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Abstract: Reliability-based maintenance policies allow qualitative and quantitative evaluation of
system downtimes via revealing main causes of breakdowns and discussing required preventive
activities against failures. Application of preventive maintenance is especially important for mining
machineries since production is highly affected from machinery breakdowns. Overburden stripping
operations are one of the integral parts in surface coal mine productions. Draglines are extensively
utilized in overburden stripping operations and they achieve earthmoving activities with bucket
capacities up to 168 m3. The massive structure and operational severity of these machines increase the
importance of performance awareness for individual working components. Research on draglines is
rarely observed in the literature and maintenance studies for these earthmovers have been generally
ignored. On this basis, this paper offered a comprehensive reliability assessment for two draglines
currently operating in the Tunçbilek coal mine and discussed preventive replacement for wear-out
components of the draglines considering cost factors.

Keywords: dragline; data trend and correlation tests; reliability analysis; maintenance policy;
preventive component replacement

1. Introduction

Mining is a machine-intensive sector where different systems with different operational tasks are
employed at production areas. Concordantly, various mining machineries are purchased annually
to be utilized in underground and surface mines and many of them are exposed to more than
expected failures during operations due to inadequate maintenance policies. Some of them are retired
earlier than their expected lifetimes since they can no longer be utilized economically. This condition
necessitates careful consideration of reliability measures for machinery components and enhancement
of preventive activities in maintenance policies. In this basis, stochastic reliability models can be
utilized to characterize system components and to decide those components that can be replaced
preventively for effective maintenance. In this way, downtime losses due to maintenance and the
resultant interruptions in mine production can be reduced, as well as sustaining the functional health
of machineries.

Overburden stripping is an integral part of surface coal mining operations. Efficiency in these
operations has a great impact on the overall operating cost and mine productivity. Draglines are
frequently-used earthmovers in stripping operations, together with shovel-truck dispatching systems.
In the United States alone, almost half of the stripping operations are achieved using draglines
with a bucket capacity of more than 40 yd3 (30 m3) [1]. These earthmovers hold massive structural
bodies over 4000 tonnes and capital investment up to $100 million [2]. They achieve overburden
stripping via dragging of their buckets suspended from a boom with a varying length between 37 and
128 m [3]. Draglines manufactured in recent decades generally hold a bucket volume up to 125 m3
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and they may remove 30–35 million m3 of overburden annually [4]. Various components with high
functional dependency league together to ensure the actions of a dragline, such as, hoisting, dragging,
swing, and walking. Any production delay due to a system breakdown induced by these components
may cause an economical loss up to $1 million per day [2]. Therefore, investigation of component
performance is critically important to evaluate dragline reliabilities and to reveal underlying reasons
for downtimes. On this basis, the reliability concept offers a probabilistic tool to characterize systems
elements together with their failure modes and to improve maintenance strategies via effectively
embedding questions of whom, how, when, and how long into maintenance policies. Reliability also
helps the development of various proactive activities, such as preventive component replacement,
capital equipment replacement, and optimization of maintenance issues such as inspection interval,
crew capacity, and spare part policy. In this sense, this study carried out a comprehensive reliability
assessment on individual components of draglines and discussed preventive component replacements
in a financial manner.

In the literature, much research has been carried out on the reliability and maintenance of
mining machineries, such as load-haul-dump [5–14], shovel [15–19], longwall shearer [20–23], drilling
equipment [24–28], and draglines [29–31]. There are limited amounts of research for dragline reliability
and maintenance. Previous studies only offered a rough assessment of dragline reliability without
component or subsystem decomposition. In addition, component failure modes appearing in dragline
operations and how/when to apply preventive maintenance for these components have been ignored
in the literature. On this basis, this paper presents an in-depth reliability analysis and preventive
replacement analysis for individual components of dragline. The methodology of the study (Figure 1)
was applied for two draglines currently operating in the Tunçbilek coal mine, Turkey, and a 13-year
maintenance record for the draglines was utilized in the analyses.
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The methodology briefly covers (i) data acquisition and data decomposition, (ii) pre-processing
of datasets to check data independency and trend, (iii) evaluation of component reliabilities, (iv)
discussing wear-out levels of components, (iv) performing an age-replacement policy for applicable
components, and (v) decision-making for optimal replacement intervals.

The paper was structured considering Figure 1 as follows: Section 2 include definitions on
datasets and failure modes, data decomposition, and data trend and correlation tests. Section 3
examines component reliability estimations and component characterization. Detection of component
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wear-out levels, assumptions on preventive replacement policy, and optimal replacement decisions are
discussed in Section 4. The main conclusions driven from the study are stated in Section 5.

2. Pre-Processing of Lifetime Datasets

Reliability basically inquires about system performances via responding to how/when/how
frequent questions in the case of system failures. Accuracy of a reliability model depends on a complete
definition of both failure modes arising in components and structural and functional dependencies
between failures. In the definition of failure modes, this research study utilized machinery catalogues,
personal interviews with maintenance experts, and maintenance records of two draglines currently
operating in the Tunçbilek Coal Mine, Turkey. The records included the chronological failure occurrence
and recovery times in a period between 1998 and 2011 and their brief explanations.

During an operation, a dragline throws its bucket away from the main frame, regarding the
operational radius of its boom. Subsequently, ground material is stripped via dragging the bucket
toward the main frame. Filled material is dumped into the spoil area following a swing action.
The dragline proceeds this cycle successively. After completion of stripping in the area, the dragline
renews its position using the walking mechanism. Regarding these operational abilities and failure
records, the system was decomposed into seven main subsystems as hoisting, rigging, bucket, dragging,
movement, machinery house, and boom. Major components inducing breakdowns were gathered
under the relevant subsystems considering their functional similarities. In the paper, the draglines
with buckets of 20 yd3 (15.3 m3) and 40 yd3 (30.6 m3) were labeled as Dragline-1 and Dragline-2,
respectively. It was detected from failure statistics that operations of Dragline-1 and Dragline-2 were
halted for 938 and 903 times due to failures, yielding total breakdown duration of 13,954 and 16,471 h,
respectively. Quantitative contribution of each subsystem to maintenance numbers and maintenance
breakdowns can be viewed in Figure 2. Pie charts in Figure 2 reveal that 56 and 47 per cent of
the breakdowns are due to failures in the machinery house components alone for Dragline-1 and
Dragline-2, respectively. The charts also show that although subsystems, such as the rigging and
bucket, cause frequent downtimes, they are observed to be repaired in shorter periods compared to
the other subsystems.

Major failure-inducing components in the individual subsystems and their common failure
modes and repair types were revealed as given in Table 1. For sensitivity of the reliability model,
different failure modes in identical components were stated separately. In these components, Mode01
refers direct replacement of components in case of failures where Mode02 indicates dislocation of
components from their mechanisms that can also be recovered without replacement. Therefore, Mode01
and Mode02 define non-repairable and repairable condition of components. This situation generally
appears in rope components of rigging, dragging, and hoisting subsystems and pulley components in
the rigging subsystem. In addition, groups of non-repairable identical components were identified
as repairable components since these groups cannot be replaced completely after failures. Chain,
ringbolts, sockets, digging teeth, and pins are the members of these groups. Additionally, some
components in Table 1 were indicated with a failure mode of general malfunction due to insufficient
explanation in the maintenance record sheets.
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Table 1. Failure modes and maintenance types of dragline components.

Unit Code Component Failure Mode Repair Type

Dragging

DR1 Chain assembly Breakage Replacing and welding of individual chain

DR2 Ringbolt Breakage Welding

DR3 Rope-Mode01 Rupture Replacement

DR4 Rope-Mode02 Dislocation from pulley Recovering the mechanism

DR5 Control General malfunction General repair

DR6 Socket Breakage Welding

Hoisting

HO1 Brake Fail to brake Mechanical repair

HO2 Rope-Mode01 Rupture Replacement

HO3 Rope-Mode02 Dislocation from pulley Recovering the mechanism

HO4 Sockets Breakage Welding

HO5 Control General malfunction General repair

Bucket

BU1 Bucket body Wear and tear Welding

BU2 Chain assembly Breakage Replacing and welding of individual chain

BU3 Digging teeth Dropping, breakage Replacing and welding of individual tooth

BU4 Pins Breakage Replacement of individual pins

BU5 Ringbolt Breakage Welding
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Table 1. Cont.

Unit Code Component Failure Mode Repair Type

Rigging

RI1 Socket Breakage Welding

RI2 Ringbolt Breakage Welding

RI3 Rope-Mode01 Rupture Replacement

RI4 Rope-Mode02 Dislocation from pulley Recovering the mechanism

RI5 Pulley-Mode01 Irrecoverable malfunction Replacement

RI6 Pulley-Mode02 Mechanical disintegration Recovering the mechanism

Machinery
House

MH1 Generators General malfunction Removal of brush dust, fixing armatures,
bearings or couplings

MH2 Motors General malfunction Removal of brush dust, fixing armatures,
bearings or couplings

MH3 Lubrication General malfunction Fixing injectors, valves, pumps, air
compressors or timing mechanism

MH4 Air conditioning General malfunction General repair

Movement

MO1 Rotation General malfunction
Fixing transmission box, bearings, felts, pinion
gears, turret traversing mechanism, rails
or flanges

MO2 Walking General malfunction
Fixing transmission box, bearings, felts,
walking axle, journal bearing, pins or steel
construction of walking feet

MO3 Warning General malfunction Fixing connection couplings or
warning brushes

Boom BO1 Boom chords Fracture Preventive welding

Following system decomposition and data assignment, lifetime (time-between-failures)
datasets of the components were tested for both independence between failure occurrences and
deterioration/growth trends of component lifetimes. In this sense, scatterplots of ith versus (i ´ 1)th
time-between-failures, TBF, values were utilized to control data independency. In these plots, data
accumulation with a specific pattern is good evidence of data correlation, which fails data independency.
Data independency was also validated using Lag-1 (ith versus (i ´ 1)th TBF) and Lag-2 (ith versus
(i ´ 2)th TBF) Pearson correlation tests [32]. A sample illustration of the tests for the Dragline-1 bucket
pin is given in Figure 3. It shows that the data is distributed independently since paired data is scattered
randomly and correlated insignificantly considering p-values of Pearson tests. Other components also
exhibit similar data behavior with statistically insignificant data correlation.
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Lifetime trend behavior was checked using a hypothesis-testing method called as Crow/AMSAA.
The test validates whether a time series follow any general ascending/descending behavior in a
specified time interval or not. Rejection of null hypothesis in the method defenses that lifetime dataset
is nonstationary with a deterioration or growth rate. In cases where the data trend is not confirmed,
lifetime behavior is assumed to be stationary. The Crow-AMSAA test accepts the trend behavior of
the dataset if 2N{β̂ ă χ2

2N,1´α{2 or 2N{β̂ ą χ2
2N,α{2 where N is the total number of failures, β̂ is the

expected shape parameter, χ2
a,b is the score of chi-square distribution, and 1´α is confidence interval.

β̂ can be estimated using Equation (1) where Ti is cumulative time-between-failures till ith failure [33]:

β̂ “
N

řN´1
i“1 ln

´

TN
Ti

¯ (1)

Sample application results for Crow-AMSAA test are shown in Table 2. The test failed to reject
the trend behavior for the Dragline-1 motor component, where other components were verified to
hold stationary lifetimes.

Table 2. Crow-AMSAA test results for motor and lubrication components of the draglines.

Test Statistics
Dragline-1 Dragline-2

Motors (MH2) Lubrication (MH3) Motors (MH2) Lubrication (MH3)

2N{β̂ 153.06 79.12 76.38 199.68
χ2

2N,1´α{2 86.79 76.16 55.19 162.78
χ2

2N,α{2 135.48 122.11 95.08 227.50
Decision Reject H0 Accept H0 Accept H0 Accept H0

The tests also showed that following components with identity code (Table 1) have a lifetime
trend: DR1, HO1, RI1, and MO1 for Dragline-1, and HO2, HO4, BU2, BU4, BU5, RI6, MH1, MH3, MO1,
and MO3 for Dragline-2. Effects of both data independency and data trend on reliability parameter
estimation will be discussed in Section 3.

3. Reliability Analysis of Dragline Components

Reliability analysis allows qualitative and quantitative evaluation of system operability and
underlying reasons for system breakdowns due to failures. In this sense, the reliability function,
also called the survival function, is utilized to find the probability of a system or component to be
operational in between prescribed time intervals. It is derived using a cumulative failure function,
F ptq, which is the integral of failure density function f ptq over a time interval (Equation (2)):

R ptq “ 1´ F ptq “ 1´
ż t

0
f ptq dt (2)

Failure density functions characterize component lifetimes and serve to find out failure
probabilities, mean lifetimes, and failure rates of components in a time slot. The estimation of function
parameters is affected from data independency and the trend of time-between-failure (TBF) data.
In case of an absence of data independency, a branching Poisson process can be utilized [34]. If data
independency is not a problem, as in this study, then data trends should be considered in parameter
estimation. If successive TBF data does not hold any increasing or decreasing trend, the failure density
function parameters can be estimated via a best-fit distribution of TBF values [34]. These components
with stationary datasets are assumed to be maintained to as good as new condition. On the other
hand, lifetime characterization of other components can be carried out using stochastic models with
the ability of measuring data nonstationary. In this sense, the general renewal process (GRP) offers
a flexible modelling for nonstationary datasets since the process allows estimation of renewal rates
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between as good as new and as bad as old via assigning a restoration factor (RF) between 1 and 0,
respectively [35]. GRP can be modelled regarding one of the two separate assumptions on restoration
factors: (i) maintenance can recover defects only between two successive failure points. This is called
the Kijima-I model; or (ii) maintenance can recover accumulated defects from the beginning of the
lifetime. This is called the Kijima-II model [35]. This study considers the Kijima-II model in estimation
of GRP parameters since maintenance provides a general recovery on dragline components, more or
less. Virtual age assumption for the Kijima-II model and related probability density function with
power law process (λβtβ´1q can be viewed in Equations (3) and (4), respectively. Here, q is the degree
of repair, where RF “ 1´ q, υi is the virtual age of the component, xi is the time-between-failures, λ is
the failure rate, and β is the shape parameter. Likelihood estimations of the model parameters can be
examined in [35]:

υi “ q pυi´1 ` xiq (3)

f
`

ti|ti´1, ti, . . . , t1
˘

“ f
`

ti|ti´1
˘

“ λβ pxi ` υi´1q
β´1 e´λrpxi`υi´1q

β
´υi´1

β
(4)

Lifetime parameters of dragline components were estimated using Weibull++7 (Reliasoft, Tucson,
AZ, USA). The parametric values can be examined in Tables 3 and 4 for Dragline-1 and Dragline-2,
respectively. In Tables 3 and 4, p-values of the Anderson-Darling test are also illustrated to show
goodness of fit for best-fit distributions. The null hypothesis in the test defends that data follows a
specified distribution. Large p-values (>0.05) accept the null hypothesis in a 95% confidence interval.
This condition is satisfied for all best-fit distributions of the dragline components with identically and
independently distributed (iid) datasets.

Table 3. Lifetime parameters of Dragline-1 components.

Code Model Parameter p-value Code Model Parameter p-value

Dragging Unit Hoisting Unit

DR1 Weibull-3P β “ 0.9;η “ 812.3;γ “ 15.8 0.258 HO1 Lognormal-2P µ1 “ 6.8; σ1 “ 2.0 0.284
DR2 Weibull-2P β “ 1.3;η “ 1085.0 >0.250 HO2 Log-logistic-2P µ1 “ 7.4; σ1 “ 0.2 0.205
DR3 Log-logistic-2P µ1 “ 6.7;σ1 “ 0.5 0.168 HO3 GRP β “ 1.5;η “ 7361.1; RF “ 0% Not idd
DR4 Weibull-3P β “ 0.8;η “ 732.2;γ “ 9.8 0.233 HO4 Weibull-2P β “ 0.9;η “ 10, 402.7 >0.250
DR5 Weibull-2P β “ 0.9;η “ 1820.2 >0.250 HO5 GRP β “ 1.7;η “ 10, 566.2; RF “ 80% Not idd
DR6 Weibull-2P β “ 1.0;η “ 5509.9 >0.250

Bucket Unit Rigging Unit

BU1 GRP β “ 0.7;η “ 788.9; RF “ 0% Not
idd RI1 Weibull-2P β “ 1.1;η “ 2420.1 >0.250

BU2 Weibull-2P β “ 0.6;η “ 11, 528.2 >0.250 RI2 Weibull-2P β “ 0.8;η “ 3438.4 0.224

BU3 GRP β “ 0.8;η “ 942.8; RF “ 92% Not
idd RI3 Weibull-3P β “ 1.5;η “ 595.2;γ “ 51.9 >0.500

BU4 Weibull-3P β “ 0.9;η “ 873.4;γ “ 31.3 >0.500 RI4 No Failure Data - -

BU5 GRP β “ 0.9;η “ 988.8; RF “ 85% Not
idd RI5 Lognormal-2P µ1 “ 9.5; σ1 “ 0.4 0.836

RI6 GRP β “ 0.7;η “ 1176.4; RF “ 0.72 Not idd

Machinery House Unit Movement Unit

MH1 GRP β “ 0.8;η “ 1472.2; RF “ 0% Not
idd MO1 GRP β “ 0.5;η “ 490.7; RF “ 78% Not idd

MH2 GRP β “ 0.7;η “ 758.4; RF “ 90% Not
idd MO2 Weibull-2P β “ 1.1;η “ 1635.7 0.156

MH3 Exponential-2P λ “ 0.1ˆ 10´2;γ “ 13.0 >0.250 MO3 GRP β “ 1.4;η “ 3322.3; RF “ 0% Not idd
MH4 No Failure Data - -

Boom Unit

BO1 Weibull-3P β “ 0.4; η “ 2675.6; γ “ 16.2 >0.250
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Table 4. Lifetime parameters of Dragline-2 components.

Code Model Parameter p-value Code Model Parameter p-value

Dragging Unit Hoisting Unit

DR1 GRP β “ 0.9;η “ 626.7; RF “ 0% Not idd HO1 GRP β “ 0.7;η “ 1443.7; RF “ 90% Not idd
DR2 Weibull-3P β “ 1.0;η “ 820.8;γ “ 52.0 0.354 HO2 Normal-2P µ “ 2, 851.6;σ “ 1640.6 0.93
DR3 Weibull-3P β “ 2.2;η “ 1848.3;γ “ ´389.0 >0.500 HO3 Lognormal-2P µ1 “ 8.2;σ1 “ 1.3 0.519
DR4 Weibull-3P β “ 1.0;η “ 2451.8;γ “ 14.0 >0.500 HO4 No Failure Data - -
DR5 Weibull-3P β “ 0.9;η “ 485.7;γ “ 11.5 >0.500 HO5 Weibull-2P β “ 0.7;η “ 1042.1 0.16
DR6 Lognormal-2P µ1 “ 8.4; σ1 “ 1.5 0.364

Bucket Unit Rigging Unit

BU1 Weibull-3P β “ 0.9;η “ 959.1;γ “ 20.8 0.492 RI1 GRP β “ 0.8;η “ 6790.1; RF “ 0% Not idd
BU2 Exponential-2P λ “ 0.2ˆ 10´3;γ “ 4528.1 >0.250 RI2 Weibull-2P β “ 0.9;η “ 3608.0 >0.250
BU3 Weibull-2P β “ 0.9;η “ 740.8 0.191 RI3 Log-logistic-2P µ1 “ 5.8;σ1 “ 0.5 0.178
BU4 Weibull-3P β “ 0.9;η “ 640.4;γ “ 12.7 >0.500 RI4 Weibull-2P β “ 0.8;η “ 2494.6 >0.250
BU5 Weibull-3P β “ 1.0;η “ 1114.9;γ “ 28.5 >0.500 RI5 Normal-2P µ “ 3765.2;σ “ 2954.0 0.882

RI6 Weibull-3P β “ 1.3;η “ 1935.4;γ “ 28.8 >0.500

Machinery House Unit Movement Unit

MH1 Weibull-3P β “ 0.8;η “ 829.2;γ “ 12.3 0.475 MO1 GRP β “ 0.8;η “ 782.4; RF “ 0% Not idd
MH2 Exponential-2P λ “ 0.8ˆ 10´3;γ “ 20.4 >0.250 MO2 Weibull-3P β “ 0.7;η “ 647.5;γ “ 14.4 >0.500
MH3 Lognormal-2P µ1 “ 5.8;σ1 “ 1.3 0.339 MO3 Exponential-2P λ “ 0.3ˆ 10´3;γ “ 332.5 >0.250
MH4 Lognormal-2P µ1 “ 7.9;σ1 “ 1.0 0.212

Boom Unit

BO1 Exponential-1P λ “ 1.09ˆ 10´4 0.348

Tables 3 and 4 indicated that the Weibull distribution and GRP were utilized to define the majority
of the component lifetimes. GRP and Weibull distribution hold common descriptive parameters [34].
The shape parameter, β, in the expressions identifies the slope of the lifetime curve and shapes the
curve between quasi-exponential and bell-shaped behavior. Lifetime curves with shape parameters of
1 and 3.5 exhibit exact behavior of exponential and normal distributions, respectively. Parameter η is
the scale parameter, indicating the exact time point where failure probability of the relevant component
is fairly equal to 63.2%. The last parameter, γ, identifies the start point of the plot and moves the
curve away from the origin. Positive γ is also referred as failure-free time where the probability of
component failure is zero. Exponential, normal, lognormal, and log-logistic distributions are the other
distributions fitted to the lifetime datasets. In the exponential distribution, failure rate pλq is the only
descriptive parameter and remains constant in time. A second parameter, γ, can be also used in the
exponential distribution to state a failure-free time. Additionally, normal distribution is a symmetrical
bell-shape distribution explained using mean (µ) and standard deviation (σ). In addition, logarithmic
and log-logistic distributions use the logarithmic state of mean and standard deviation in expressions
via substituting TBF values with ln (TBF).

Using parametric values in Tables 3 and 4, surviving/failing probabilities of the components can
be calculated for different time points. These lifetime parameters also give opportunity to understand
whether the components are in a wear-out period or not. The components with increasing failure
rates due to deterioration in wear-out periods may need to be replaced preventatively, since corrective
replacement after failure can cause higher economic consequences. On this basis, Section 4 will discuss
the decision criterions for preventive replacement of the dragline components and evaluate optimal
replacement intervals considering cost factors.

4. Preventive Replacement Decisions for the Dragline Components

A preventive replacement policy provides longevity and sustainability of system operations via
maintaining active system components preventively prior to failures. However, policy application
should be validated economically since redundant and inconvenient replacements may cause higher
production losses. Therefore, the following conditions should be regarded in the decision process:

1. Preventive age-replacement decisions can be applicable for the components in a wear-out period.
Generally, a component exhibits three types of failure rate characteristics during its lifetime
as infant mortality, useful life, and wear-out [36]. During these periods, the component holds
decreasing, nearly-constant, and increasing failure rates, respectively. In the study, lifetime
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parameters in Tables 3 and 4 were utilized to detect dragline components in the wear-out period.
For the components fitted in the Weibull distribution, shape parameter (β) is a good indicator of
determining whether the component is in the early stages of its lifetime, in its useful lifetime with
random failure patterns, or in the deterioration period with wear-out problems. For the lifetime
with β > 1, the components are in their wear-out periods since they have increasing failure
rates. For other distributions, component failure rates should be analyzed to check whether
they follow an increasing failure rate or not. It should be noticed that Weibull distribution with
a shape parameter of 3.5 exhibits exact normal distribution. Therefore, components holding
normally-distributed lifetime parameters are candidate components in the wear-out period,
inherently. This condition is also valid for other quasi-normal distributions, such as, lognormal,
logistic, and log-logistic.

2. Total financial consequence of preventive replacement for a component should be less than the
one with corrective replacement. Although replacements turn components into as good as new
condition and increase system durability, financial benefits of preventive activities should be
validated, comparing with corrective activities. It is substantial that all direct and indirect costs
of preventive and corrective replacements should be included in the cost estimations.

In addition to these decision assumptions, the structural and functional convenience of preventive
maintenance should also be considered. Due to a lack of sufficient explanations in maintenance record
sheets, components of the machinery house and movement units, such as motors, generators, walking,
rotation, and warning could not be decomposed into bottom elements. Complete replacements
of these components are practically impossible. Therefore, DR2, DR3, HO1, HO2, RI1, RI3, and
RI5 for Dragline-1, and DR2, DR3, DR6, HO2, RI3, and RI5 for Dragline-2, were only selected
as candidate components for preventive replacement. They are in the wear-out period and also
structurally convenient for such a maintenance activity. An age-replacement model was utilized to
find the optimal preventive replacement interval via minimizing expected unit cost which covers both
corrective and preventive replacement costs probabilistically. A unit cost function of the model can
be examined in Equation (5) [37]. In the equation, cc is the total cost of unit corrective replacement,
cp is the total cost of unit preventive replacement, F pt0q is the failure probability of component at
time t0, and R pt0q is the surviving probability, i.e., reliability, of the component at time t0. Therefore,
Equation (5) estimates unit replacement cost at any time t0:

Ac pt0q “
ccF pt0q ` cpR pt0q

şt0
0 R ptq

(5)

The optimal interval for preventive replacement can be calculated via equalizing the numerator
of the derivative of Equation (5) to zero as shown in Equations (6) and (7) [37]. In the equations, r ptq is
the failure rate and t˚0 is the optimal age-replacement interval:

hc pt0q “ r pt0q

ż t0

0
R ptq dt´ R pt0q ´

cp

cc ´ cp
(6)

hc pt˚0 q “ 0 (7)

As shown in the model, the optimal replacement interval is excessively affected from the failure
rate and ratio between corrective and preventive replacement costs. The failure rate of wear-out
components for any time t0 can be estimated using parameters in Tables 3 and 4 with a ratio of
f ptq {R ptq. On the other hand, financial worth of a replacement activity can change depending
on both the supply cost of a component and production loss due to system downtime during
maintenance. In mining operations, indirect costs due to production loss generally overtake direct
costs of components since the time value of mining production is comparatively higher. This condition
becomes crucial, especially for draglines, since mine production is directly affected by dragline
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breakdowns. Preventive replacement activities are expected to be completed in shorter time periods
compared to corrective ones since preventive maintenance are more organized and pre-planned
activities. On the other hand, corrective replacements are performed after failures and time losses
can increase due to extended preparation periods for maintenance. Therefore, production loss in
preventive replacement is expected to be lower than corrective replacement. In this sense, if unit time
value of production loss increases, the ratio between corrective and preventive replacement costs also
increases. This condition enables the application of preventive replacements in shorter intervals. On
the other hand, if the ratio is relatively small, replacement intervals extend and overtake mean lifetimes
of components. In these cases, application of preventive replacement fails since it becomes meaningless
to perform the replacements with an interval higher than the expected component lifetime. Therefore,
it is obvious that the minimum cost ratio for applicability of replacement should satisfy the condition
t˚0 “ mean li f etime for the components.

A numerical example was carried out for the DR2 component of Dragline-1 to find out the
minimum required

`

cc{cp
˘

for the application of preventive replacement. The lifetime of this
component is fitted in a two-parameter Weibull distribution with parameters of β “ 1.3;η “ 1085.0
(Table 3). The probability density function, f ptq, of a two-parameter Weibull distribution can be
examined in Equation (8) [38]:

f ptq “
β

η
p

t
η
q
β´1

e´p
t
η q

β

(8)

The mean lifetime (mean time-between-failures, MTBF) of this component can be found using
Equation (9) [38]. It gives the expected operating time of the component without failure:

MTBF “
ż 8

0
t f ptq dt “

ż 8

0
t

1.3
1085

p
t

1085
q

0.3
e´p

t
1085 q

1.3
dt “ 1011 h (9)

The minimum cost ratio for this component can be estimated via substituting the optimal
replacement interval, t˚0 , with MTBF in Equation (6) as follows:

r p1011 q
ż 1011

0
R ptq dt´ R p1011 q ´

cp

cc ´ cp
“ 0 ñ

`

cc{cp
˘

“ 6.3

These calculations were also performed for the other wear-out components via changing relevant
probability density functions and lifetime parameters. Since replacement events for the target
components in the study are independent to each other the analysis considers that replacements
take place individually without affecting other replacement decisions. The results can be investigated
in Table 5. Since there is not any specific minimization point for the cost functions of DR3, HO1, and
HO2 in Dragline-1, and DR6 and RI3 in Dragline-2, applicable cost ratios for these components could
not be calculated.

Table 5. Minimum required cost ratios for preventive replacement intervals.

Dragline-1 Dragline-2

Component Interval (h) Min
`

cc{cp
˘

Component Interval (h) Min
`

cc{cp
˘

DR2 1011 6.3 DR2 859 10.9
DR3 2521 No applicable ratio DR3 1248 3.4
HO1 6642 No applicable ratio DR6 12,686 No applicable ratio
HO2 1848 No applicable ratio HO2 2852 2.7
RI1 2363 21.6 RI3 489 No applicable ratio
RI3 588 3.0 RI5 3765 5.2
RI5 14,902 1.9
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As stated, a rise of cost ratios reduces replacement intervals and enables the application of
preventive replacements with increasing frequency. Therefore, required cost ratios for changing
preventive replacement intervals were also plotted in Figures A1 and A2 in Appendix A. These plots lie
between minimum points calculated in Table 5 and a cost ratio of 40. Decision-makers in maintenance
policies can utilize these kinds of graphs in changing financial conditions. For instance, if the ratio
between economic consequences of corrective and preventive replacement rises from 1.9 (Table 5)
to 4.0, then the replacement interval drops from 14,902 operating hours (Table 5) to 7835 h for the
Dragline-1 RI5 component as given in Figure A1. For sustainable utilization of these decision graphs,
the methodology in Figure 4 can be utilized.
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In the progress of time, machinery components can exhibit variations in their lifetime
characteristics and this situation can invalidate previous decisions for preventive replacements.
Therefore, the replacement policy discussed in this study should be re-evaluated periodically using
up-to-date reliability analysis as illustrated in Figure 4.

5. Conclusions

This study extensively used reliability assessment and age-replacement methods to investigate
the optimality of preventive component replacements for two draglines currently operating in the
Tunçbilek coal mine. In this sense, individual failure modes in the dragline mechanism were detected
and characterized using reliability evaluation methods. Resultant lifetime parameters were utilized
to identify wear-out components in the dragline. Applicability of preventive replacements for
these components were examined using an age-replacement model. The analysis results reveal
that preventive replacement can be optimal only if the cost ratio between preventive and corrective
replacement comes to a threshold level. It was also observed that an increase in both wear-out level
and cost ratio decrease preventive replacement intervals and necessitates application of replacements
with high frequency. In the study, an age-replacement policy was detected to be applicable only for
some components of dragging, hoisting, and rigging subsystems. More detailed maintenance records
can help to thoroughly decompose other critical components, such as motors, generators, rotation, and
walking. However, due to lack of clear maintenance data on these components, they were included
in the analysis holistically and this condition prevented application of an age-replacement policy for
these components in a practical manner.
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36. Gölbaşı, O.; Demirel, N. Review of Trend Tests for Detection of Wear-Out Period for Mining
Machineries. In Proceedings of the International Mining Congress and Exhibition of Turkey, Antalya,
Turkey, 14–17 April 2015.

37. Barlow, R.E.; Proschan, F. Mathematical Theory of Reliability; John Wiley and Sons Ltd: New York, NY,
USA, 1965.

38. Kumar, U.D.; Crocker, J.; Chitra, T.; Saranga, H. Reliability and Six Sigma; Springer Science + Business Media
Inc.: New York, NY, USA, 2006.

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Pre-Processing of Lifetime Datasets
	Reliability Analysis of Dragline Components
	Preventive Replacement Decisions for the Dragline Components
	Conclusions

