmann number M = LµH0

√
σ/ρν, the Prandtl number Pr = ρcpν/λ

and the Grashof number Gr = gβ(Thot − Tcold)L3/ν2. Here, H0 = (Hx
2 +

Hy
2)1/2, U0 =

√
gβL(Thot − Tcold), L, ν, σ, µ, ρ, cp, β and λ are the externally

applied magnetic field intensity, the characteristic velocity, the characteristic
length, kinematic viscosity, electrical conductivity, magnetic permeability, the
density, specific heat, thermal expansion coefficient and the thermal conduc-
tivity of the fluid, respectively.

2.1 Horizontal or vertical external magnetic field

When the magnetic field is applied vertically, H0 =
H

H0
= (0, 1), the equations

(1)-(4) can be written as
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In the cross-section of the channel the flow is regarded as two-dimensional

so that the stream function ψ, u =
∂ψ

∂y
, v = −∂ψ

∂x
, and the vorticity, ω =

∂v

∂x
− ∂u

∂y
can be defined.

Then, the two-dimensional MHD convection flow is represented with Pois-
son’s type equations in terms of velocity components, stream function, tem-
perature, vorticity and pressure
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When the magnetic field is in the x-direction, H0 = (1, 0), the vorticity

and the pressure equations are altered only by changing the terms −M2 ∂u

∂y
,

−M2 ∂u

∂x
with M2 ∂v

∂x
, −M2 ∂v

∂y
.

The problem geometry and the boundary conditions are shown in the Fig-
ure 1. The vorticity boundary values are obtained from the stream function
equation by using the finite difference method including interior values of
stream function. The middle section of the enclosure is symmetrically con-
stricted using functions fb and ft, which are the vertical coordinates of the
bottom and top walls, respectively. These functions are given as,

fb =
1

2
h(1 + cos(2π(x−A/2)/A)) , ft = 1− fb

where A is the length of the channel. The constriction ratio(CR) of the en-
closure is defined as CR = 2h× 100.
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Figure 1: Schematic of the rectangular enclosure with constriction and the
boundary conditions

3 RBF approximation

In the radial basis function approximation [11], the right hand side of the
partial differential equation Lu(x, y) = f(x, y) and the particular solution û
can be written in a finite series of RBFs {ϕj} and {Ψj} as

f(x, y) =

n∑
j=1

ajϕj(r), û(x, y) =

n∑
j=1

ajΨj(r) (x, y) ∈ Ω (14)

where r =
√

(x− xj)2 + (y − yj)2 is the Euclidean distance. Ψj ’s are linked
to ϕj ’s through LΨj(r) = ϕj(r) and n is the number of unknown coefficients.
û is forced to satisfy the boundary condition Bu = g as

n∑
j=1

ajBΨj(r) = g(x, y), (x, y) ∈ ∂Ω . (15)

The coefficients aj in the approximation (14) are determined by taking N
collocation points (xi, yi) on the boundary and K points in the interior of the
domain as

n∑
j=1

ajBΨj(rk) = g(xk, yk), 1 ≤ k ≤ N and

n∑
j=1

ajϕj(rl) = f(xl, yl), 1 +N ≤ l ≤ n (n = N +K) (16)

which give one linear system [A]{a} = {b} for the solution vector

{a} =
[
a1 · · · an

]t
. The coefficient matrix and the right hand side vector
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are given as
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Solution of this system gives the coefficients aj ’s, 1 ≤ j ≤ n, and

û(x, y) =
n∑

j=1

ajΨj(r).

In this study, L = ∇2 is the Laplace operator and the unknown variables
are u, v, ψ, ω, T and p. Since the Poisson’s type equations (9)-(12) are coupled,
they are solved iteratively by using polynomial RBFs (ϕ(r) = 1 + r) and

Ψ(r) =
r2

4
+
r3

9
from ∇2Ψ = ϕ. First, the velocity components and the stream

function are obtained with an initial estimate of vorticity from the equations
(9)-(10). Then, the temperature equation (11) is solved with the obtained
values of velocity components and the initial estimate of the temperature.
After the unknown vorticity boundary values are obtained from the stream
function equation by using finite difference scheme including interior stream
function values [12], the vorticity equation (12) is solved by using the new
values of velocity components and the temperature. The iteration continues
until a preassigned tolerance (ε) is reached between two successive iterations

||zm+1 − zm||∞ = max
1≤i≤n

|zm+1
i − zmi | < ε

where zi denotes u, v, ψ, ω or T at the collocation point (xi, yi). Then, we
solve pressure equation (13) by using converged values of u, v and T . In
each iteration, all the space derivatives of unknowns are approximated by
coordinate matrix ϕ as

∂D

∂x
=
∂ϕ

∂x
ϕ−1D,

∂D

∂y
=
∂ϕ

∂y
ϕ−1D

where D denotes u, v, ω and T .
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4 Numerical results

The results are simulated in terms of stream function, vorticity, temperature
and pressure of the fluid for several values of the Hartmann number, Grashof
number and the constriction ratio of the channel for fixed Re = 100 and
Pr = 0.71. The convergence tolerance is generally ε = 10−7 and ε = 10−11 for
larger value of parameter Gr and M . We take N = 80, 72 and 70 uniformly
distributed boundary points with sufficient number of interior points for the
length of channel A = 1, 2 and 4, respectively. The aim of the study is to
analyze the impacts of the Hartmann number, Grashof number on the MHD
convection flow in the constricted channel.

4.1 Magnetic field in the y-direction

MHD convection flow equations (9)-(13) are solved iteratively when the mag-
netic field is applied vertically. We take Grashof number 5 × 103 ≤ Gr ≤
5 × 104, Hartmann number 0 ≤ M ≤ 25 and the constriction ratio 0% ≤
CR ≤ 40%. The influence of the horizontal length of the channel is also
analyzed by taking A = 1, 2, 4.

The proposed numerical procedure is validated first for the natural con-
vection flow in non-constricted rectangular enclosure by taking A = 4, Gr =
25×104, M = 0 and Pr = 0.01 which corresponds to Ra = 2500. The flow and
temperature behaviors are in well agreement with the ones given in Figures
5-6 in [13] which are obtained by using finite volume method.

Figure 2 shows the effect of Grashof number increase in the non-constricted
square channel (CR = 0%) neglecting magnetic field (M = 0). As Gr in-
creases, magnitude of the flow and pressure increases. When Gr > 104, the
flow (ψ, ω) is separated into two loops symmetrically with respect to x = 0.5.
Convection dominance is observed but isotherms show symmetry with respect
to x = 0.5 as the flow bending at the center of the cavity for Gr > 104.

We analyze the influence of magnetic field on the flow, temperature and
pressure behaviors for fixed Gr = 104 in Figure 3. As the intensity of the
magnetic field increases, flow is flattened which is an expected behavior for
MHD flow. Further increase in M results in the retardation of the convection
dominance which can be observed in isotherms as becoming straight lines
parallel to the hot and cold walls. Similarly, pressure behavior is uniformly
distributed in the channel.
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Ψ ω T p

Gr = 5 × 103

Gr = 104

Gr = 5 × 104

Figure 2: The effect of Gr on the flow, temperature and pressure for M = 0
and A = 1.

Ψ ω T p

M = 5

M = 10

M = 15

Figure 3: The effect of M on the flow, temperature and pressure for Gr = 104

and A = 1.
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Figures 4-5 depict the effect of magnetic field for conducting fluid in a
non-constricted rectangular channel for increasing horizontal length A = 2, 4.
When the length of the channel increases, the number of convection rolls
(streamlines and vorticity loops) increases A times and isotherms repeat its
behavior symmetrically with respect to A/2 line which can be seen from the
first row of Figure 4 and Figure 5. Meantime boundary layer formation takes
place in the flow on the walls parallel and perpendicular to applied magnetic
field as M increases. The same effect of increasing M on the flow and tem-
perature is observed as in the square channel (Figure 3).

Ψ ω T p

M = 0

M = 5

M = 10

M = 15

M = 20

Figure 4: The effect of M on the flow, temperature and pressure for Gr = 104

and A = 2.

An increase in M causes Hartmann layers near to the top and bottom
walls and side layers parallel to applied magnetic field leaving the central part
stagnant. When the Hartmann number value is reached to 15, the number of
rolls in stream function and vorticity also increases for A = 4 as can be seen
in Figure 5.
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Figure 5: The effect of M on the flow, temperature and pressure for Gr = 104

and A = 4.
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The effect of constriction ratio on the convection flow under the effect of
vertical magnetic field is shown in Figure 6. There is a symmetry in the
flow, temperature and pressure with respect to vertical centerline. As the
constriction ratio increases, flow vortices at the constriction are started to be
weakened and the fluid becomes almost stagnant at the middle of the channel.
Fluid concentrates through the adiabatic walls due to the constriction. This
causes the retardation of the convection in the constriction area. Similarly,
the magnitude of the pressure is increased through the side walls.

For fixed CR = 40% we increase the Hartmann number to see the impact
of magnetic field on MHD convection flow in a constricted channel with the
length A = 4. In Figure 7, as M increases magnitude of the flow decreases
but the pressure increases as in the non-constricted channel in Figure 5. The
increase in the magnitude of applied magnetic field first weakens and then
increases the number of the center vortices in the flow (M ≤ 10). In constricted
channel the division of the flow into symmetric vortices starts for a smaller
value of M ≥ 10 when we compare with the rectangular case and Hartmann
layer formation starts. For M ≥ 15 the flow vortices are symmetrically located
with respect to vertical and horizontal centerlines. Isolines become completely
diffusion dominated and distributed uniformly between the horizontal walls.

In Figure 8, we fix CR = 40% and increase Gr for M = 10 and M = 20
to analyze the effects of buoyancy force and magnetic force on the convection
flow in a constricted channel. For a small effect of magnetic field, the increase
in Gr destroys the symmetrically located four loops in the flow into two loops
symmetric with respect to x = 1. As M increases, the symmetric behavior of
the convection flow remains the same even the Gr increases up to 104. Due
to the increase in both constriction and Gr number the new vortices appear
symmetrically at the center (constriction area) of the cavity. Gr increase
results in bending in isotherms.
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Figure 6: The effect of CR on the flow, temperature and pressure for Gr = 104,
M = 4 and A = 4.
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Figure 7: The effect of M on the flow, temperature and pressure for Gr = 104,
CR = 40% and A = 4.
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Figure 8: The effect of magnetic field on convection flow for CR = 40% and
A = 2.

4.2 Magnetic field in the x-direction

Next, the heat transfer on the MHD flow is considered in the constricted chan-
nel under the influence of horizontally applied magnetic field. The numerical
results are depicted in terms of ψ, ω, T , p in Figure 9 for different Hartmann
number values for fixed CR = 40%, Gr = 104 and A = 4. It is observed that
the effect of horizontal magnetic field is nearly the same as the effect of mag-
netic field in the y-direction comparing with the results in Figure 7. Boundary
layers on the top and bottom walls as M increases are not pronounced much
as in the case of vertically applied magnetic field since now these walls are par-
allel to the magnetic field. However, the fluid flows in terms of equally placed
symmetric vortices with respect to axes in horizontally applied magnetic field.
Isotherms and pressure are not affected with the direction of applied magnetic
field.
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Figure 9: The effect of M on the flow, temperature and pressure for Gr = 104,
CR = 40% and A = 4.
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5 Conclusion

RBF approximation with linear polynomials has been applied to MHD convec-
tion flow in constricted rectangular enclosure. Uniform magnetic field is ap-
plied either in the x- or y-direction. The effects of Hartmann number, Grashof
number, the constriction ratio on the flow, temperature, and pressure are inves-
tigated. The magnitude of the flow decreases as M or CR increases, however
it increases as Gr increases. These are the well-known expected behaviors of
MHD flow and convection flow, respectively. Increasing the horizontal length
of the channel to A produces A number of convection rolls. An increase in the
constriction ratio causes the retardation of the convection dominance. For a
fixed constriction ratio, as M increases the flow is divided symmetrically into
more vortices with respect to axes.
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