
Thank you for downloading this document from the RMIT
Research Repository.

The RMIT Research Repository is an open access database showcasing
the research outputs of RMIT University researchers.

RMIT Research Repository: http://researchbank.rmit.edu.au/

PLEASE DO NOT REMOVE THIS PAGE

Citation:

https://researchbank.rmit.edu.au/view/rmit:7801

Accepted Manuscript

2009 Taylor & Francis

http://dx.doi.org/10.1080/00207540802043998

Ozlen, M and Azizoglu, M 2009, 'Generating all efficient solutions of a rescheduling problem on
unrelated parallel machines', International Journal of Production Research, vol. 47, no. 19, pp.
5245-5270.

 1

GENERATING ALL EFFICIENT SOLUTIONS OF A RESCHEDULING PROBLEM

ON UNRELATED PARALLEL MACHINES

Melih Özlen

Department of Industrial Engineering,

Hacettepe University, Ankara 06800, Turkey

Phone: +90 312 297 6885

Fax: +90 312 297 2078

E-Mail: mozlen@hacettepe.edu.tr

Meral Azizoğlu1

Department of Industrial Engineering,

Middle East Technical University, Ankara 06531, Turkey

Phone: +90 312 210 22 81

Fax: +90 312 210 47 86

E-Mail: meral@ie.metu.edu.tr

Abstract: In this paper, we consider a rescheduling problem where a set of jobs has already

been assigned to unrelated parallel machines. When a disruption occurs on one of the

machines, the affected jobs are rescheduled, considering the efficiency and stability measures.

Our efficiency measure is the total flow time and stability measure is the total reassignment

cost caused by the differences in the machine allocations in the initial and new schedules. We

propose a branch and bound algorithm to generate all efficient solutions with respect to our

efficiency and stability measures. We improve the efficiency of the algorithm by

incorporating powerful reduction and bounding mechanisms. Our computational tests on

large sized problem instances have revealed the satisfactory behavior of our algorithm.

Keywords: Rescheduling; Efficient Solutions; Branch and Bound Algorithm

1 Corresponding Author

mailto:mozlen@hacettepe.edu.tr
mailto:mozlen@hacettepe.edu.tr
mailto:meral@ie.metu.edu.tr
mailto:meral@ie.metu.edu.tr

 2

1. Introduction

Majority of the scheduling literature assumes an environment that works smoothly

without any disruption. However, in practice the manufacturing environments are often prone

to disruptions like machine breakdowns, new order arrivals, order cancellations, changes in

order specifications, and material shortages. Such disruptions may make the initial

scheduling plan hard to implement and may arise a need for rescheduling.

 We consider a rescheduling problem where a number of parallel machines are

disrupted, hence blocked, for a specified time period. We study the most general parallel

machine environment, i.e., unrelated parallel machines, where the processing time of a job is

dependent on the machine it is assigned. We assume that the customer promises are given

and machine allocations are made according to the initial schedule plan. After the disruption,

we aim to minimize the total flow time of the jobs that have not started yet. However, the

new minimum total flow time schedule may deviate from the initial schedule, in terms of the

machine allocations. The deviations due to the machine allocations should be minimized, in

particular when initial preparations like machine setups, tool loadings, labor assignments, are

made according to the initial plan. Such rescheduling problems fall within the scope of the

disruption management area (Clausen, 2001).

Despite its practical importance, the literature on the rescheduling problems is

relatively scarce. We refer the reader to Aytug et al. (2005) and Vieira, Herrmann, and

Edward (2003) for the extensive review of the literature. Aktürk and Görgülü (1999) and Li

and Shaw (1996), Raheja and Subramaniam (2002), Mason, Jin and Wessels (2004) and

Abumaizar and Svetska (1997) consider multi-stage environments. Wu, Storer and Chang

(1993), Daniels and Kouvelis (1995), Ünal, Uzsoy and Kıran (1997), O’Donovan, Uzsoy and

McKay (1999), Hall and Potts (2004) and Qi, Bard and Yu (2006) study rescheduling

problems on a single machine. The most note-worthy rescheduling studies in parallel

machine environments are due to Church and Uzsoy (1992), Bean et al. (1991), Leung and

Pinedo (2004), Alagöz and Azizoğlu (2003), Azizoğlu and Alagöz (2005), Curry and Peters

(2005) and Özlen and Azizoğlu (2007). Church and Uzsoy (1992) consider single and

parallel machines to minimize the maximum lateness and the number of times rescheduling is

done. They provide a simulation study to test the efficiencies of some rescheduling

methodologies like periodic, event-driven and continuous rescheduling. Bean et al. (1991)

consider a rescheduling problem with release dates and parallel machines. Their approach

reconstructs the part of the schedule after the disruption so as to match the initial schedule at

 3

some future time. Leung and Pinedo (2004) consider parallel machines with deadlines and

precedence relations and with three objectives: total completion time, makespan and

maximum lateness. Alagöz and Azizoğlu (2003) and Azizoğlu and Alagöz (2005) consider

the trade-off between the total flow time and number of reassigned jobs criteria in identical

parallel machine environments. Özlen and Azizoğlu (2007) consider the total flow time and

total reassignment cost in unrelated parallel machine environments. They provide

polynomial-time solution methods to the hierarchical optimization problems of the two

measures and propose non-polynomial exact algorithms to generate all efficient solutions and

to minimize a specified function of the measures. Curry and Peters (2005) consider the total

disruption cost as a stability measure and total tardiness as an efficiency measure. They

propose a simulation study to test the performances of some heuristic procedures and

rescheduling strategies.

We consider the trade-off between the efficiency of the new schedule, measured by its

total flow time and the stability measured by the total reassignment cost caused by the

differences between the initial and new machine allocations. Our efficiency measure, total

flow time, is the total time that the jobs spent in the shop floor, hence it is a direct indication

of the work-in-process inventory levels which is an important concern of many

manufacturers.

Our stability measure, total reassignment cost, is an important concern particularly in

Flexible Manufacturing Systems and Supply Chains. In Flexible Manufacturing Systems, the

setup costs are incurred when the tools are allocated in advance according to the initial job

assignments (see Olumolade and Norrie, 1996). Hence retooling of the machines due to the

changes in their job assignments may require additional time and cost. We assume the

reassignment costs are dependent on the machines that the jobs are assigned in the new

schedule. The locations of the initial and new machines may be important in defining

machine dependent reassignment costs, in particular when the tools/equipments required by

the reassigned jobs should be transported between initial and new machines. Moreover, the

jobs may have different setup requirements on different machines, due to the different tools

that are initially loaded on their tool magazines. Another practical situation where the

reassignment costs may find its application is the supply chains where the jobs are assigned to

the facilities at different locations. The reassignment costs may well represent the cost of

transporting the job from one location to another.

We generate all non-dominated, i.e., efficient, solutions with respect to the total flow

time and total reassignment cost criteria in unrelated parallel machine environments. The

 4

generation of all efficient solutions is an important concern for a decision maker who is

interested in screening all non-dominated solutions and selecting his/her optimal solutions by

considering the trade-offs between the two objectives. For example the decision maker may

want to know the amount he/she has to sacrifice from the total flow time value for a certain

amount of reduction in the total reassignment cost. To generate the efficient set, we develop a

branch and bound algorithm and improve the efficiency of the algorithm by incorporating

powerful reduction and bounding mechanisms.

The most closely related study to ours is Özlen and Azizoğlu (2007). Özlen and

Azizoğlu (2007) present an algorithm to minimize a general nondecreasing function of the

total flow time and total reassignment cost criteria. They compare their algorithm with a

classical approach of generating all efficient schedules by evaluating each efficient schedule

and selecting the one with minimum objective function value. The classical approach

generates each efficient solution by solving an NP-hard singly constrained assignment

problem.

Our main contribution is the branch and bound algorithm to generate the efficient set

for the total flow time and total reassignment cost criteria. Our algorithm generates all

efficient solutions simultaneously, unlike the classical approach used in Özlen and Azizoğlu

(2007) that generates the set sequentially. We solve a single problem whereas the classical

approach solves r singly constrained assignment problems if there are r efficient solutions.

The computational results have also verified the superiority of our algorithm over the

classical approach. Hence our algorithm is the best performing algorithm in the literature.

The problem we study is shown to be NP-hard which suggests that any optimization

procedure will run into computational difficulties as the problem size increases. There is,

however, the practical question concerning the problem sizes that are solvable in reasonable

time. Our computational results suggest that the answer to this question for our branch and

bound algorithm is 100 jobs and 12 machines. Hence our branch and bound algorithm is the

unique reported approach that can be used to solve such large sized problem instances.

The rest of the paper is organized as follows. In Section 2, we give the basic

definitions, introduce our notation and define the problem. We also state previous results that

are pertinent to our problem. Section 3 presents our procedure to find the extreme supported

efficient solutions. In Section 4, we present our branch and bound algorithm designed for

generating all efficient solutions. We present the results of our experiments in Section 5 and

conclude in Section 6.

 5

2. Problem Definition

We consider an unrelated parallel machine environment and assume that the initial

schedule is known. There is a disruption of D time units on one of the machines, say machine

DM, after executing the initial schedule for DT time units. The job that is being processed on

DM, and the jobs that start on or after DT on other machines are to be rescheduled at time DT.

We assume that there are n such jobs. Once we take the reference starting point from time

zero to DT, our rescheduling problem reduces to scheduling n jobs, available at time zero, on

m unrelated parallel machines where machine j becomes available at time aj. Accordingly,

aDM = D and aj is the completion time of the job processed at time DT on non-disrupted

machine j. Note that, multiple simultaneous disruptions can also be handled by letting aj = Dj

where Dj is the time at which the disruption on machine j, is recovered. Each job should be

assigned to one of the machines. Job i should be processed by pij time units without

interruption if assigned to machine j.

The scheduling cost, that defines our efficiency measure, is the total flow time, F. The

flow time of a job is the time it spends in the system and total flow time is the total time spent

by all jobs. As we assume all zero ready times, the total flow time and total completion time

are equivalent measures. If we let Ci denote the completion time of job i in the new schedule,

then the total flow time, F , is
1

n

i

i

C
=

 .

The schedule deviation cost that defines our stability measure is the total reassignment

cost. The reassignment cost for job i on machine j is rcij. We can interpret rcij as the

additional cost incurred due to the reassignment of job i to machine j. We set rcij to 0 if job i

is assigned to machine j in the initial schedule.

We assume D, DT, pij, aj and rcij are all integers.

The total reassignment cost, RC, is
ij iji j

rc x where ijx is a binary variable that

takes on value 1 if job i is assigned to machine j in the new schedule and 0 otherwise.

A schedule S is said to be efficient with respect to F and RC, if there exists no

schedule S′ with F(S′) ≤ F(S) and RC(S′) ≤ RC(S) with at least one strict inequality.

An efficient solution sS is supported if it optimizes any weighted sum of F and RC.

In other words, sS is a supported efficient solution, if it is one of the optimal solutions to the

rescheduling problem with the objective function w1 RC + w2 F for any non-negative weights

w1, w2.

A supported efficient solution sS is extreme supported efficient if it can be found by

varying the values of w1 and w2 . A supported efficient solution sS is nonextreme supported

 6

efficient if it lies on the convex combination of two adjacent extreme supported efficient

solutions. An efficient solution sS is unsupported if it is not optimal for any weighted sum

of F and RC objectives.

The standard classification scheme for scheduling problems uses three-field

representation | |   where α is the machine environment, β specifies the constraints or

special characteristics of the problem and γ is the objective function (see Lawler et al., 1989).

We consider unrelated parallel machines, hence set α = R. When the parallel machines are

identical, i.e., pij= pi for all i and j, we set α = P. We use the following constraints in β field:

β : aj: initial machine available times

β : RC ≤ k : total reassignment cost is at most k

We consider F and RC as efficiency and stability measures, hence we have,

γ : F : minimizing the total flow time

γ : RC : minimizing the total reassignment cost

γ : F, RC : generating all efficient solutions with respect to F and RC

Özlen and Azizoğlu (2007) formulate the | |jR a F problem, as an assignment model

with the following decision variable:

1 if job is scheduled position from last on machine

0 otherwise

th

ikj

i k j
X


= 


The objective function, F, is expressed as:

1 1 1

()
n n m

ij j ikj

i k j

kp a X
= = =

+ (1)

kpij is the contribution of the processing time of job i to the total flow time if sequenced at kth

position from last on machine j and aj is the start time of the first job on machine j.

The constraint sets are explained below.

Constraint set (2) states that each job is assigned exactly once.

1 1

1
n m

ikj

k j

X
= =

=  i (2)

Constraint set (3) ensures that at most one job is assigned to each position of each machine.

1

1
n

ikj

i

X
=

  j, k (3)

Constraint set (4) requires that the jobs cannot be preempted or split.

  0,1ikjX   i, j, k (4)

 7

The total reassignment cost, RC, is expressed as
, ,

ij ikj

i j k

rc X . When the constraint RC ≤ k ,

i.e.,
, ,

ij ikj

i j k

rc X ≤ k, is added to the above model, it becomes a singly-constrained assignment

problem and is represented by | , |jR a RC k F .

 The singly-constrained assignment problem is NP-Hard (see Aggarwal, 1985), so is

the | , |jR a RC k F problem. The optimal solution to the | , |jR a RC k F problem is

efficient provided that the ties are broken in favor of RC, i.e., the | , |j RCR a RC k F RC +

problem is solved for a sufficiently small value of  RC. Özlen and Azizoğlu (2007) show

that when

1

1

{ }
RC n

j ij

i

Max rc



=




, the resulting solution is efficient. This follows the schedule

that solves the

1

1
| , |

{ } 1
j n

j ij

i

R a RC k F RC

Max rc
=

 +

+
 problem is efficient. In this study we

use

1

1

{ } 1
n

j ij

i

Max rc
=

+
 for RC.

The generation of all efficient solutions of a bicriteria assignment problem is NP-hard

(see Pryzbylski, Gandibleuz and Ehrgott, 2008), so is the generation of all efficient solutions

to our rescheduling problem with total flow time and total reassignment cost criteria, i.e., the

| |jR a F ,RC problem. Özlen and Azizoğlu (2007) propose a classical approach to solve the

| |jR a F ,RC problem. They vary k between a lower bound on the total reassignment cost,

RCLB and an upper bound on the total reassignment cost, RCUB. RCLB is found by applying

the right-shift strategy to the initial schedule. The right-shift strategy shifts all jobs on DM, D

time units to the right in time horizon, while preserving the other job assignments. Note that

RCLB is zero as the reassignment cost for a job is zero if it is assigned to the same machine in

the initial and new schedules. RCUB is the RC value that solves the | |j RCR a F RC+

problem.

The RCLB and RCUB schedules define the boundary solutions of the efficient set.

Procedure 1 below is the stepwise description of the classical algorithm proposed in Özlen

and Azizoğlu (2007).

 8

Procedure 1. Generating All Efficient Solutions

Step 0. Find RCLB and RCUB

RCLB = RC value of the right-shift schedule = 0

RCUB = RC value that solves the | |j RCR a F RC+ problem

Let k = RCUB – 1

Step 1. Solve the | , |j RCR a RC k F RC + problem.

 Let (F*, RC*) be the solution.

Step 2. If RC* = RCLB = 0 then STOP.

 k = RC* - 1

 Go to Step 1

Note that, each iteration of Procedure 1 generates an efficient solution by solving a

singly-constrained assignment problem for which any polynomial algorithm cannot exist.

Hence an efficient solution is generated in exponential time and there can be at most RCUB –

RCLB efficient solutions. We hereafter refer to Procedure 1 as Classical Approach (CA).

3. A Procedure to Generate All Extreme Supported Efficient Solutions

We generate the extreme supported efficient set through the successive solutions of a

linear assignment problem. We start with two boundary schedules, S1 and S2, identify ranges

for the w values of the weighted objective function over which each boundary schedule is

better. In doing so, we solve the following equality:

 wF1 + (1-w) RC1=wF2 + (1-w) RC 2 (5)

where (Fi, RC i) is the (F, RC) values of Si and Si s are ordered , Fi<Fi+1, RC i>RCi+1.

Note that 2 1

1 2 2 1

RC RC
w

F F RC RC

−
=

− + −
 solves (5).

At w, S1 and S2 have the same objective function values. In ranges [w, 1] and [0, w], S1

and S2 are favored respectively. When a new extreme supported efficient solution is added,

we reorder the solutions such that F1 < F2 < F3 and RC1 > RC2 > RC3 and solve the following

two equations simultaneously.

w1F1 + (1-w1) RC1=w1F2 + (1-w1) RC2

 w2F2 + (1-w2) RC2=w2F3 + (1-w2) RC3.

In ranges [w1,1], [w2, w1] and [0, w2], S1, S2 and S3 are the best schedules respectively.

Note that the ranges change once a new efficient schedule is identified.

 9

In general, once we have k efficient solutions, we solve k-1 equations: one for each

adjacent pair and find k ranges. The exact ranges are identified when all extreme supported

solutions are found.

Each iteration of our procedure either finds a new extreme supported efficient

solution, or returns a known extreme supported efficient solution, by solving a linear

assignment problem with weight wa. If the former case occurs then there exists an efficient

solution between Sa and Sa+1 and the weights are updated once a new schedule is added. If

the latter case occurs then there is no supported efficient solution between Sa and Sa+1. We

then fix wa and proceed with wa+1 with the hope of generating a new extreme supported

schedule. The algorithm terminates whenever all weights are fixed. Below is the stepwise

description of the extreme supported efficient set generation algorithm.

Procedure 2 Generating All Extreme Supported Efficient Solutions

Step 0. Form the right shift schedule to find S1.

Solve the | |j RCR a F RC+ problem to find S2.

k = # of extreme supported efficient solutions with fixed ranges

 k = 1

 2 1
1

1 2 2 1

RC RC
w

F F RC RC

−
=

− + −

 SL = S2

Step 1. Solve the assignment problem with the following objective

Min (1)k kw F w RC+ −

Let SL be the solution

 If SL is one of the extreme solutions, S1 or S2 then go to Step 3.

Step 2. If SL is either Sk or Sk+1 then fix wk let k=k+1, go to Step 1

 If SL is a new schedule then reorder the schedules, update wk and wk+1 as follows

 1

1 1

k k
k

k k k k

RC RC
w

F F RC RC

+

+ +

−
=

− + −

 2 1
1

1 2 2 1

k k
k

k k k k

RC RC
w

F F RC RC

+ +
+

+ + + +

−
=

− + −

 If all wk values are fixed then go to Step 3 else go to Step 1

Step 3. Stop, all extreme supported efficient solutions are generated.

 10

 Procedure 2 is similar to the methods by Aneja and Nair (1979) and Visee et al.

(1998) proposed for the bicriteria transportation and knapsack problems respectively.

Note that we have n by n*m rectangular assignment problems as there are n jobs and

n*m positions. In solving the assignment problems of Step 0 and Step 2, we use the algorithm

by Volgenant (1996) particularly designed for the rectangular assignment problems. The

algorithm solves n by n*m rectangular assignment problems in order of n3
*m steps. The

classical assignment algorithms solve the same problem in n3
*m

3 steps by adding (n*m-n)

dummy nodes.

4. A Branch and Bound Algorithm to Generate All Non-Extreme Supported and

Unsupported Efficient Solutions

Recall that the generation of all efficient solutions with respect to total flow time and

total reassignment cost criteria, is NP-hard. This result justifies the use of enumeration

techniques. We propose a Branch and Bound (BAB) algorithm that makes implicit

enumeration of all efficient solutions. Below we give the details of the three phases of our

algorithm: initialization, branching and bounding.

Phase 1. Initialization

We generate the approximate non-extreme supported and unsupported efficient

solutions in the neighborhood of the solutions found in Section 3 by Procedure 1 and use this

set as an initial feasible set. In doing so, we start from the first boundary schedule having the

minimum total flow time, thereby the maximum total reassignment cost, of all efficient

solutions. We then move the jobs to their initial machines. The resulting schedule is added to

the list, if it is not dominated by any schedule in the list. We continue with the schedule from

the list having the minimum total flow time. We repeat the procedure, until the other

boundary schedule is reached, i.e., the one having maximum total flow time and zero total

reassignment cost, is reached. Then we start from this boundary schedule and create new

schedules by reassigning the jobs from their initial machines to other machines, while

keeping the other assignments. The new schedules, if nondominated, are added to the list. We

continue with the new schedule from the list having the minimum total reassignment cost. We

terminate whenever the other boundary schedule in the list is reached.

 11

Our BAB starts with the list of approximate efficient solutions. We add a schedule to

the list if it is not dominated by the schedules in the list. We remove a schedule from the list

if it is dominated by the added schedule.

We next discuss the branching phase.

Phase 2. Branching

 We generate the partial solutions, i.e., nodes, of the BAB tree as follows: At each

level, we decide on the job that should be assigned to the first available position of the earliest

available machine. We also represent a solution in which no further assignment is made to

the earliest available machine, this case corresponds to removing that machine from further

considerations. In selecting the available job we recognize the optimality of the Shortest

Processing Time (SPT) order within each machine for the total flow time objective (see

Smith, 1956). Hence we never branch to a node representing the assignment of job i to

machine j if pij < plj and job l has assigned to machine j in the partial solution.

 Figure 1 represents a partial BAB tree for n=7 jobs and m=3 machines problem

instance whose data are given in Table 1.

 [Insert Table 1 about here]

Note that the SPT orders of the jobs are as follows:

 Machine 1 4-6-7-5-1-3-2

 Machine 2 1-4-3-2-6-7-5

 Machine 3 3-6-2-1-7-4-5

 We assume Machine 1 is not available for 98 time units and the initial job assignments

are 6-7-5 on machine 1, 1-4-3 on machine 2 and 2 on machine 3.

[Insert Figure 1 about here]

 Note that initially a1=98, a2=a3=0, hence machines 2 and 3 are the earliest available

machines. Assume we arbitrarily select machine 2 for branching. The first node, called 0,

represents the case where no further assignments are made on machine 2. The (r+1)st node at

level 1 corresponds to the assignment of the rth job in the SPT order of machine 2. Hence the

fourth node represents the assignment of job 3. If node 3 is selected for branching then a2 =

p32 = 33 and machine 3 becomes the earliest available machine, emanates six nodes, each

 12

node representing the assignment of a particular job to its first available position. The fifth

node at level 2, is the fourth unscheduled job in the SPT order of machine 3, i.e., job 7. If this

node is selected for further branching a3 = p73 = 72, machine 2 becomes the earliest available

machine. At level 3, there are four candidate partial solutions, as job 3 has assigned to the first

position of machine 2 and there are 3 unscheduled jobs that have higher processing times than

that of job 3 on machine 2. These jobs are 2, 6 and 5.

 Note that there will be a maximum of n+m-1 levels, as n jobs will be assigned and

there can be at most m-1 no further machine assignment (node 0) decisions.

 We let Mi denote the set of machines that cannot process job i. Job i cannot be

processed by machine j, if such an assignment violates the SPT order or cannot yield an

efficient solution. An assignment of job i to machine j violates the SPT order if ,jij L jp p

where Lj is the last job assigned to machine j in the partial schedule.

 We calculate a lower bound for each job that can be assigned to the earliest available

machine. We next discuss the lower bounds.

Phase 3. Bounding

We let  denote the current partial schedule and  is the set of unscheduled jobs.

We let PF() and PRC() be the total flow time, F and total reassignment cost, RC of partial

schedule  . LBF() and LBRC() are the lower bounds on the F and RC values of the partial

schedule  respectively.

Theorem 1 below states a lower bound on the total reassignment cost of the

unscheduled jobs of all efficient schedules.

Theorem 1: Min { }
ij M ij

i

rc






 is a lower bound on the total reassignment cost of the

unscheduled jobs of all efficient schedules.

Proof: In all efficient schedules job i cannot be assigned to any machine in set Mi, without

violating the SPT order. Hence the reassignment cost of job i is no smaller than

{ }
ij M ijMin rc . This follows, the total reassignment cost of any efficient schedule, over all

unscheduled jobs, i.e., the jobs that are not in , cannot be greater than Min { }
ij M ij

i

rc






 . #

UBF(RC) is an upper bound on the F values of the efficient solutions having a total

reassignment cost of at least RC. Similarly UBRC(F) is an upper bound on the RC values of

the efficient solutions having a total flow time value of at least F units. When job i is

assigned to machine j and appended to  , a lower bound on the total flow time value, is

 13

PF()+(aj+pij) + Min { }
lr M r lr

l

a p






+ . If this bound is no smaller than UBF(LBRC()) (an

upper bound on the F values of the schedules having a total reassignment cost of at least

LBRC()) then  is dominated by the schedule of our list having a total flow time value of

UBF(LBRC()).

Similarly, if PRC() + rci j+ Min { }
lr M lr

l

rc






 ≥ UBRC(LBF()) then  is dominated

by the schedule in our list having a total reassignment cost of UBRC(LBF()).

Hence an assignment of job i to machine j is avoided if either

 PF() + (aj + pij) + Min { }
lr M r lr

l

a p






+ ≥ UBF(LBRC()) or

 PRC() + rcij + Min { }
lr M lr

l

rc






 ≥ UBRC(LBF())

We hereafter refer to the above conditions as efficiency rules.

We let Rj denote the set of jobs that can be processed on machine j. Among the

machines with Rj ≠ 0, we select the earliest available one. If the first unscheduled job of the

SPT order on the selected machine, cannot be assigned to any other machine, we fix that job

on that machine and update the Mi sets, earliest available times and proceed. For each job in

Rj, we calculate a lower bound on RC and two lower bounds on F values.

Lower bound on RC, LBRC()

A lower bound on RC is LBRC()= PRC() + LBRC(), where

PRC () = total reassignment cost of the jobs in 

LBRC ()= a lower bound on the optimal total reassignment cost of the unscheduled jobs,

i.e., the jobs that are not in  .

Using the result of Theorem 1, we let LBRC() = Min { }
ij M ij

i

rc






 and hence choose a

reassignment cost among the jobs that can be assigned without violating the SPT order and

having a potential of generating an efficient solution.

 Referring to the BAB tree of Figure 1, Mj values are calculated according to the SPT

order. For a partial schedule where jobs 3 and 7 are assigned to machines 2 and 3

respectively, the lower bound can be calculated as follows:

M1={2, 3}, M2={3}, M4={2}, M5={ }, M6={3}

PRC () = rc73

LBRC () = rc11 + Min{rc41, rc43}+ Min{rc61, rc62}

 14

as jobs 1, 4 and 6 cannot be assigned to their initial machines, job 1 can only be assigned to

machine 1 according to the SPT order.

Lower bound on F

 We propose two procedures to find a lower bound on the optimal flow time of the

unscheduled jobs

i. Lower Bound 1, LBF1()

We assume all machines are identical and let pi= { }
ij M ijMin p . Note that pi is the

minimum processing time for job i, among the machines that it can be assigned without

violating the SPT order and efficiency rules.

The new problem is the | |j iP a C problem of the scheduling literature whose

optimal solution is due to following rule by Kaspi and Montreuil (1988): Order the jobs by

SPT and assign them to the first available machine, in rotation. An optimal F value of the

new identical machine problem, is a lower bound on the optimal F value of the original

unrelated machine problem. The theorem below states this result formally.

Theorem 2 : The F value that solves the | |j iP a C problem with pi= { }
ij M ijMin p is a

lower bound on the total flow time of the unscheduled jobs in all efficient schedules.

Proof: In all efficient schedules job i cannot be assigned to any machine in set Mi, without

violating the SPT order and efficiency rules. Hence the processing incurred due to job i

cannot be smaller than { }
ij M ijMin p . This follows, the total flow time of any efficient

solution over all unscheduled jobs, i.e., the jobs that are not in  , cannot be greater than the

optimal F value of the | |j iP a C problem with pi= { }
ij M ijMin p . #

In our example, a lower bound on the F value of a partial schedule , in which jobs 3

and 7 are assigned to machines 2 and 3 respectively is found as follows:

p1= p11 = 67

p2= Min {p21, p22} = 44

p4= Min {p41 p43} = 14

p5= Min {p51, p52, p53} = 54

p6= Min {p61, p62} = 22

The SPT order with pi values is 4-6-2-5-1.

The lower bound schedule has the following assignments:

 15

Machine 1 1 a1=98

Machine 2 4 6 2 a2=33

Machine 3 5 a3=72

LBF1() = (98+67) + (33+14) + (33+14+22) + (33+14+22+44) + (72+54) = 520

PF() = 33 + 72 = 105

LBF1() = LBF1() + PF() = 625

We fathom the node, if there is a schedule 's in the list such that (') ()FF s LB  and

(') ()RCRC s LB  . If a node cannot be fathomed by LBF1(), we calculate a more powerful

lower bound, LBF2().

ii. Lower Bound 2, LBF2()

 Consider the following assignment model

 Min
1 1 1

()
n n m

ij j ikj

i k j

kp a X
= = =

+ +

1

1

{ } 1
n

j ij

i

Max rc
=

+ , ,

ij ikj

i j k

rc X

s.t
1 1

1
n m

ikj

k j

X
= =

=  i

1

1
n

ikj

i

X
=

  j, k

  0,1ikjX   i, j, k

where
1 if job is assigned to position from last on machine

0 otherwise

th

ikj

i k j
x

 
=  
 

For a partial schedule , where  j is the set of jobs assigned to machine j, and nj is

the cardinality of set  j we modify aj values as,
j

j j ij

i

a a p


= + , and solve the assignment

model with the following objective function

 Min

'

1 1

()
j

j

n m

j ij ikj

i k j

a kp X
 = =

+ +

1

1

{ } 1
n

j ij

i

Max rc
=

+

'

1 1

j

j

n m

ij ikj

i k j

rc X
 = =



where 'jn is an upper bound on the number of unscheduled jobs that can be assigned to

machine j. If the last job assigned to machine j is the lth job of its SPT order then at most n-l

more jobs can be assigned to machine j. Moreover the jobs between l+1 and n, in the SPT

 16

order, may be assigned to the other machines. So, we modify the upper bound, 'jn , as the

number of unscheduled jobs with no smaller processing time than plj on machine j and that do

not violate the efficiency rules.

 Moreover we let cikj=M if job i is the rth unscheduled job of the Longest Processing

Time (LPT) order on machine j such that r < k, to avoid the assignment of any job to a

position that is higher than its index, thereby avoiding a non-SPT ordering. We then solve

the | | x
1

'
m

j

j
j N

n
=


 assignment problem using the rectangular assignment algorithm of

Volgenant (1996).

 The cost coefficients of the assignment model for a partial schedule, where jobs 3 and

7 are assigned to the first positions of machines 2 and 3 respectively, are calculated as

follows: Note that 2'n =3 as there are 3 unscheduled jobs having higher processing times than

p32, these jobs are 2, 6 and 5. As there are two unscheduled jobs having higher processing

times than p73, 3'n =2. As there are two scheduled jobs, there can be at most n-2=5 jobs on

machine 1. Hence we solve 5 x 10(5+3+2) assignment problem. We set c1k2 = c1k3 = M for all

k as Job 1 cannot be assigned to machines 2 and 3 without violating the SPT order. Jobs 2

and 6 cannot be assigned to machine 3, i.e., c2k2 = c6k2 = M for k=1, 2. Job 2 cannot be

assigned to machine 1, except to its first position, i.e., c2k1 = M for k > 1, as it is the last job of

SPT on machine 1. If we assign job 2 to a later position, the SPT order is violated, as there is

no unscheduled job with higher processing time. Moreover, we set c651=M as job 6 cannot be

scheduled at the fifth position of machine 1. Job 4 cannot be assigned to machine 2, i.e., c4k2 =

M for all k. Job 5 is the third longest unscheduled job on machine 1 hence c541 = c551 = M.

Similarly job 1 can only be assigned to the first or second positions of machine 1 as it is the

second longest unscheduled job. All cost figures are tabulated in Table 2.

[Insert Table 2 about here]

We add term RC ijrc to (i, k, j) if machine j is not the initial machine of job i. For

example job 5 is on machine 1 in the initial schedule, hence RC appears in all entries for job

5 except the ones on machine 1. The optimal assignment solution gives the following

schedule.

Machine 1 4 - 1

Machine 2 2 - 6

 17

Machine 3 5

Note that a1=98, a2=33, a3=72

LBF2() = (98+14) + (98+14+67) + (33+44) + (33+33+64) + (72+86) = 667

 PF() = 105

 LBF2() = LBF2() + PF() = 772

 F(s) = 772

 RC(s) = rc41 + rc11 + rc22 + rc62 + rc52

The actual total flow time of the schedule is F(s) and the actual total reassignment

cost is RC(s). We add schedule s to the list of approximate efficient solutions if there does

not exist a schedule 's such that (') ()F s F s and (') ()RC s RC s . If there exists a schedule

ŝ in the list such that ˆ() ()F s F s and ˆ() ()RC s RC s , then ŝ is dominated by s , and

therefore is deleted from the list.

 Note that Max{LBF1(), LBF2()}is a lower bound on the optimal F values of the

nodes emanating from . Hence when we proceed to the next level we first check whether

there exists a schedule 's such that 1 2(') { (), ()}F FF s Max LB LB  and (') ()RC s RC  . If

such a schedule 's exists then we fathom the node, else we calculate the associated lower

bound.

Finally we present a pseudo code of our branch and bound algorithm and illustrate it

via an example problem.

Pseudo Code of the Branch and Bound Algorithm

GenExtSup(); / generate extreme supported solutions

IntApE(); / initialize approximate efficient set

/ use branch and bound to generate all efficient solutions

t=1; / initialize with root node

Ins(0,0); / insert root node into stack

while (t<0) { / while there is any node waiting in the stack

 Rem(t); t=t-1; / remove from top of stack

 minm=EarMac(); / find earliest available machine

for i { / all jobs according to SPT on minm

 CreChi(i); / create child with job i

 LBRC(σ)=LbRc(i); / find lower bound rc

 LBF1(σ)=LbF1(i); / find lower bound F1

 18

 if ((LBRC(σ)<UBRC(LBF1(σ))

&& (LBF1(σ)<UBF(LBRC(σ))) { / check dominance

 LBF2(σ)=LbF2(i); / find lower bound F2

 if ((LBRC(σ)<UBRC(LBF2(σ))

&& (LBF2(σ)<UBF(LBRC(σ)))/ check dominance

 t=t+1; / add i into stack

} / end if

 } / end for i

 CreChi(0); / create child for not assigning any jobs to m

 LBRC(σ)=LbRc(0); / find lower bound rc

 LBF1(σ)=LbF1(0); / find lower bound F1

 if ((LBRC(σ)<UBRC(LBF1(σ))

&& (LBF1(σ)<UBF(LBRC(σ))) { / check dominance

 LBF2(σ)=LbF2(0); / find lower bound F2

 if ((LBRC(σ)<UBRC(LBF2(σ))

&& (LBF2(σ)<UBF(LBRC(σ))) / check dominance

 t=t+1; / add i into stack

} / end if

} / end while

Child creation is done by CreChi(i) procedure which is explained as follows:

CreChi(i) first duplicates the information from the parent node, updates it according to the

recent assignment, and then checks the first assignable job, shortest processing time job that

is assignable according to efficiency rules, of each machine for fixing it to that position. If

that job cannot be assigned to any other machine due to SPT and efficiency rule, than it’s

fixed to that position. Fixing is done iteratively until no further fixing can be done.

We illustrate the pseudo code via the following 6 jobs, 2 machine problem.

pij J1 J2 J3 J4 J5 J6

M1 22 6 44 33 21 97

M2 64 94 72 62 55 79

rcij J1 J2 J3 J4 J5 J6

M1 51 60 13 16 10 58

M2 30 37 24 58 22 20

Initial minimum total flow time schedule makes the following assignments.

 19

M1 J2-J5-J1-J4-J3

M2 J6

Total flow time= 369

We assume that a disruption of length 126 time units occurs on M1 at time 0.

DM=1, DT=0, D=126, a1=126, a2=0

RCLB=0, FUB=999, right shift schedule

RCUB=80, FLB=852, solution of | |j RCR a F RC+ problem

The four extreme supported solutions generated by procedure 1 are listed below.

RC F

0 999

22 893

46 861

80 852

The initial heuristic finds no other approximate efficient solutions and UBF(RC) is initialized

as:

999 0

998 1 21

893 22

() 892 23 45

861 46

860 47 79

852 852

F

RC

RC

RC

UB RC RC

RC

RC

RC

=


 

 =


=  
 =


 


=

We initialize B&B by the root node, from root node M2 is identified as the earliest available

machine.

At root node with no job assignments, a1=126, a2=0, minm=2.

Node 1, J5 ➔ M2

LBRC(σ) = 22, LBF1(σ) = 680, UBF(LBRC(σ)) = 893, UBRC(LBF1(σ)) = 80

LBF1(σ) < UBF(LBRC(σ)), LBRC(σ) < UBRC(LBF1(σ)).

 20

LBF2(σ) = 861, UBRC(LBF2(σ)) = 80, (RC(s), F(s)) = (46, 861), no need to add.

LBF1(σ) < UBF(LBRC(σ)), LBRC(σ) < UBRC(LBF2(σ)), add to BAB stack.

Node 2, J4 ➔ M2

Fix J2 ➔ M1, otherwise if J2 ➔ M1 then LBRC ≥ 95.

Fix J5 ➔ M1, otherwise if J5 ➔ M2 then SPT will be violated.

Fix J1 ➔ M1, otherwise if J1 ➔ M2 then LBRC ≥ 88.

Fix J3 ➔ M1, otherwise if J3 ➔ M2 then LBRC ≥ 82.

Fix J6 ➔ M2, otherwise if J6 ➔ M1 then LBRC ≥ 116.

All jobs are fixed, (RC(s), F(s)) = (58, 882) no need to add since dominated by (46, 861).

Node 3, J1 ➔ M2

LBRC(σ) = 30, LBF1(σ) = 722, UBF(LBRC(σ)) = 892, UBRC(LBF1(σ)) = 80.

LBF1(σ) < UBF(LBRC(σ)), LBRC(σ) < UBRC(LBF1(σ)).

LBF2(σ) = 891, (RC(s), F(s)) = (24, 891), no need to add since dominated by (46, 861).

LBF1(σ) < UBF(LBRC(σ)), LBRC(σ) < UBRC(LBF2(σ)), add to BAB stack.

Node 4, J3 ➔ M2

Fix J6 ➔ M2, otherwise if J6 ➔ M1 then LBRC ≥ 82.

LBRC(σ) = 24, LBF1(σ) = 867, UBF(LBRC(σ)) = 892, UBRC(LBF1(σ)) = 80.

LBF1(σ) < UBF(LBRC(σ)), LBRC(σ) < UBRC(LBF1(σ)).

LBF2(σ) = 891, (RC(s), F(s)) = (24, 891), add to list since not dominated.

Update UBF(RC).

999 0

998 1 21

893 22

892 23

() 891 24

890 25 45

861 46

860 47 79

852 852

F

RC

RC

RC

RC

UB RC RC

RC

RC

RC

RC

=


 

 =


=


= =
  


=


 

 =

UBF(LBRC(σ)) = 891, LBF1(σ) ≥ UBF(LBRC(σ)), fathom.

Node 5, J6 ➔ M2

 21

LBRC(σ) = 0, LBF1(σ) = 729, UBF(LBRC(σ)) = 999, UBRC(LBF1(σ)) = 80

LBF1(σ) < UBF(LBRC(σ)), LBRC(σ) < UBRC(LBF1(σ)).

LBF2(σ) = 999, (RC(s), F(s)) = (0, 999), no need to add.

LBF1(σ) ≥ UBF(LBRC(σ)), fathom.

Node 6, J2 ➔ M2

J6 cannot be assigned to any of the machines due to efficiency rules, fathom.

if J6 ➔ M1 then LBRC ≥ 95.

If J6 ➔ M2 then SPT will be dominated.

Node 7, Close M2

All jobs are assigned to M1 in SPT order, J2-J5-J1-J4-J3-J6.

(RC(s), F(s)) = (58, 1269) no need to add since dominated by (46, 861).

From Node 3, where J1➔M2,

a1=126, a2=64, PF=64, PRC=30, LBF2(σ)≥886, minm=2.

Node 8, J3 ➔ M2

LBRC(σ) = 54, (LBRC(σ), LBF2(σ)) is dominated by (46, 861), fathom.

Node 9, J6 ➔ M2

Fix J2 ➔ M1, otherwise if J2 ➔ M1 then

LBRC ≥ 67, (LBRC(σ), LBF2(σ)) will be dominated by (46, 861).

Fix J5 ➔ M1, otherwise if J5 ➔ M2 then SPT will be violated.

Fix J4 ➔ M1, otherwise if J4 ➔ M2 then SPT will be violated.

Fix J3 ➔ M1, otherwise if J3 ➔ M2 then SPT will be violated.

All jobs are fixed, (RC(s), F(s)) = (30, 908) no need to add since dominated by (22, 893).

Node 10, J2 ➔ M2

LBRC(σ) = 67, (LBRC(σ), LBF2(σ)) is dominated by (46, 861), fathom.

Node 11, Close M2

J6 cannot be assigned to M1 due to efficiency rules, fathom.

if J6 ➔ M1 then LBRC ≥ 88.

 22

From Node 1, where J5➔M2,

a1=126, a2=55, PF=55, PRC=22, LBF2(σ)≥861, minm=2.

Node 12, J4 ➔ M2

LBRC(σ) = 80, (LBRC(σ), LBF2(σ)) is dominated by (46, 861), fathom.

Node 13, J1 ➔ M2

LBRC(σ) = 52, (LBRC(σ), LBF2(σ)) is dominated by (46, 861), fathom.

Node 14, J3 ➔ M2

LBRC(σ) = 46, (LBRC(σ), LBF2(σ)) is dominated by (46, 861), fathom.

Node 15, J6 ➔ M2

Fix J2 ➔ M1, otherwise if J2 ➔ M1 then

LBRC ≥ 57, (LBRC(σ), LBF2(σ)) will be dominated by (46, 861).

Fix J1 ➔ M1, otherwise if J1 ➔ M2 then SPT will be violated.

Fix J4 ➔ M1, otherwise if J4 ➔ M2 then SPT will be violated.

Fix J3 ➔ M1, otherwise if J3 ➔ M2 then SPT will be violated.

All jobs are fixed, (RC(s), F(s)) = (22, 893) no need to add since dominated by (22, 893).

Node 16, J2 ➔ M2

LBRC(σ) = 59, (LBRC(σ), LBF2(σ)) is dominated by (46, 861), fathom.

Node 17, Close M2

J6 cannot be assigned to M1 due to efficiency rules, fathom.

if J6 ➔ M1 then LBRC ≥ 78, (LBRC(σ), LBF2(σ)) is dominated by (46, 861), fathom.

No nodes are left in stack, so BAB terminates with the following set of efficient solutions.

RC F

0 999

22 893

24 891

46 861

80 852

 23

The efficient solution (24, 891) is unsupported and all other efficient solutions are extreme

supported.

5. Computational Experience

We conduct a computational experiment to assess the efficiency of BAB compared to

Classical Approach (CA). We generate random problem instances having 40, 60, 80, 100

jobs and 4, 8, 12 machines. We select two levels for processing times and two levels for

reassignment costs to see the effects of the variability of these parameters on the performance

of our BAB algorithm. The pij values are drawn from discrete uniform distributions between

[1,100] and [50,100] to represent high and low variability cases respectively. The rcij values

are drawn from discrete uniform distributions between [1,60] and [30,60] to represent high

and low variability cases respectively. We set rcij to zero if machine j is the initial machine of

job i.

 The disruption duration, D, is set to two levels: Long (L) and Short (S). For level L, D

is set to the half of the completion time of the last job on the disrupted machine in the initial

schedule. Level S has half of the duration of level L.

We conduct all experiment on a PC with Intel Pentium 4 2.8 Ghz processor and 1 GB

of RAM running under Linux, specifically Fedora 5, operating system. We implement our

BAB in C, compiled with GCC 4 and utilize Borland C++BuilderX as the development

environment. We solve our integer and linear programming models using CPLEX 8.1.1. We

set a termination limit of 2 hours for CA and BAB. We find that the problem instances with

n=100 jobs could not be solved in 2 hours, when the disruption duration is long, hence did not

report the associated results.

We consider 72(3x3x2x2x2)+12=84 problem combinations and generate 10 instances

for each combination.. Hence as a total of 840 problem instances are generated and solved.

Tables 3 and 4 report the performance of CA and BAB for pij~U[1,100] and

pij~U[50,100] respectively. The tables give the average and maximum computation times,

number of efficient solutions, and the number of times BAB runs quicker than CA. The

average and maximum number of nodes generated by BAB are also included.

[Insert Tables 3 and 4 about here]

From Tables 3 and 4, we can observe the increase in the average number of efficient

solutions with increasing n. On average there are 13, 25 and 59 efficient solutions, when there

 24

are 40, 60 and 80 jobs, respectively. Moreover the difficulty of attaining an efficient solution

increases considerably when n increases. In Table 4, we observe two cases having the same

average number of efficient solutions; n=60, m=8, rcij~U[1,60] and n=80, m=8,

rcij~U[30,60]. CA generates the efficient set of case 1 five times quicker than that of case 2.

BAB generates the efficient set of case 1 three times quicker than that of case 2. This is due

to the fact, the number of integer variables increases with an increase in n for CA. Similarly,

the number of branches increases as a function of n in our BAB algorithm

As m increases, the F and RC ranges decrease and that leads to a decrease in the

number of efficient solutions. Note from Table 3 that, when n=80, pij~U[1,100] and D=L,

the average number of efficient solutions decrease with an increase in the number of

machines. When there are 4, 8, and 12 machines, the respective average numbers of efficient

solutions are 34, 14, and 10. As m increases, the efficient solutions are generated in higher

computational times, due to the increase in the number of integer decision variables. Note that

the same number of efficient solutions is generated in less effort when m is small. In Table 4,

we can observe this effect significantly, for the problems with 80 jobs, D=S and reassignment

cost in range between 30 and 60, 10 efficient solutions exist on average for the cases with 8

and 12 machines. CA generates the efficient set in 48 CPU seconds on average when m=8,

and in 95 CPU seconds on average when m=12.

 In general, the performance of CA is dependent on the number of efficient solutions

and number of integer variables (that increases with n and m). Disruption duration,

processing time variability, and reassignment cost variability are also effective, as these

parameters affect the number of efficient solutions.

We also observe that the disruption duration, processing time and reassignment cost

distributions significantly affect the performance of BAB. When the disruption duration is

longer, the sequencing alternatives are more and this causes weak differentiation of the partial

solutions which in turn increases the difficulty of attaining optimal solutions. This significant

behavior can be easily observed from Table 3 for D=S and D=L. Note that the average CPU

time of BAB to generate efficient set is 1.9 CPU seconds where the disruption duration is

shorter. The CPU time increases to 43.8 seconds where the disruption duration is longer.

Whenever the processing times are higher, the disruption durations are longer and thus the

problems are harder to solve.

 When the variability of the processing times or reassignment costs decreases, the

differentiation power of the lower bounds decreases as the partial solutions become closer. As

the quality of the lower bounds directly affects the performance of BAB, we observe smaller

 25

computational times when the ranges are wider. This relation is quite obvious from Table 3

for D=L, the performance of the algorithm depends on the reassignment cost variation. Note

that when there are 80 jobs and 4 machines, the efficient set is generated in 22 seconds for

low variation case, and in 7 seconds when the variation is high. Moreover, we observe more

significant affect of the processing time variability, as the processing time defines the range

of efficient solutions more often. One can point out some exceptions which can be attributed

to the randomness effect like dominant contributions of few instances to average

performance.

Tables 3 and 4 reveal that, BAB outperforms CA in the vast majority of the problem

instances. We find that, in 793 out of 840 instances, BAB runs quicker than CA.

6. Conclusions

In this paper, we address a rescheduling problem on unrelated parallel machines. We

consider the total flow time as an efficiency measure and total reassignment cost as a stability

measure. We generate all efficient solutions with respect to these two measures. Our aim is

to help a decision maker who cannot explicitly express his/her preference function, but want

to make a choice by screening the non-dominated solutions.

To find an initial set of approximate efficient solutions, we form the extreme

supported efficient set by the weighted approach and extend the set in a neighborhood. To

generate exact efficient solutions, we propose a branch and bound algorithm. We improve the

efficiency of the algorithm by incorporating powerful reduction and bounding mechanisms.

The results of our computational tests have revealed that our branch and bound

algorithm can solve problem instances with up to 100 jobs and 12 machines in reasonable

solution times. We compare our algorithm with the classical approach used in the previous

studies and find that our algorithm performs superior for the majority of the problem

instances.

We hope that our study stimulates future work on rescheduling area. The extension of

our results to multi-stage environments like flow-shops and job-shops might be an interesting

extension. Other two noteworthy extensions are the total weighted flow time measure and a

tri-criteria problem that might include a customer related measure. We discuss each

extension below:

When the jobs do have different priorities or values, the total weighted flow time

would be a more suitable objective than the total flow time. The incorporation of the weights

destroys the assignment nature of the model, so the special procedures inherent for

 26

assignment problem will not be valid any more. However the total weighted flow time has

also a nice property that the optimal solution of the sequencing problem (which is the

weighted shortest processing time rule) is known. Thus we can adapt our branching scheme

for the total flow time problem to solve its weighted version.

 In addition to our producer related efficiency measure of the total flow time, we can

consider a customer related efficiency measure, like maximum lateness or total tardiness. In

such a case, the rescheduling problem will be treated as a tri-criteria problem together with

our stability measure. A customer related measure may also act as a stability measure, once

the due-dates are accepted as the promises given according to the completion times in the

initial schedule.

 27

REFERENCES

Abumaizar, R.J., and Svestka J.A., Rescheduling job shops under random disruptions,

International Journal of Production Research, 1997, 35, 2065--2082.

Aggarwal V., A lagrangean-relaxation method for the constrained assignment problem,

Computers and Operations Research, 1985, 12, 97--106.

Aktürk M.S., and Görgülü E., Match-up scheduling under a machine breakdown, European

Journal of Operational Research, 1999, 112, 81--97.

Alagöz O., and Azizoğlu M., Rescheduling of identical parallel machines under machine

eligibility constraints, European Journal of Operational Research, 2003, 149, 523--532.

Aneja, Y.P., and Nair K.P.K., Bicriteria transportation problem, Management Science, 1979,

25, 73--78.

Aytug H., Lawley M.A., McKay K., Mohan S., and Uzsoy R., Executing production

schedules in the face of uncertainties: a review and some future directions, European Journal

of Operational Research, 2005, 161, 86--110.

Azizoğlu M., and Alagöz O., Parallel machine rescheduling with machine disruptions, IIE

Transactions, 2005, 37, 1113--1118.

Bean J.C., Birge J.R., Mittenthal J., and Noon C.E., Matchup scheduling with multiple

resources, release dates and disruptions, Operations Research, 1991, 39, 470--483.

Church L.K., and Uzsoy R., Analysis of periodic and event-driven rescheduling policies in

dynamic shops, International Journal of Computer Integrated Manufacturing, 1992, 5, 153--

163.

Clausen J., Hansen J., Larsen J., and Larsen A., Disruption management, ORMS Today, 2001,

28, 40--43.

Curry J.,and Peters B., Rescheduling parallel machines with stepwise increasing tardiness and

machine assignment stability objectives, International Journal of Production Research, 2005,

43, 3231--3246.

Daniels R.L.,and Kouvelis P., Robust scheduling to hedge against processing time uncertainty

in single stage production, Management Science, 1995, 41, 363--376.

Hall N.G., and Potts C.N., Rescheduling for new orders, Operations Research, 2004, 52, 440-

-453.

Kaspi M., and Montreuil B., On the scheduling of identical parallel processes with arbitrary

initial processor available time, Research Report 88-12, School of Industrial Engineering,

Purdue University; 1988.

 28

Lawler E.L., Lenstra J.K., Rinnooy Kan A.H.G. and Shmoys D.B., Sequencing and

scheduling: algorithms and complexity, Reports BS-R8909, Centre for Mathematics and

Computers Science, Amsterdam, 1989.

Leung J.Y.-T., and Pinedo M., A note on scheduling parallel machines subject to breakdown

and repair, Naval Research Logistics, 2004, 51, 60--71.

Li E., and Shaw W., Flow-time performance of modified-scheduling heuristics in a dynamic

rescheduling environment, Computers & Industrial Engineering, 1996, 31, 213--216.

Mason S.J., Jin S., and Wessels C.M., Rescheduling strategies for minimizing total weighted

tardiness in complex job shops, International Journal of Production Research, 2004, 42, 613-

-628.

O’Donovan R., Uzsoy R., and McKay K.N., Predictable scheduling of a single machine with

breakdowns and sensitive jobs, International Journal of Production Research, 1999, 18,

4217--4233.

Olumolade M.O., and Norrie D.H., Reactive scheduling system for cellular manufacturing

with failure-prone machines, International Journal of Computer Integrated Manufacturing.

1996, 9, 131--144.

Özlen M., and Azizoğlu M., Rescheduling unrelated parallel machines with total flow time

and total disruption cost criteria, 2007, Technical Report, Department of IE, METU.

Przybylski A., Gandibleux X., Ehrgott, M., Two phase algorithms for the bi-objective

assignment problem, European Journal of Operational Research, 2008, 185, 509--533.

Qi X.T., Bard J.R., and Yu G., Disruption management for machine scheduling: the case of

SPT schedules, International Journal of Production Economics, 2006, 103, 166--184.

Raheja A.S., and Subramaniam V., Reactive recovery of job shop schedules – A review,

International Journal of Advanced Manufacturing Technology, 2002, 19, 756--763.

Smith, W. E., Various optimizers for single stage production. Naval Research Logistics

Quarterly, 1956, 70, 93--113.

Ünal A.T., Uzsoy, R., and Kıran A.S., Rescheduling on a single machine with part-type

dependent setup times and deadlines, Annals of Operations Research, 1997, 70, 93--113.

Vieira G.E., Herrmann J.W., and Edward L., Rescheduling manufacturing systems: a

framework of strategies, Policies and Methods, Journal of Scheduling, 2003, 6, 39--62.

Visee M., Teghem J., Pirlot M., and Ulungu E.L., Two-phases Method and Branch and

Bound Procedures to Solve the Bi–objective Knapsack Problem, Journal of Global

Optimization, 1998, 12, 139--155.

 29

Volgenant, A., Linear and semi-assignment problems: a core oriented approach, Computers

and Operations Research, 1996, 23, 917--932.

Wu S.D., Storer R.H., and Chang P.C., One-machine rescheduling heuristics with efficiency

and stability as criteria, Computers and Operations Research, 1993, 20, 1-14.

