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Short Title – Flow dynamics of thin clayey sand turbidites 

 

ABSTRACT 

Turbidity currents and their deposits can be investigated using several methods, i.e. direct monitoring, 

physical and numerical modelling, sediment cores and outcrops. The present study focuses on thin 

clayey sand turbidites found in Lake Hazar (Turkey) occurring in eleven clusters of closely spaced 
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thin beds. Depositional processes and sources for three of those eleven clusters are studied at three 

coring sites. Bathymetrical data and seismic reflection profiles are used to understand the specific 

geomorphology of each site. X-ray, thin sections and CT-scans imagery combined with grain-size, 

geochemical and mineralogical measurements on the cores allow characterisation of the turbidites. 

Turbidites included in each cluster were produced by remobilization of surficial slope sediment, a 

process identified in very few studies worldwide. Three types of turbidites are distinguished and 

compared with deposits obtained in flume studies published in the literature. Type 1 is made of an 

ungraded clayey silt layer issued from a cohesive flow. Type 2 is composed of a partially graded 

clayey sand layer overlain by a mud cap, attributed to a transitional flow. Type 3 corresponds to a 

graded clayey sand layer overlain by a mud cap issued from a turbulence-dominated flow. While the 

published experimental studies show that turbulence is damped by cohesion for low clay content, type 

3 deposits of this study show evidence for a turbulence dominated mechanism despite their high clay 

content. This divergence may in part relate to input variables such as water chemistry and clay 

mineralogy that are not routinely considered in experimental studies. Furthermore, the large 

sedimentological variety observed in the turbidites from one coring site to another is related to the 

evolution of a sediment flow within a field scale basin made of a complex physiography that cannot 

be tackled by flume experiments.   

 

Keywords: Clayey sand turbidites, cohesion, shallow slope failure, subaqueous sediment density 

flows, turbulence 

 

INTRODUCTION 

Understanding turbidity currents 

In the broad sense, turbidity currents correspond to subaqueous sediment-laden flows driven by the 

excess density of sediments relative to the surrounding water (Kuenen & Migliorini, 1950; Talling et 

al., 2012). Such flows pose a potential geohazard to strategically important seafloor infrastructure (e.g. 
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Carter et al., 2014), transport globally significant amounts of organic carbon (Galy et al., 2007), and 

their deposits may act as important hydrocarbon reservoirs (Nilsen et al., 2008). Despite their 

importance, both the dynamic processes at their origin and the formation of their resulting deposits, 

called turbidites, are still far from completely understood (Talling et al., 2012; 2013). 

Depositional processes of turbidites have primarily been inferred indirectly based on ancient 

deposits in cores or outcrops, which represent only an in-time snapshot of a dynamic evolving 

flow (Sumner et al., 2009, Talling et al., 2012). Indeed, an idealised model based on flume 

experiments divides a turbidity current into three dynamic parts (Middleton, 1966, 1967, Middleton 

& Hampton, 1973, Kneller & Buckee, 2000). The head is the front of the flow and is 

characterised by resistance to the ambient water, leading to intense mixing. The body is the 

fastest part of the current and comprises two zones: the bottom zone at the interface with the floor 

and characterised by a higher density; and the upper zone more dilute and interacting with the 

ambient fluid. The tail corresponds to the third part, which is characterised by a decelerated 

regime and a low sediment concentration. Therefore, reconstruction of flow processes from the 

resulting deposits is challenging. In particular, many flows appear to become progressively more 

dilute as they dissipate downslope. Hence the resultant deposits in distal locations are often very 

different to those in proximal locations where distal deposits may represent only deposition from a 

dilute head. Furthermore, change of flow characteristics (for example, velocity, sediment 

concentration and grain size) can also occur after entrainment of substrate by sea floor erosion or by 

localised effect of topography and confinement (Parker, 1982).  

A more complete understanding can be achieved by physical modelling in laboratories and direct 

field monitoring. However, the acquisition of field data is complicated (due to inaccessible 

locations, unpredictable occurrence and difficulty for instruments to monitor highly concentrated 

flows) and, by consequence, restricted (Talling et al., 2012; 2013). Laboratory experiments have 

thus been used to infer the relationships between flow characteristics and their deposits (e.g. Amy et 

al., 2006; Baas et al., 2011; Sumner et al., 2008, 2009; Manica, 2012). The main critical points 

are: (i) that all o f  the scaling relationships between models and reality cannot be held; and (i) 



This article is protected by copyright. All rights reserved. 

that laboratories cannot achieve the full diversity of flows with respect to durations, concentrations, 

volumes, materials and velocities (Talling et al., 2015). 

Importance of clay within a turbidity current 

Flume experiments have shown that the presence of clay plays a crucial role in turbidity current 

dynamics (e.g. Amy et al., 2006; Baas et al., 2011; Sumner et al., 2009; Manica, 2012). In particular, 

small amounts of clay (as low as 5%; Postma, 1986) brings cohesive strength to sediment mixtures 

and can damp turbulence.  

If turbulence is suppressed, deceleration of the cohesive sediment flow can lead to en masse 

deposition, i.e. deposition of all the particles instantaneously, without any segregation. This results in 

a lack of grading in the deposit. Conversely, once decelerated, a turbulence-dominated flow will 

settle the particles incrementally, leading to segregation within the deposits and visible grading. 

Observation of the deposits may thus help reconstruct the properties of the flow. 

Lacustrine turbidites 

Sediment flows occur in both lacustrine and marine settings, but there are key differences in the 

environments. The first difference relates to the water chemistry where marine systems are saline and 

lakes contain fresh water. Secondly, sedimentation rates in lakes allow to retrieve a sedimentary 

record with a higher temporal resolution compared to deep marine systems (Cohen, 2003). Thirdly, 

the accessibility and relative scale of lacustrine settings permits much higher resolution studies as 

compared with marine sites. 

 

Lacustrine turbidites have been studied extensively in many seismically active areas, because turbidity 

currents may be triggered by large-magnitude earthquakes and thus be used in palaeoseismology. For 

example, evidence of repeated subaqueous slope failures and turbidites in multiple Chilean and 

Argentinian lakes has been used to reconstruct large-magnitude earthquake recurrence and palaeo-

intensities (Chapron et al., 2006; Moernaut et al. 2007, 2014 ; Bertrand et al., 2008; Waldmann et al., 

2011; Van Daele et al., 2014a, 2015). Earthquake-triggered turbidites in the Marmara Sea and the 
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Boraboy Lake have been used to infer palaeo-ruptures of the North Anatolian Fault threatening the 

city of Istanbul (McHugh et al., 2006; Avsar et al., 2015; Drab et al., 2015). Sedimentary archives in 

Swiss Alpine lakes have also helped to characterise the recurrence of strong earthquakes in a 

moderate seismicity region (Becker et al., 2002; Monecke et al., 2006; Strasser et al., 2006, 2013; 

Beck, 2009). However, care should be taken because lacustrine turbidites can also be triggered by 

other processes that can be added to or confused with earthquake triggering (for example, deltaic 

collapses, storms and floods). 

Aims 

The present paper focuses on the depositional processes of thin clayey sand turbidites interpreted to 

result from turbidity current activity found in Lake Hazar, a tectonic lake crossed by the East-

Anatolian Fault (EAF) in Turkey (Fig.1). Thin clayey sand turbidites are herein defined as 

millimetre-thin layers composed of sandy particles mixed with a high proportion (>30%) of 

clay relative to the total sediment volume, as classified by Shephard (1954). These layers are 

different from the hemipelagic background sedimentation of homogenous clayey silt and occur in 

clusters of two to eight thin beds. In the following, an event set will refer to a group of closely spaced 

thin turbidites separated by 1 to 2 cm of background sediments.  Event sets occur within 10 to 20 cm 

of one another within vertically cored successions.   

This study addresses the following questions.  

 

1. What are the sources and triggers for turbidites found in Lake Hazar? Why are they organised 

into closely-spaced thin beds within event sets? 

 

The first questions deal with the sediment sources and triggering mechanisms at the origin of the thin 

turbidites, which are distributed into clusters of event sets as defined above. 
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2. How did the flows behave and how did their behaviour change in relation to the basin 

physiography?  

Here the flow dynamics at the origin of thin clayey sand turbidites is addressed. Very few 

comprehensive field studies of this type of sedimentary event, i.e. both millimetre-thin and clay-rich 

with still a sandy content, are found in the literature (e.g. Bouma, 2000). The studied turbidites are 

compared between three cores located at a different distance from the sources and in different sub-

basins characterised by different surrounding physiography. In particular, this study seeks to test any 

flow behaviour changes from turbulent, transitional to laminar state.  

3. Do the deposits from Lake Hazar validate flume experiments?  

Several flume experiments have shown that mixtures of clay and sand strongly influenced turbidity 

current dynamics, low amounts of clay being able to damp turbulence (Postma, 1986). Four flume 

experiments found in the literature are here used to understand how clayey sand turbidites were 

deposited at Lake Hazar (Amy et al., 2006; Sumner et al., 2009; Baas et al., 2011; Manica, 2012). 

Comparison of the deposits from Lake Hazar with those generated in experimental studies provides a 

valuable test of scaled-down models. Then the wider application and limitations of existing 

experimental set ups are discussed. 

 

SETTINGS 

Tectonic and geological setting 

Lake Hazar (38.48°N; 39.40°E) occupies a transtensional basin located along the central part of the 

East-Anatolian Fault (EAF) in Turkey (Fig.1). This major strike-slip fault is located at the boundary 

between the Arabian and Anatolian plates (Hempton et al., 1983; Hempton & Dunne, 1984; Cetin 

et al., 2003) and already ruptured over most of its length in a series of earthquakes with a moment 

magnitude of 7 during the 19th Century (Ambraseys, 1989; Nalbant et al., 2002). 
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Lake Hazar is crossed by several fault splays characterised by left-lateral motion and normal 

displacement along the eastern steep margins (Fig.1; Garcia Moreno et al., 2011). Most of the 

left-lateral motion is accommodated by the master fault which continues across the full length of 

the lake (Garcia Moreno et al., 2011). Normal faults are also located in the eastern, deeper part, 

resulting in a division of the lake in two sub-basins (Cetin et al., 2003; Garcia Moreno et al., 

2011; Eriş, 2013): a deep basin (maximum depth of 216 m) in the eastern half and a shallow basin 

(maximum depth of ca 120 m) in the western half (Fig. 1). 

The geology of the Hazar catchment is diverse (Herece, 2008). In the western end of the lake, the Kürk 

catchment is mostly composed of the Palaeozoic and Mesozoic Puturge metamorphic complex to the 

south and of the Cenomanian Yüksekova Melange (gabbros, basalts, andesites and dacite dykes) to the 

north. The steep southern margin of Lake Hazar and the Hazar Mountains are mostly composed of 

terrains of the Eocene Maden Melange (volcanic and sedimentary formations), but Maastrichian 

limestone and clastics are locally present.  

Geomorphological, fluvial and limnological context 

 

Lake Hazar is 25 km long, 7 km wide and 216 m deep at its maximal extents (Garcia Moreno et al., 

2011; Eriş, 2012). The steep southern slopes of the lake are bordered by the Hazar Mountains peaking 

at 2350 m whereas the northern margins are more gentle and surrounded by a lower relief. 

A dense network of rivers and streams drains the Lake Hazar catchment area, most of them being 

ephemeral in response to the seasonal precipitations (Garcia Moreno et al., 2011; Eriş, 2012). The main 

Kürk River flows into the western extremity where it forms a large alluvial delta (Fig.1). Before 1957, 

the Kürk River provided the largest water inflow to the lake (Günek & Yiğit, 1995; Şen & Topkaya, 

1997). Presently the Behrimaz River, an anthropic capture at the north-eastern end of the lake, provides 

most of the water inflow. The Kürk River and the adjacent river near the town of Sivrice provide the 

most important bedload to the lake (Şen & Topkaya, 1997; Şen et al., 2007). Peak flows occur during 

spring linked to snow melt and precipitations (Günek & Yiğit, 1995; Şen & Topkaya, 1997). 
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In historical times, several water level changes affected the lake (Tonbul & Yiğit, 1995). From at least 

the 12th Century until the 18th Century a low lake level occurred as attested to by the continuous 

occupation of the Armenian settlement (Yiğit, 1995, Hubert-Ferrari et al., 2017). From the beginning of 

the 19th Century, a high lake level prevailed, which is attested by the drowning of an Armenian 

monastery located along the southern lake shore (see Promontory on Fig. 1; Tonbul & Yiğit, 1995). 

After 1969, a 10 m anthropic lowstand occurred due to hydraulic water pumping (Tonbul & Yiğit, 

1995). 

Limnological measurements have shown that the lake is an oligotrophic, hard-water, alkaline soda lake 

(pH around 9.3) with mixing in spring and autumn (Timm et al., 2013; Koçer and Sen, 2014). It is 

stratified from June to September with a thermocline between 10 m and 20 m of water depth. The 

salinity of Lake Hazar is 16‰ (Sen et al., 2002). The phytoplankton community comprises diatoms, 

Chlorophyta, Cyanophyta and Pyrrophyta (Koçer & Sen, 2014). The identified fauna present at the lake 

bottom is composed of two main groups of invertebrates: Oligochaetes (ca 69%) and Chironomid 

larvae (ca 19%) (Timm et al. 2013). The intense biological sediment reworking within the upper 

centimetres has prevented any preservation of laminations. 

MATERIALS AND METHODS 

Fieldwork 

Geophysical data and sediment cores were collected from the lake during the summers of 2006 

and 2007. Three coring sites have been studied in the context of this research (Fig. 1). 

Two sets of seismic reflection profiles were collected. The first one acquired a total of 44 seismic 

reflection profiles using a centipede multi-electrode sparker as acoustic source (dominant frequency 

of 400 to 1500 Hz) and a 10 hydrophone single-channel streamer as receiver (with an active length of 

2.7 m). An Innomar SES2000 compact sub-bottom profiler (Innomar Technologie GmbH, Rostock, 

Germany) was used to acquire the second set of seismic lines. The two seismic datasets covered the 

entire lake with a variable spacing, from 5 m apart on the lake margins and deltaic slopes to 250 m 

apart in the more homogeneous parts of the basin (see top left inset in Fig. 2).  Side-scan sonar images 
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were obtained using a KLEIN300 device (Klein Tools, Lincolnshire, IL, USA) recording 

simultaneously in two frequency bands of 100 kHz and 500 kHz. The seismic and side-scan surveys 

allowed to understand the complex fault-system in the lake (Fig. 1; Garcia Moreno et al., 2011) and to 

map the sedimentary infill. The base of Holocene infill is constrained by a major unconformity clearly 

identifiable in all profiles (Garcia Moreno et al., 2011; Eriş, 2012).   

A bathymetrical map was computed by kriging using the water depths imaged from contouring the 

first return from the two seismic datasets. The resolution of the bathymetrical map corresponds to the 

seismic datasets resolution, i.e. ca 1 m of vertical resolution and ca 5 to 80 m of horizontal resolution 

for the western half part of the basin. The depth values obtained after kriging allowed to compute a 

map of the basin slopes (Fig. 2). 

Sediment cores were taken using two different core sampling systems. Five metre long cores were 

collected with a piston hammering system while short cores with a length of ca 1.2 m were acquired 

by a gravity corer (Uwitec model; Uwitec, Mondsee, Austria). In total seven cores collected from 

three study sites were used for this research, i.e. two long cores in sites 1 and 2 and five short cores in 

the three study sites (Figs 1, 4, 5 and 6). Both short and long cores were taken in sites 1 and 2, 

respectively, in order to compare replicates issued from the same location, and to evaluate potential 

coring artefacts.  

Laboratory analyses 

Background sediments in the cores are mostly composed of hemipelagic clayey silt with a low 

fine sand content. The cores also show thin clayey sand turbidites defined as millimetre-thin layers 

comprising coarser grains compared to the background sediments. The turbidites are separated 

by 1 to 2 cm of background sedimentation and they are arranged in clusters, forming different event 

sets of turbidites. Therefore in the following an event set refers to a cluster of two to eight closely 

spaced thin turbidites. Event sets are separated from one another by more than 10 cm of background 

sediments (Fig. 4).  
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In total, eleven event  sets of thin turbidites have been identified both visually and quantitatively in 

the long cores. This research focuses on three sets among the eleven event sets observed: event 

sets B, C and D (Fig. 4). The seven deepest sets were excluded because they are not covered by the 

short cores. The event set A near the top of the cores was also excluded for three reasons. Firstly, there 

were significant coring deformations. Secondly, strong anthropic imprints on the sedimentation 

occurred during the 20
th 

Century. Thirdly, the lake level increased by 30 m after the event set B, 

drastically changing the lake dynamics from the 18
th
 Century when the event set A occurred (Hubert-

Ferrari et al., 2017).  

In order to investigate the three event sets in detail, a series of non-destructive and destructive 

analyses were performed. Artefacts potentially associated with core sampling have been carefully 

considered by comparing the sedimentary structures observed both in the long and short cores issued 

from the same sites. Furthermore, the three studied event sets are located far from the disturbed tops 

of the long piston cores.  

Non-destructive measurements 

Photographs and X-ray radiographs of the cores were acquired to identify the turbidites. Extraction of 

the X-ray greyscale profiles allowed an objective quantification. Black levels reflect high X-ray 

attenuation whereas white levels display low X-ray attenuation on Figs 5 and 6. 

Magnetic susceptibility was measured at a 2 mm increment using a handheld Bartington MSE2 

surface sensor (Bartington Instruments Limited, Witney, UK). Magnetic susceptibility reflects the 

magnetizability of a particle in the presence of a magnetic field and is generally used as a proxy 

indication for variables such as grain size and terrigenous content of lacustrine sediments (Last & 

Smol, 2002).  However, this physical property should be used together with other parameters for core 

correlation because it sometimes may under-represent the reality in the case of non-magnetic material. 

High resolution grain-size and geochemical measurements allowed the present study to rule out this 

uncertainty.  
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Geochemical elements were gathered on each core at 2 mm down-core intervals using an 

Avaatech XRF Core Scanner with a 10 kV incident beam (Avaatech, Alkmaar, The Netherlands; 

Jan Weltje & Tjallingii, 2008). Ratios between some elements (Ca, Ti, Fe and Al) helped to 

investigate the provenance of sediment present in the three coring sites. 

Five specific turbidites were investigated in more detail on the short cores using an X-ray 

Computed Tomography scanner eXplore 120 microCT (CT-scan; Gamma Medica, USA/GE 

Healthcare, UK). This system acquires high-resolution (i.e. 100 µm) images of samples that can be 

reconstructed to a three-dimensional volume (Bahri et al., 2010). The customized protocol ‘Fast-

scan 360’ was used for the acquisition (70 kV, 0.512 mAs, 360 views over 360°, continuous 

rotation). The 3D reconstruction used the Feldkamp filtered back-projection algorithm with a cut-

off at the Nyquist frequency and an isotropic voxel size of 100 µm (Bahri et al., 2010). The 

resulting images allowed a detailed 3D visualisation of the deposits that would not have been 

achieved by any other imaging system, such as conventional medical X-ray CT scanners (e.g. Van 

Daele et al., 2014b). The grey levels obtained display the X-ray attenuation of the sediments, 

white being related to high X-ray attenuation and black to low X-ray attenuation, which depends 

mainly on their average atomic number and density (Migeon et al., 1998; Last & Smol, 2002; 

Cnudde & Boone, 2013). 

Destructive measurements 

Organic matter and carbonate content were acquired by ‘ loss on ignition’ following the protocol 

of Heiri et al. (2001) at 1 cm of interval. In addition, Total Organic Carbon (TOC), 

Carbon/Nitrogen (C/N) ratios and carbon stable isotopes were measured after treatment with 

HCl to remove all o f  the carbonate minerals. For the organic geochemical measurements, both 

the turbidites and the background sediments (10 samples) in between were sampled at site 2. 

Bulk mineralogical composition of the sediments was measured with an X-ray Powder 

Diffractometer (Bruker D8-Advance; Bruker, Billerica, MA, USA). The turbidites and the 

background sediments in between (18 samples at site 1 and 21 samples at site 2 through the 
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cores) were sampled. Mineralogy was used to assess the sediment sources of the turbidites and was 

compared to the background sediments. Given the Hazar geology, the onland sedimentary sources 

near site 1 are different from site 2. Site 1 is surrounded by the Hazar Group consisting of 

carbonates and clastic sediments and by the Maden complex composed of various clastics and 

occasional volcanoclastics, andesite and diabase. The sediment sources of site 2 are much more 

enriched in mafic and volcanic rocks (gabbros, basalt and andesite) of the Yüksekova Melange 

(Herece, 2008). 

Detailed clay mineralogy was obtained on bulk samples from the turbidites and hemipelagic 

sediments. The samples were decarbonated with a 0.1 mol/L solution of HCl and sieved under 2 

µm by settling in a water column (Moore & Reynolds, 1997). Fine grain samples were 

mounted as oriented aggregates on glass slides and three X-ray patterns were recorded on 

each sample: one on the air-dried sample (N); one after solvation by ethylene-glycol for 24 h 

(EG); and one after heating at 500°C for 4 h (H). The background noise of the X-ray patterns 

was removed and semi- quantitative estimation of the main clay species were obtained using 

the DIFFRACplus EVA software ( B r u k e r )  according to the methods of Biscaye (1965) and 

Thorez (1976).  

Grain-size distributions were measured on sediment samples every 2 mm within the turbidites and 

every 5 mm in background sediments using a Malvern Mastersizer 2000 laser diffraction analyser 

(Malvern Instruments Limited, Malvern, UK). From these measurements the percentages of particles 

smaller than 7.5 µm (clay), between 7.5 µm and 60 µm (silts) and higher than 60 µm (sands) were 

extracted.  

Thin sections were made by resin impregnation of sedimentary slabs extracted from the cores using an 

8 cm long, 3 cm wide and 1.5 cm thick U-channel (following the method of Van Daele et al., 2014a). 

The polished thin sections were analysed under a microscope and a binocular to characterise the 

turbidites with a single fine silt-sized grain resolution. 
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A radiocarbon dating was done on a wood remain found in the hemipelagic sediment of site 1 and 

gave a calibrated age of 752 ± 20 years BP at 90 cm of depth on the short core (Fig. 4). Removing the 

thicknesses of the instantaneous turbiditic events, ca 75 cm of background sedimentation is left 

which corresponds to ca 750 years covered by the sediment record found in the short cores. This 

number is consistent with the rate of 1 mm/year calculated by Garcia Moreno et al. (2011) for the 

western south part of the basin.  

RESULTS 

Study sites: morphology and sources of sediments using the geophysical data set 

The three study sites are located in the western part of Lake Hazar (Fig. 1). No evidence of recent 

slope failure was observed from the lake bathymetry that was reconstructed from the dense grid of 

seismic lines (Figs 2 and 3). 

Proximal Study Site: Site 1 

Site 1 (99 m depth) is located 250 m to the north of the faulted southern steep lake margins (ca 15 to 

30°). These margins show different sediment covers (Fig. 3). The upper part has a thin lacustrine and 

alluvial sedimentary cover fed by a unique minor ephemeral river draining terrains of the Hazar 

calcareous group and Maden melange which may supply the basin with coarse sediments. The 

intermediate part of the steep margins at this site is covered by a thin sedimentary veneer. The lower 

part of the margins shows a thicker sedimentary cover composed of lacustrine and deltaic sediments.  

Site 1 is also located just to the south-west of the Small-elongated Basin (SeB in Fig. 1), a small pull-

apart basin that links the Shallow Basin to the Deep Basin. The SeB is bordered on all sides by small 

reliefs linked to active faults (Figs 2 and 3). 

Site 1 is unlikely to be reached by sediment flows originating from the Kurk delta or the two smaller 

deltas along the northern margin (Figs 2 and 3, Sp5). These flows would run through the Shallow 

Basin and could only ultimately reach the Deep Basin through the Small-elongated Basin. 
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Distal Study Sites: Sites 2 and 3 

Sites 2 (72 m water depth) and 3 (63 m depth) are located in the central flat area of the shallow basin 

and are relatively distal from the margins (Fig. 1). Physiographic differences between those two sites 

are thus minor. Site 3 is located in a more proximal position, ca 1.5 km, to the Kürk delta slopes while 

site 2 is located less than 1 km from to the promontory built on the southern lake margins (Figs 2 and 

3). 

The largest clastic input of these two sites comes from the Kürk River, which built a wide composite 

delta bound to the south by an active fault (Figs 1 and 2; Garcia Moreno et al., 2011, Eriş, 2013). 

 Potential reworking of the ca 100 m long, ca 13 m high delta front would thus primarily affect site 3 

compared to site 2. Both sites are located close to a series of small stacked deltas on the lake northern 

margin (Deltas 1 and 2 on Fig. 2).  The sites are also close to the promontory, which features steeper 

slopes than the deltas and is crossed by several fault splays (Fig. 2). Near site 2, the promontory 

slopes are covered by lacustrine sediments (Fig. 3).  

 

Correlation between the cores and the study sites 

Cores from the three study sites were correlated based on sedimentological variations resulting from 

processes affecting the entire lake. Several proxies were used (Fig. 4): grey levels extracted from 

the X-ray images, Ca/Al ratio profiles, carbonate and organic matter contents obtained 

independently by loss on ignition and Br counts (a proxy for organic matter content for site 3; 

Ziegler et al. 2008). 

 

All cores show similar variations in their carbonate and organic matter contents independently from the 

observed turbidites. Carbonates and organic matter profiles depict lower values along the upper half of 

the cores (ca 50 to 45 cm) compared to the lower half. This major change in the sedimentation is 

attributed to the lake level rise that started around AD 1795 (Tonbul & Yiğit, 1995), after the AD 1789 

earthquake (Ambraseys, 1989). Because there are very few carbonaceous rocks in the Hazar 

catchment, precipitation of calcite is likely to be controlled by biogenic and physico-chemical factors. 
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Large changes in water volume would strongly affect this process: while a lowstand period can induce 

concentration processes (for example, higher pH, ion concentration and CO2 solubility), a highstand 

period can trigger dilution processes, resulting in more and less carbonates, respectively. The 

radiocarbon dating on a terrestrial sample from 91 cm depth of the short core from site 1 gives a 

calibrated age of AD 1217 to 1291 (Fig. 4). This date implies that high carbonate and organic matter 

deposition occurred during the lowstand period corresponding to the occupation of an Armenian 

monastery from the 12
th
 to the 18

th
 Century (Hubert-Ferrari et al., 2017). The coincidence of high 

inorganic and organic carbon may be related to the adsorption of dissolved organic matter to CaO3 

(Ulhman & Horn, 2001).  

 

The core correlation implies that the sedimentation rates at the three sites are nearly the same. This was 

confirmed by the long core correlation as well as by the similar thickness of the Holocene sedimentary 

unit (Garcia Moreno et al., 2011). The focused event sets B, C and D are thus found in the study sites at 

similar depths, but with different levels of expression (Fig. 4). The event fingerprint is more 

pronounced at site 1, which comprises the highest number of turbidites per set. For instance, event set 

B includes four turbidites within site 1 and only two turbidites within sites 2 and 3 (see Fig. 4). 

 

Sets of turbidites: general results  

 

This section presents the results issued from the quantitative analyses made along the cores collected 

at the three study sites (Figs 5 and 6). 

 

Magnetic susceptibility 

 

Magnetic susceptibility peaks occur coincident with most of the turbidites and are particularly high in 

event set D for the three sites (Figs 5 and 6). These variations reflect grain-size and composition 

modifications characterising the turbidites compared to the background sediments. 
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Geochemical composition 

 

Geochemical ratios show systematic peaks of Fe/Ca and Ti/Ca along most of the turbidites and 

correspond to magnetic susceptibility peaks. However Fe and Ti counts show no increase, the ratios 

change thus highlights mostly a variation of calcium composition compared to the background 

sedimentation. 

 

Isotope analyses (δ
13

C, C/N, see Table 1a) in site 1 show a very uniform organic content, i.e. identical 

within the background sediments and the turbidites. The signature of the organic matter with a C/N 

ratio of 8.5 and a δ
13

C of -25.5‰ points to lacustrine algae and thus to a lacustrine origin of the 

turbidites (Meyers & Teranes, 2001). 

 

Mineralogical composition 

 

X-ray diffraction measurements show that the mineralogical composition of the background sediments 

and the turbidites are similar within an individual site (Table 1b). Compared to hemipelagic sediments, 

the turbidites are slightly enriched in quartz and plagioclase at site 2 and very slightly enriched in 

quartz, plagioclase and K-feldspar at site 1. The source of the sediment flows reaching site 1 and 2 is 

thus similar to the source of the suspended hemipelagic sediment deposited at the sites respectively.  

 

Study sites 1 and 2 show a different mineralogy, which implies that sediment sources of suspended 

hemipelagic sediment and of the sediment flows are distinct between the sites. The sediments from 

site 2 have half the amount of K-feldspar, and twice the amount of plagioclase and muscovite 

compared to site 1. In addition, aragonite and pyrite are present only in the sediments from site 1. This 

is linked to differences in geology near the sites. Upstream site 1, the Hazar calcareous formation and 

the Maden Melange would provide the aragonite. Site 2 reflects the geology of the Kürk river 

catchment where the Guleman ophiolotic complex is dominant and provide less K-feldspath and more 

plagioclase and muscovite (Herece, 2008).  



This article is protected by copyright. All rights reserved. 

X-ray diffraction measurements also show that around 40% of the minerals found in the sediments, 

both background and turbidites, correspond to clay minerals. In particular, detailed clay mineralogy 

conducted in hemipelagic sediments above and below the turbidite D1 reveals three main clay minerals 

(Fig. 10): kaolinite (40 ± 1.2%), illite (33 ± 0.4%) and a mixture of chlorite and swelling chlorite (27 ± 

0.4%). Clay fraction comprised in the clayey sand turbidites is mostly kaolinite (37%), chlorite (32%) 

and illite (31%). Layers enriched in kaolinite will appear whiter and the ones enriched in chlorite 

will appear darker, for example see thin section of D1 on Fig. 9 (Kadir & Akbulut, 2009; McBride, 

1974). The main mineralogical difference between the hemipelagic sediments and the turbidites is thus 

the proportion of chlorite. In the coarse base of the turbidites, swelling chlorite is absent and the shape 

of the chlorite peak (14A on Fig. 10) is narrower implying that the space between the mineral sheets is 

not occupied by water.  

Grain-size analysis 

Grain-size distributions reveal that the background sedimentation between the turbidites is 

unimodal and centred on 8 µm in the three sites, with a slightly higher sandy content for site 1 

compared with the other sites (Figs 5 to 10). The base of each event deposit is characterised by 

coarser sandy particles mixed with mud. This sandy supply is then overlaid by an increase of the 

fine fraction for some of the turbidites, f o r  e x a m p l e ,  within the event set D of the 3 sites. 

The transition between the sandy and finer layers is very sharp and can be compared to the ‘grain-

size breaks’ of type 5, i.e. mud-rich sand overlain by mud, described by Stevenson et al. (2012). 

Both XRD and geochemical measurements are coherent with the grain-size variations (Figs 5 and 

6). Around 40% of the minerals found in the sediments correspond to clay minerals whereas the 

same amount of particles smaller than 7.5 µm have been measured independently by grain-size 

analysis. Moreover, coarse particles supply in the event deposits is highly correlated with peaks of 

magnetic susceptibility and of iron and titanium to calcium (Figs 5 and 6) and with a slight 

enrichment in terrigenous minerals such as quartz, plagioclase, K-feldspath (Table 1). 
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Bioturbation 

Bioturbation in the form of vertical burrows is present throughout the turbidites and at their 

base (Figs 8 to 10). Burrow length varies from 1 to 10 mm and they are filled with similar 

particles to the above layer, i.e. where they originate. The burrows were formed after the event 

deposition and are probably related to oligochaete worms and chironomidae larvae present at the 

lake bottom (Timm et al., 2013). It is not always clear to distinguish these vertical burrows from 

possible fluid escape features. The latter generally show a funnel shape, with vertical breaks filled 

with mud in the coarser basal layers (for example, Fig. 8).  

Only two types of fossil remains were found in the turbidites. Firstly, ostracodes without any 

particular distribution were found in all the thin sections (for example, Figs 9 and 10). Secondly 

chironomidae larvae were found, characterised by a red colour and a length between 1 mm and 

10 mm (for example, Figs 7 and 8; Charles et al., 2004). Although planktonic studies 

documented the existence of diatoms in Lake Hazar (Koçer & Sen, 2014), they were not 

detected in the sediments. The high pH of the lake water probably led to the complete dissolution 

of their frustules that cannot be recognised in the thin sections. 

 

Characterisation of the turbidites per event set and per study site 

The upper parts of the cores are composed of the event set A, which was not studied in detail for three 

reasons. Firstly, it was difficult to unambiguously correlate the turbidites in the different cores due to 

coring artefacts at the core top usually encountered with a sampling system by piston. Secondly, there 

has been a set of large human impacts on the lake since the construction of the railway in 1950 that 

complicated the record interpretation at the different sites. Event sets B, C and D are too deep to be 

affected by coring artefacts and recent human impacts and have therefore been the focus of this study. 

Thirdly, there was a large lake level increase starting at the beginning of the 19
th
 Century, preceded by 

a 12
th
 to 18

th
 Century lowstand that was marked by the construction and occupation of an Armenian 
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monastery (Hubert-Ferrari et al., 2017). In order to unambiguously compare the different event sets, 

the present study focuses on the same lowstand period during which events B, C and D occurred.  

Set of event deposits B (Fig. 7) 

The event set B comprises four turbidites at site 1 and two turbidites at sites 2 and 3 (Figs 4 and 

7). Turbidites at site 1 are overall coarser than the ones found in the other sites. 

At site 1, turbidite B1 is composed of a very sparse and discontinuous clayey silt layer, overlying a 

1 cm thick clayey layer. Turbidite B2 includes four different layers: two graded clayey sand layers 

sharply separated by a 2 mm thick clayey layer and capped by a 3 mm thick dispersed clayey 

silt layer. Turbidite B3 is composed of a 4 mm thick normally graded clayey sand layer and 

capped by a 3 mm thick clayey layer. The basal sandy layer is disturbed by vertical breaks of 

around 1 mm wide. Turbidite B4 is composed of an ungraded clayey silt layer and is highly 

bioturbated. 

At site 2, turbidite B2 shows an ungraded 1 mm thick clayey silt basal layer capped by a 2 mm 

thick silty layer. The grain-size distribution is unimodal with a gentle coarsening-upward trend 

towards the base. B2 is entirely deformed, i.e. it depicts a spiral at the right of the photograph 

(Fig. 7). This deformed feature is present both in the short and long cores, which means that a core 

disturbance can be ruled out. Turbidite B3 is made of a very thin and discontinuous silty layer. 

At site 3 (Fig.6), the lower turbidite corresponding to B2 of site 2 is also the thickest one. The 

basal silty layer is clearly visible in the X-ray image. 

Set of event deposits C 

Site 1 shows eight turbidites (Fig. 8): C1 to C6 are similar and composed of an ungraded thin 

clayey silt layer. Event deposit C7 is very deformed and includes a thin clayey layer in between 

two graded layers made of sand and clay. Event deposit C8 consists in a dense and clayey sand 

layer capped by a thin clayey layer (Fig. 8). 
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Site 2 does not feature any visible turbidite within the corresponding depths of event set C occurring 

at sites 1 and 3 (Fig. 6). At site 3, event set C is composed of a homogeneous muddy silt layer (Fig. 

8). 

Set of event deposits D (Figs 9 and 10) 

Event set D is composed of two turbidites in the three study sites. All  of the turbidites  are 

characterised by a graded basal clayey sand layer with a bimodal distribution and a clear grain-

size break with the background sediment. 

The two turbidites of site 1 (Fig. 9) consist of a dense and clayey sand layer overlain by a thin 

clayey layer beneath a thicker silty clay layer. The basal coarse layer of D1 is laminated, i.e. 

made of thin layers of clay injected into the sandy base (see radiograph). The basal coarse layer of 

D2 is highly convoluted and shows strong thickness changes. 

In sites 2 and 3 (Fig. 10), the basal clayey sand layer of the turbidites is capped by a 1 cm thick 

clayey layer creating a sharp grain-size break. This mud cap is laminated and depicts two colours 

of clay. The basal clayey sand layer of D1 is composed of vertical breaks. The coarse basal layer of 

D2 contains small ripple bedforms characterised by very thin laminations (see thin section and CT 

scan image of both sites). It is topped by a non-laminated sandy layer underneath a mud cap. 

 

INTERPRETATION 

 

Sediment sources and triggering mechanisms 

Turbidity currents can be triggered by a wide variety of processes, for example, slope failures of 

submerged basin margins and deltas, bedload plunging and fall-out of suspended plume from river 

discharge, sediment resuspension by storm waves or earthquakes, oceanographic processes related to 

tides and fresh–saline water interface (Piper & Normark, 2009, Clare et al., 2016). Oceanographic 

processes can directly be ruled out in the context of this lacustrine study.  



This article is protected by copyright. All rights reserved. 

Possible triggering mechanisms for the studied turbidites can then be grouped into two types of 

sediment sources: (i) sediment issued from the river discharge; and (ii) previously deposited lacustrine 

sediments. Three main arguments point to a lacustrine source for the turbidites without external supply 

from the rivers. Firstly, the turbidites show a mineralogy and C/N ratio comprised between 7.1 and 

8.6, mostly identical to the background hemipelagic sediments (Table 1). The range of C/N ratios is 

generally 3 to 9 for aquatic sources, 10 to 20 for mixed aquatic and terrestrial sources and >20 for 

terrestrial plants (Meyers, 1997). Secondly, turbidites in Lake Hazar systematically contain ostracod 

shells and chironomid remains that are specific to the lake. Thirdly, the grain-size trend observed in 

the coeval turbidites between the three study sites means that an origin from the main river Kürk can 

be ruled out. Indeed, the turbidites are generally much coarser in site 1, which is not connected to any 

major fluvial source compared to sites 2 and 3, which are closer to the Kürk River (see Event set D, 

Figs 9 and 10).  

Turbidites therefore have a lacustrine source and must relate to remobilisation of previously deposited 

subaqueous sediments. Given that Lake Hazar is crossed by the East Anatolian Fault system, i.e. 

source of M ca 7 earthquakes and that it is located close to a number of other seismic sources capable 

of generating M ≥7 earthquakes (Cetin et al., 2003), earthquakes are a highly plausible trigger for 

these remobilisations. Moreover, earthquakes have been shown to explain liquefaction features and 

soft-sediment-deformation observed in the Kürk Delta deposits in a recent study by Hubert-Ferrari et 

al. (2017). Assuming an earthquake trigger, two possible mechanisms could explain the turbidites 

presented here. 

Firstly, earthquakes could have caused a lake-wide resuspension of surficial sediments such as 

described by Marco et al. (1996) and Hubert-Ferrari et al. (2012). However, remobilisation of the very 

fine sediments at the lake bed would not explain the grain size profiles of the turbidites which 

consistently have silt and sand.  

Secondly, although the available geophysical data does not indicate slope failures that are thicker than 

1 m, an increasing number of studies in seismically active areas have found evidence for very shallow 

(often <10 cm) slope failures (e.g. Forsberg et al., 2016, McHugh et al., 2016, Moernaut et al., 2017). 
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Moernaut et al. (2017) showed in Chilean lakes that earthquakes could trigger a shear strength 

reduction in water-rich top sediments that moved them downslope forming turbidity currents. The 

present authors propose that such shallow slope failures are the most plausible mechanism at the origin 

of the studied turbidites. These failures are below the resolution of the stratigraphy imaged by the 

geophysical data presented here (i.e. ca 5 m of horizontal resolution and 1 m of vertical resolution on 

the lake slopes). Shallow slope failures can also explain the low thickness of the observed turbidites. 

Indeed, the largest studied turbidite is 3 cm thick and most of them are 1 to 2 cm thick; the ca 5 m long 

cores at sites 1 and 2 show no thicker event deposits. Considering turbidite thickness as a relative 

proxy for flow volume, the thin turbidites imply that a small volume of sediment was reworked and 

suggest again shallow failures running downslope. 

Flow dynamics at the origin of the event deposits unravelled by comparison with flume 

experiments 

This study derives the dynamics of the turbidity currents events using four experimental studies 

focused on sediment flows and water mixtures made of mud, i.e. cohesive particles and granular 

particles, i.e. non-cohesive (Amy et al., 2006; Sumner et al., 2009; Baas et al., 2011 and Manica, 

2012). 

The four flume experiments used a range of grain sizes similar to the grain-size distribution 

characterising the deposits herein, from clay particles to sand (Table 2; Amy et al., 2006; 

Sumner et al., 2009; Baas et al., 2011 and Manica, 2012). This allows a comparison between 

field-scale deposits in Lake Hazar and deposits obtained in laboratories. Silt (i.e. 7.5 to 60 µm) and 

sand particles (i.e. 60 µm), defined here are characterised by a non-cohesive behaviour, as observed in 

the experiments. The <7.5 µm fraction present in the studied turbidites matches with the clay 

percentages obtained independently by mineralogical measurements. 

Three main types of turbidites are distinguished in this study, relying on four criteria: the presence 

of grading, the thickness of the event deposits, the grain size of the particles and the presence of 

sedimentary structures (Table 3). 
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Type 1: Ungraded clayey silt layer sometimes overlain by a mud cap 

Turbidites of type 1 correspond to 1 to 3 mm thin layers made of silt to fine sand size particles 

mixed with clay (for example, B2 and B3 of site 2, and B1 and B4 of site 1 on Fig.7; C of site 3 

and C1 to C6 of site 1 on Fig. 8). These basal layers are ungraded, as demonstrated in the high 

resolution imagery (thin sections and CT scan). A mud cap with a variable thickness is sometimes 

present. 

Type 1 deposit of this study is similar to several experimental deposits characterised by a lack 

of grading (see Table 3). Regarding the flow characteristics at the origin of these referenced 

experimental deposits, type 1 here in  i s  i nf er r ed  to result from a laminar flow (Amy et al., 

2006; Sumner et al., 2009; Baas et al., 2011 and Manica, 2012). The latter involves cohesive 

forces with sufficient yield strength to suspend all the particle sizes. This non-Newtonian behaviour 

prevents the settling of coarser particles and suppresses the particle segregation, producing an en 

masse deposition (Baas et al., 2011). The laminar character is well attested t o  in the studied deposits 

through two characteristics. Firstly, there is a lack of grading in the clayey silt layers. Secondly, 

entire larvae of chironomids have been found in some turbidites (for example, C6 and C8 of site 1, 

see Fig. 8). A turbulent flow is unlikely to have kept such fossil remains intact since their segments 

are very fragile. 

The presence of mud caps overlying the ungraded basal layers can be explained by three different 

mechanisms. Firstly, the process of elutriation corresponds to the flushing out of the clay from 

lower levels during the development of vertical pipes (Amy et al., 2006). This creates a 

counterflow able to transport the finer particles to the top. Such fluid escape features have been 

evidenced in the studied deposits (for example, Fig 8). The second mechanism is related to the 

evolution of the flow responsible for the deposition of the basal ungraded layer. This flow can be 

transformed into a dense thinner fluid mud layer during its later stages (i.e. tail). The two parts in 

turbidites of type 1 may thus represent the main body and the tail of the same sediment flow. 

Thirdly, another flow from another source carrying only clay particles may also have deposited this 

mud cap by en masse freezing.  
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Type 2: Partially graded clayey sand layer overlain by a mud cap 

The second type of turbidite comprises a discontinuous basal clayey sand layer overlain by a 1 cm 

thick mud cap. The sandy basal layer is characterised by an absence of grading in the lower basal 

millimetres, evolving into normal grading in the upper millimetres. This basal layer does not 

show any structures, i.e. no laminae or convolution features (for example, C8 at site 1 on Fig. 8 

and D1 at sites 2 and 3 on Fig. 10). 

A type 2 deposit is here attributed to a transitional sediment flow in which there is a balance 

between cohesive and turbulence forces (Table 3). The referenced experiments have shown that 

the settling of such flows occurred through first en masse consolidation and second incremental 

aggradation while the flow cohesion is no longer able to overbalance turbulence (Table 3). The 

mud cap overlying the basal sandy layer m a y  have been settled by the same processes described 

in the mud caps of type 1 turbidites. 

Type 3: Structured graded clayey sand layer overlain by a mud cap 

Turbidites of type 3 include the following intervals (see Table 3): (i) a basal graded clayey sand layer 

displaying laminae; (ii) a graded clayey sand layer without lamination; and (iii) a mud cap layer 

generally thicker than the basal layer (for example, B2 and B3 of site 1 on Fig. 7; C7 of site 1 on Fig. 

8; D1 and D2 of site 1 on Fig. 9; D2 of sites 2 and 3 on Fig. 10).  

Turbidites of type 3 are attributed to a flow where turbulence mostly outbalances cohesive forces. 

Turbulence is indeed demonstrated in this third type by the following characteristics. 

Firstly, the deposits show a normal grading and thin laminations. Normal grading is due to the 

gradual settling of sandy particles from the turbulent flow as it decelerates and stops (Sumner et 

al., 2009). Laminations (Event D2 of sites 2 and 3; Fig. 10) are built by the settling of silt flocs 

alternating with the gradual settling of clay flocs (Stow & Bowen, 1978, 1980; Baas et al., 2011). 

Secondly, turbidites of type 3 show erosional boundaries between the base and the hemipelagic 

sediments, which attest to a reworking of the lake floor by the flow. This interaction flow-floor was 

generated in the experiments under a turbulent regime (Sumner et al., 2009; Baas et al., 2011). Basal 
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scouring is difficult to evidence in cores, but a wavy erosional contact of the basal coarse layers with 

the hemipelagic sediments and with the top non laminated sand layer in turbidites D2 of sites 2 and 3 

was imaged here (Fig. 10). This wavy contact is not thought to be a coring artefact since it has been 

observed in the lower part of the gravity cores where deformation is minimal. It is inferred that this 

overlying sand layer scoured the initial bedform during either a later stage of a single flow or a by 

another flow after a certain lapse of time. Erosion and incorporation of the weak water-rich surface 

sediments settled at the lake floor can also explain incorporation of mud pockets within sandy layers 

such as in C7 and D2 events of site 1 (Figs 8 and 9).  

Turbidites at Lake Hazar and classical models 

Correlation of the three types of turbidites described above with models widely recognized in the 

literature (Piper, 1978, Piper & Stow, 1984, Talling et al. 2012) is not straightforward. Overall, the 

turbidites found in Lake Hazar are very thin, i.e. 1 to 2 cm thick, compared to the theoretical models 

and study cases found in the literature, with a few examples of thin, 2 to 5 cm, bedded turbidites cited 

by Piper & Stow (1984).  

 

Turbidites of type 1 may relate to low-strength cohesive debrites (Talling et al., 2012) where cohesion 

is able to support all particle sizes and is produced by transformation of an initially turbulent flow that 

reaches more distal locations. Examples of low strength cohesive debrites cited by Talling et al. 

(2012) are however much thicker than the present turbidites of type 1.  

 

Turbidites of type 3 show a stratigraphy similar to mud turbidites (Piper, 1978) or densite mud 

(Talling et al., 2012): (i) a laminated graded interval TE-1; (ii) a graded massive interval TE-2; and 

(iii) a massive ungraded mud interval TE-3 that is usually much thicker than the other intervals. 

However, mud turbidites and densite mud as defined by Piper (1978) and Talling et al. (2012) have no 

sand content while the present turbidites of type 3 show a high proportion of clay and sand even for 

the coarsest events (for example, turbidites D1 and D2 on Fig. 6) 
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Turbidites of type 2 stand in between the two main regimes widely recognized in sediment flows, i.e. 

cohesion and turbulence. Hence, this study shows evidence for the occurrence of transitional flows in a 

field-scale basin.  

Event sets variability and evolution of the flow  

Comparison of the sediment record between the three study sites  

Figure 11 provides a schematic summary showing the occurrence of the three types of turbidites 

observed in the three study sites. Overall, there is a greater evidence of flows based on deposits in 

proximal site 1 compared to sites 2 and 3 given the higher number of turbidites found in site 1. 

Erosion and flow bypass are very unlikely to explain the lower number of turbidites at sites 2 and 3 

since they are both more distal to the sources and lie in a flat area of the lake. This suggests that flows 

were more frequent and/or less diluted in proximal site 1.  Flows at site 1 were also more competent, 

i.e. able to support coarser particles (Stacey & Bowen, 1988), because the turbidites are generally 

coarser compared to sites 2 and 3. Regarding event sets B and C, turbidites of type 2 and 3 are only 

found in site 1 while the other sites only comprise turbidites of type 1. Event set D is characterised by 

turbidites of type 2 and 3 in the three sites, with coarser grain sizes for site 1.  

Event expression in relation to the basin physiography 

Several factors related to the Lake Hazar settings can explain the variability of the sedimentary 

record observed between the three sites. Firstly, the intensity of the triggering mechanism, i.e. ability 

to mobilize the sediment cover on slopes, may partly be responsible for the divergence observed. 

However site 1 is located only ca 3.5 km away from site 2 and the intensity of the external event 

responsible for the sediment reworking would not be drastically different. Secondly, the 

physiography surrounding the sites is significantly different (Fig. 11). Site 1 is closely (i.e. 200 to 

700 m) surrounded by a large number of steep (i.e. 15 to 30°) faulted slopes while sites 2 and 3 lie 

further (i.e. 1 to 2 km) from the sources characterised by more gentle slopes (Figs 2 and 11). Dilution 

of the flows reaching sites 2 and 3 is thus higher compared to proximal flows reaching site 1. 

Thirdly, as the sediment sources are distinct between site 1 and the two other sites, the volume 
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available for remobilization and the grain-size composition of the sources are also different. Sources 

for site 1 are steep lake margins covered by coarse grains while most of the sources for sites 2 and 3 

are sediments sorted on the deltaic slopes surrounding the sites.  

In proximal site 1, turbidite B2 is composed of a clay layer sandwiched between two layers of muddy 

sand while the top is a sparse silt unit (Fig. 7).  A similar silt unit also tops D1 and D2 from site 1 (Fig. 

9). These complex configurations can be explained by two processes related to the basin physiography 

at this proximal site. Firstly, multiple slopes may have failed within short period of time and deposited 

distinct layers during a single event, as seen in Van Daele et al. (2015) and Avsar et al. (2015). 

Secondly, multistage remobilizations of one specific source, such as evidenced by Hunt et al. (2011), 

is possible. A third process called flow reflection, occurring when a flow runs up a slope and then 

collapses backwards (Kneller & McCaffrey, 1999, Tripsanas et al., 2004), has been envisaged. 

However, site 1 is only surrounded by steep slopes to the south, the only slopes steep enough to 

generate a flow reflection being 4 km north to the site (Figs 3 and 11).   

Flow behaviour in relation to clay content  

The high clay content of the flows is also inferred to have played a major role in the observed deposits. 

Flume experiments have indeed shown that flow behaviour could evolve with time as a result of the 

clay fraction carried (Amy et al., 2006; Sumner et al., 2009; Baas et al., 2011; Manica, 2012). As a 

sediment flow travels clay flocs are created by strong cohesive bonds, thus increasing the flow 

viscosity and damping the turbulence, a process called viscosity bifurcation by Coussot et al. (2002). 

In the present study, the longest travel time would be for flows arriving at the distal sites with 

respect to their sources, for example a flow coming from the Kürk Delta slopes would run ca 3.5 

km to reach site 2 (Fig. 11). This could explain why these sites mostly comprise turbidites of 

type 1 for coeval event sets B and C compared to site 1.  

 

 

 



This article is protected by copyright. All rights reserved. 

The variation of clay composition observed in some mud caps is also interpreted to result from a flow 

evolution. For instance in the event D1 of the distal sites 2 and 3 (Fig. 10), the darker basal mud 

cap,  rich in chlorite,  would have been carried by the early flow stages (i.e. the head) whereas the 

upper, lighter mud cap, rich in kaolinite, is attributed to the late flow stages (i.e. the tail) allowing 

more time to flocculate.  

DISCUSSION 

 

What are the sources and triggers for thin turbidites found in Lake Hazar?  

Sources for the studied thin turbidites correspond to the surficial sediment cover found on Lake Hazar 

slopes. Sediment sources are different from one study site to another (Fig. 11). Sources for proximal 

site 1 mainly correspond to a series of very steep 15 to 30° faulted slopes characterising a sub-basin 

hanging slightly above the Small elongated Basin (Fig. 11).  Sources for distal sites 2 and 3 are steep 

7 to 12° slopes of the promontory, and more gentle 3 to 8° slopes of the Kürk Delta and two small 

northern deltas (Figs 2 and 11).   

Surficial sediment of these slopes is proposed to have been mobilised by <1 m thick slope failures, 

i.e. shallow failures, that have not produced any visible headscarp in the data available. Mobilisation 

of the most superficial part of the subaqueous slopes would then have generated long run-out 

turbidity currents as documented by Forsberg et al. (2016) in a Norwegian lake or by Moernaut et al. 

(2017) and McHugh et al. (2016) in active seismic areas.  

 

Why are the thin turbidites organised into closely spaced thin beds within event sets? 

This study evidenced multiple closely spaced thin turbidites within three sets. Event set B comprises 

two to four turbidites depending on the study sites, event set C includes eight turbidites in site 1 and 

only one thin turbidite in site 3 while event set D comprises two turbidites in the three sites (Fig. 11). 

Based on a sedimentation rate of 1 mm/year (Garcia Moreno et al., 2011) confirmed by the 

radiocarbon dating (see Methods), these three event sets are separated from one another by 10 to 15 

cm of background sediments, i.e. 100 to 150 years. Within each event set, individual turbidites are 
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separated by 1 to 2 cm of background sediments (i.e. showing a different composition from the 

turbidites), which correspond to 10 to 20 years if a sedimentation rate returning to normal conditions 

between the event beds is assumed.    

 

Given the high seismicity of the region, it is plausible that the turbidites relate to shallow slope 

instability triggered by highly recurrent earthquakes (Ambraseys, 1989; Cetin et al., 2003). Hence, 

multiple earthquakes that occurred with lapses of time between 10 and 20 years within a sequence 

covering a century is a possible explanation, because the East Anatolian Fault tends to generate 

earthquakes in sequences (Nalbant et al., 2002). For example, a sequence of 10 earthquakes occurred 

within around 150 years over the 18
th
 and 19

th
 Century along the East-Anatolian Fault Zone (Nalbant 

et al., 2002). However, correlating with certainty each of the event sets with historical events would 

require a robust age control by absolute dating, which is not the focus of the present study.  

 

Some individual turbidites show stacked beds without any return to hemipelagic sedimentation (for 

example, Fig. 7, Event B2 of Site 1). Multistage failures of a single source as evidenced by Hunt et 

al. (2011) or multiple slopes failing concurrently as seen in Van Daele et al. (2015) and Avsar et al. 

(2015) are two possible explanations for these configurations.   

 

How did the flows behave and how did their behaviour change in relation to the basin 

physiography? 

 

Thin clayey sand turbidites from Lake Hazar are interpreted to show evidence for three types of flow 

behaviour: (i) laminar regime dominated by cohesion; (ii) transitional regime between turbulent and 

laminar states; and (iii) turbulent regime. These flow behaviours are found in the three study sites 

within the basin and their distribution differs from one event set to another (Fig. 11).  

At proximal site 1, which is surrounded by several steep faulted slopes, event sets B and C include 

the three types of turbidites described in this study (Fig. 11). Such diversity observed at an individual 

site implies that turbidity currents behave very differently from one event to another. This behaviour 
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diversity may relate to the occurrence of slope failures at different elevations on the slopes 

surrounding site 1. Activation of flows from different elevations can result in different flow 

velocities and run-out distances, i.e. shorter/longer time for transformation of flow regime.  

 

At distal sites 2 and 3, event sets B and C only bear evidence for laminar flows that have been able to 

sustain until more distal locations with respect to their own sources (Fig. 11). The present authors 

infer that these flows were turbulent in their early stages and underwent flow transformation until 

reaching sites 2 and 3.    

 

Event set D evidences for turbulent and transitional regime in the three sites, with a coarser fraction 

for site 1, compared to sites 2 and 3. Overall, event set D shows the highest intensity, i.e. highest 

thickness and coarsest grain sizes, in the three sites compared to event sets B and C (Fig. 11). This 

difference of event expression across the whole basin is explained by the intensity of the trigger. It is 

inferred here that the trigger for event set D was able to mobilise the lacustrine sources with a higher 

intensity compared to event sets B and C, thereby triggering more energetic flows for the three sites.   

Do the deposits from Lake Hazar validate flume experiments found in the literature?  

This study compared the turbidites found in Lake Hazar with four experimental studies centred on the 

presence of clay within turbidity currents (Amy et al., 2006; Sumner et al., 2009; Baas et al., 2011; 

Manica, 2012; Tables 2 and 3). The four experiments generally observed turbulence-dominated flows 

evolving into cohesive flows as they added clay particles. This flow regime transition in the 

experiments resulted in distinct deposits characterised by turbulence and laminar evidence such as the 

presence or absence of grading. Turbidites from Lake Hazar cover the general range observed in the 

experimental deposits: type 1 resulting from a cohesive flow; type 2 from a transitional flow; and type 

3 from a turbulence-dominated flow (Table 3). 
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However, the turbidites of  type 3 are attributed to a turbulent flow even though their clay content is 

high, reaching up to 30% of the total sediments (Figs 5 and 6). This is not consistent with the four 

experiments which showed that only a few percent of clay was required to damp turbulence and settle 

ungraded deposits such as type 1 here. This divergence is explained by two main groups of controlling 

factors that have not been fully considered in the four experimental studies: (i) water chemistry (i.e. 

salinity, pH, organic matter content and temperature); and (ii) clay properties (i.e. amount and size of 

clay particles, type of clay minerals). It is indeed largely recognised that the degree of clay 

flocculation, and therefore the viscosity of a clay-rich suspension, strongly depends on these factors 

(e.g. Whitehouse et al., 1960; Edzwald & O’Melia, 1975; Chamley, 1989, Mietta et al., 2009, Gupta et 

al. 2011, Pourmohammadbagher & Shaw, 2016). 

Water chemistry of Lake Hazar significantly differs from the water used in the four experiments (Table 

2). Lake Hazar water has a salinity of 16‰ and is highly alkaline with a pH of 9.3 (Sen et al., 2002, 

Eris, 2013). Moreover, Lake Hazar sediments are composed of a wider range of clay minerals, i.e. 

kaolinite, illite and chlorite, compared to the four experiments that only used kaolinite (Table 2). It is 

difficult to establish the effect of each of these controlling variables on the clay flocculation 

independently because they are all interrelated (Whitehouse et al., 1960; Mietta et al., 2009). A brief 

description is provided below of some elements of discussion that might be worth considering in future 

experiments on clay-rich sediment flows.  

 

Firstly, it is well known that salinity can decrease the repulsive forces between the clay particles and 

therefore enhance flocculation (Whitehouse et al., 1960; Mietta et al. 2009; Pourmohammadbagher & 

Shaw, 2016). However, different clay types may behave differently to salt concentration (Gorakhki & 

Bareither, 2015). Secondly, several studies have shown that clay flocculation decreased with increasing 

pH (e.g. Whitehouse et al., 1960; Edzwald & O’Melia, 1975; Chamley, 1989). In particular, Gupta 

et al. (2011) showed that kaolinite particles tended to be dispersed at pH = 9, similar to the alkaline 

water of Lake Hazar. Lake Hazar water could thus have decreased the flow cohesion, permitting 
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turbulence to occur in the clay-rich turbidity current events studied. Thirdly, organic matter can create 

thin coatings on clays, thereby reducing flocculation potential (Gibbs, 1983). Between 8% and 10% of 

organic matter have been measured in Lake Hazar sediments (Fig. 4) and may thus also have decreased 

the flow cohesion. 

The effects mentioned above have mainly been measured in static, calm waters. Interaction between 

water chemistry and clay type has not been investigated in detail for fast-moving turbidity currents 

where turbulence and sediment–water mixing are suspected to have a great impact. There are some rare 

recent studies such as Baas et al. (2016) who compared the behaviour of bentonite to kaolinite in a new 

set of experiments on suspended flows. This type of investigation should be multiplied and expanded to 

improve current understanding of the behaviour of clay-rich turbidity currents in real settings.       

 

CONCLUSIONS 

Depositional processes at the origin of thin clayey sand turbidites found in three coring locations at 

Lake Hazar have been examined precisely in this study. Three conclusions may be drawn. 

 

On the trigger of thin lacustrine turbidites and their occurrence in clusters. Turbidites found in 

Lake Hazar occur in vertically stacked clusters of thin event beds. Sources for these turbidites are 

different from one coring location to another and are inferred to correspond to surficial slope 

remobilisation, a process evidenced in few studies elsewhere (e.g. Moernaut et al., 2017; McHugh et 

al., 2016). The most likely triggering process for these slope remobilisations is earthquakes, given the 

strong seismic background of the basin (Ambraseys, 1989; Cetin et al., 2003). The reason for 

turbidites occurring in clusters is tentatively linked to the occurrence of earthquakes generated in 

sequences along the East-Anatolian Fault (Nalbant et al., 2002), but this remains hypothetical as a 

robust age model would be needed.  
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Flow behaviour of turbidity currents is recorded in thin clayey sand lacustrine turbidites. Three 

types of turbidites were identified in this study. The first type is linked to laminar flows dominated by 

cohesion, the second type to a transitional regime where cohesion balances with turbulence and the 

third one to flows dominated by turbulence. The number and grain size of turbidites per cluster are 

higher in the proximal coring location compared to the two distal ones. Therefore flows became more 

dilute with distance and the frequency of deposits recorded with distance from their respective sources 

reduced.  The three types of turbidites are found in the three coring locations, always showing a higher 

intensity, i.e. thicker turbidites and coarser grain size, in proximal site 1 compared to the two distal 

sites. Dynamics of the sediment flow evolution is thus strongly influenced by the run-out distances. 

Furthermore, turbidites found in Lake Hazar show that the presence of clay particles within turbidity 

currents leads to flocculation and flow transformation, from laminar to transitional and turbulent 

regimes. 

 

Field scale turbidites as a test for flume experiments of transitional flows. Several flume 

experiments have shown that clay content had a key role in a sediment flow dynamics by creating 

cohesive forces balancing with turbulence (Amy et al., 2006; Sumner et al., 2009; Baas et al., 2011; 

Manica, 2012). The clay-rich event deposits of this study indeed provide evidence for the occurrence 

of different flow behaviours, from a cohesion-dominated regime to transitional and turbulence-

dominated regimes. However, while the flume experiments generally showed that turbulence was 

damped by cohesion for low clay content, i.e. as low as 5% (Postma, 1986), the present study suggests 

that turbulence was the dominant mechanism at the origin of type 3 deposits despite their high clay 

fraction, i.e. 30% of the total sediment. This divergence relates to input variables such as water 

chemistry and clay mineralogy that are not routinely considered in experimental studies. In particular, 

Lake Hazar sediments contain a wider range of clay minerals, i.e. kaolinite, illite and chlorite, 

compared to flume studies which only used kaolinite. Furthermore, Lake Hazar water is characterised 

by high values of pH and salinity, i.e. two parameters widely known as controlling factors on clay 

behaviour (Whitehouse et al., 1960). These observations in a real setting allow the suggestion of new 
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key controlling variables to be considered in future flume experiments on clay-rich sediment flows.  

While monitoring of active turbidity currents is the most efficient approach to understand their 

dynamics, it remains difficult and by consequence restricted to only a few locations worldwide 

(Talling et al., 2015). Characterisation of turbidity currents therefore mainly relies on the observation 

of their deposits; the settling processes linking deposits to their parent flow being inferred by 

flume experiments. This combined approach has been used in this contribution, which shows 

that flow dynamics at the origin of lacustrine clay-rich turbidity currents can be characterised by 

looking at the deposits they leave behind. 
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Figure Captions 

Figure 1: Top-left: Location of Lake Hazar (HL) on the East-Anatolian Fault (EAF) between the 

Arabia and the Anatolia plates. UTM coordinates in degrees. The rest of the figure shows the Lake 

Hazar Basin and its geomorphological units, the location of the three study coring sites and the 

fault system mapped from the seismic survey crossing the lake. MF: Master Fault; NF: Northern 

Fault; SF: Southern Fault; NwS: North-west Segment.   

Figure 2: Top-left: Distribution of the seismic lines used in this study. The rest of the figure shows the 

slopes characterising the western shallow basin of Lake Hazar. Coring locations and location of 

the seismic reflection profiles shown in Fig. 3 are indicated. 

Figure 3: Five out of a dense grid of seismic reflection profiles acquired in Lake Hazar. Coring 

locations are indicated on the profiles. Vertical scales are based on an acoustic velocity of 1600 m/s 

for soft sediments (Garcia Moreno et al., 2010). TWT: two-way-travel time; Pr: Promontory; SF: 

Southern Fault; MF: Master Fault; DB: Deep Basin. 

Figure 4: Comparison of parameters measured on short cores taken from the three study sites. 

Schematic logs: drawn on a visual basis of the core surface; Grey levels: extracted from the X-ray 

radiographs; Ca/Al: Ratio between Calcium and Aluminium based on XRF elemental counts; Br: 

Area of Bromine, used as a proxy of the organic content; wt% carbonates: percentage of carbonates 

calculated by loss on ignition; %O.M.: percentage of organic matter calculated by loss on ignition. 

A 
14

C dating was made on a short core of site 1 (95 cm depth) on organic debris sampled in the 

background sediments and gave a calibrated age range of 1243 to 1284 cal AD (92% probability) using 

the OxCal program.  

 

Figure 5: Measurements made on short and long cores from site 1. MS: Magnetic susceptibility 

(no unit); Density: density of the sediments (in grams per cubic centimetre); %mud, silt, sand: 

percentage of each particle size of the total volume present in each sample taken from the cores; 

Mineralogy by XRD: mineralogy quantified by X-ray diffraction showing the percentage of clay 
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minerals and kaolinite compared to the total mineral composition; Fe/Ca: ratio between Iron and 

Calcium; Ti/Ca: ratio between Titanium and Calcium. 

Figure 6: Measurements made on short and long cores from sites 2 and 3. MS: Magnetic 

susceptibility (no unit); Density: density of the sediments (in grams per cubic centimetre); 

%mud, silt, sand: percentage of each particle size of the total volume present in each sample 

taken from the cores; Mineralogy by XRD: mineralogy quantified by X-ray diffraction showing 

the percentage of clay minerals and kaolinite compared to the total mineral composition; Fe/Ca: 

ratio between Iron and Calcium; Ti/Ca: ratio between Titanium and Calcium. 

Figure 7: Detailed imagery of the deposits found in the event set B of sites 1 and 2. This event 

set is composed of four turbidites within site 1 and two turbidites within site 2 (that are similar 

in site 3). CT scan images were acquired on the short cores whereas X-ray radiographs and 

thin sections photographs are issued from the long cores. 

Figure 8: Detailed imagery of the deposits found in the event set C of sites 1 and 3. This event 

set is composed of eight turbidites named C1 to C8 within site 1. CT scan images were 

acquired on the short cores whereas X-ray radiographs and thin sections photographs are 

issued from the long cores. 

Figure 9: Detailed imagery of the deposits found in the event set D of site 1. This event set is 

composed of two turbidites named D1 and D2 that are both correlated with events found in sites 

1 and 3. Detailed mineralogy of clay has been measured by X-ray diffraction (XRD) on three 

samples  taken in and around turbidite D1 (203 cm, 205 c m and 207 cm depth; see Graphs on 

the left). X-ray radiographs and thin sections photographs are issued from the long cores. 

Figure 10: Detailed imagery of the deposits found in the event set D of sites 2 and 3. This event 

set is composed of two turbidites named D1 and D2 that are both correlated with events found 

in site 1. CT scan images were acquired on the short cores whereas X-ray radiographs and 

thin sections photographs are issued from the long cores. 
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Figure 11: Map showing the distribution of the three types of turbidites found in the three sites 

studied at Lake Hazar.  

Table 1: a. Isotope measurements made on a short core issued from site 2. b. Mineralogical 

measurements made on short cores taken from sites 1 and 2. 

Table 2: Comparison of the input materials employed in the four flume experiments used in the 

interpretation of this research. 

Table 3: Sketches, characteristics and interpretation of the three main types of turbidites found 

in the sedimentary record of Lake Hazar. 
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