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Abstract Using the pictures for X (3872) as a mixture of
charmonium and molecular D∗0D0 states; Y (3940) as a mix-
ture of χc0 and D∗D′∗ states, and Y (4260) as a mixture of the
tetra-quark state with charmonium states, the corresponding
mixing angles are estimated within the QCD sum rules. We
find that our predictions for the mixing angles of the X (3872),
Y (4260), and Y (3940) states are considerably smaller com-
pared to work in which the mixing angles are estimated from
the condition in reproducing the mass of these states. Our
conclusion is that the considered pictures for the X (3872),
Y (4260), and Y (3940) states are not successful in describing
these states.

1 Introduction

The analysis of the spectroscopy and decays of the heavy
flavored mesons is an essential source for obtaining useful
information about the dynamics of QCD at “low” energies.
Remarkable progress in this direction has been made on the
experimental side. Starting from the observation of X (3872)

[1] up to the present time 23 new charmonium line states
have been discovered (for a review and relevant references
to the original work on the charmonium spectroscopy, see
for example [2–7]). All observed charmonium states might
have more complex structures compared to those predicted
by the simple quark model. These new states (referred to as
XY Z states in the text) can be potential candidates of exotic
states, and for this reason theorists make great efforts for
understanding the dynamics of these states [2–7]. There are
two attractive pictures in the interpretation of all observed
states: tetra-quark, and bound states of two mesons (meson
molecules).
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The theoretical approaches which have been employed in
the investigation of these states are QCD sum rules, lattice
QCD, effective Lagrangian method, chiral perturbation the-
ory, quark model, etc. Among all approaches the QCD sum
rules method occupies a special place [8], which is based on
the fundamental QCD Lagrangian. The mass and some of the
strong coupling constants of XY Z mesons with light mesons
are widely discussed in the framework of the QCD sum rules
method. It is assumed in [9] that X (3872) is a mixture of
charmonium and molecular states, whose interpolating cur-
rent is taken as

jμ = cos θ j (2)
μ + sin θ j (4)

μ , (1)

where

j (2)
μ = 1

6
√

2
〈q̄q〉c̄γμγ5c, (2)

j (4)
μ = 1√

2

[
(ūγ5c)(c̄γμu) − (ūγμc)(c̄γ5u)

]
, (3)

and whose analysis in the QCD sum rules method predicted
that if the mixing angle θ lies in the range (9 ± 4)0, it can
provide good agreement with the experimental value of the
mass and decay width. X (3872) as an axial tetra-quark state
is analyzed within the QCD sum rules method in [10], and
the mass is found to be mX = 3.87 GeV.

Using the QCD sum rules, the mass and the decay width
of the channel J/�ω for the Y (3940) state is studied in
[11,12], assuming that it is described by the mixed scalar
χc0 and D∗ D̄∗ states, i.e.,

j = −〈q̄q〉√
2

cos θ jχc0 + sin θ jD∗ D̄∗ , (4)

where jχc0 = c̄c and jD∗ D̄∗ = (q̄γμc)(c̄γ μq). As a result
of this study it is found that one can reproduce the mass
and decay width of Y (3940) in very good agreement with
the experimental result if the mixing angle is chosen to be
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θ = (76 ± 5)0. Being a molecular D∗D∗ state, Y (3940) is
analyzed in the framework of the QCD sum rules in [13].

A similar analysis is carried out in [14] for the Y (4260)

state by assuming that it can be described by a mixture of the
tetra-quark and charmonium currents, i.e.,

jμ = cos θ j (2)
μ + sin θ j (4)

μ , (5)

where

j (4)
μ = 1√

2
εabcεdec

[
(qTa Cγ5cb)(q̄dγμγ5Cc̄T )

+(qTa Cγ5γμcb)(q̄dγ5Cc̄T )
]
, (6)

j (2)
μ = 1√

2
〈q̄q〉c̄γμc, (7)

and it is found that the experimental result can be reproduced
by setting the mixing angle to θ = (53 ± 5)0.

Note that the flavor mixing in the light quark sector is
studied in [15,16]. In these works the UA(1) anomaly plays
a considerably important role in the flavor mixing, which
leads to the mixing among the hadrons, and further enables
estimation of the mixing angles for the η–η′ and ω–φ states.

In determining the mixing angles we shall follow the
method presented in [17,18], in which the mixing angles
among the hadronic states are determined from the QCD
sum rules method. The main idea in the determination of the
mixing angles is as follows. If the pure states H0

1 and H0
2

do mix, then the physical states with definite mass should be
represented as linear combinations of these states. Accord-
ing to the QCD sum rules method, each hadronic state is
described by the corresponding interpolating current carrying
the same quantum numbers as the relevant hadrons. There-
fore, the interpolating currents corresponding to the physical
states can be represented as a linear combination of the “bare”
currents as follows:

jH1 = cos θ jH0
1

+ sin θ jH0
2
,

jH2 = − sin θ jH0
1

+ cos θ jH0
2
,

(8)

where jH0
1

and jH0
2

are the bare currents, and θ is the mixing
angle between them. For example in the case of the X (3872)

meson, jH0
1

corresponds to the j (2)
μ current, and jH0

2
corre-

sponds to the j (4)
μ current appearing in Eq. (1). For a determi-

nation of the mixing angles we consider a correlator which is
formed from two orthogonal currents corresponding to two
different hadronic states,


 = i
∫

d4xei px
〈
0

∣∣T { jH1(x) j̄H2(0)}∣∣ 0
〉
. (9)

In the present work we calculate the mixing angles among
the two-quark and four-quark states given by Eqs. (1), (4),
and (5). The origin of this mixing can be explained as fol-
lows: The c̄c state can emit a gluon, which subsequently splits

into a light quark–antiquark living like a molecular state dur-
ing some time interval. According to the general strategy
of the QCD sum rules method, this correlation function is
calculated in terms of hadrons on the physical side, and in
terms of quarks and gluons on the theoretical side. Using
the duality ansatz these two representations are then equated
to obtain the QCD sum rules. The correlation function from
the hadronic side is calculated by saturating it with the corre-
sponding hadrons carrying the same quantum numbers as the
interpolating current. Obviously, the hadronic part of the cor-
relation function should be equal to zero after this procedure,
since the hadronic states given by Eq. (8) are orthogonal.
Using Eq. (8) in the theoretical calculation of the correlation
function we get


 = sin θ cos θ
[



(0)
22 −


(0)
11

]
+

(
cos2θ−sin2θ

)



(0)
12 = 0,

(10)

where 

(0)
i j is the correlation function corresponding to the

unmixed case, i.e.,



(0)
i j = i

∫
d4xei px

〈
0

∣∣∣T
{
j (0)
Hi

(x) j̄ (0)
Hj

(0)
}∣∣∣ 0

〉
,

where i = 1 or 2, and j = 1 or 2.
In the case of a scalar current, the correlation function

contains only one invariant function, which we shall denote
by 


(0)
i j . In the case of a vector (axial-vector) current the

two-point correlation function can be written in terms of two
independent invariant functions as follows:



(0)
μνi j (p

2) = 

(1)
i j (p2)

(
gμν − pμ pν

p2

)
+ 


(2)
i j (p2)

pμ pν

p2 .

(11)

From Eq. (10), for the mixing angle we get

tan 2θ = 2

(0)
12



(0)
11 − 


(0)
22

. (12)

The invariant functions 

(1)
i j (p2) and 


(2)
i j (p2) in Eq. (11)

are associated with the spin-1 and spin-0 mesons, respec-
tively. Since X (3872) and Y (4260) mesons both have the
quantum number J = 1, in the further discussions we shall
consider only the structure (gμν − pμ pν/p2), i.e., we shall

analyze the invariant function 

(1)
i j (p2) only.

Using the currents given in Eqs. (1), (4), (7), and their
respective orthogonal combinations, the corresponding cor-
relation functions are calculated in terms of quarks and glu-
ons in the deep Euclidean region p2�0 using the operator
product expansion [19–22]. The results for each current are
presented in the Appendix.

Having all the necessary formulas, we can now proceed
to the numerical analysis of the mixing angles. It follows
from the expressions of the mixing angles that the main input
parameters involved in the numerical calculations are the
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quark and gluon condensates and the masses of the quarks
whose values are given as 〈q̄q〉(1 GeV) = −(246+28

−19 MeV)3

[23] (as regards the values of the input parameters see also
[24–38], 〈g2

s G
2〉 = 0.47 GeV4, m2

0 = 0.8 GeV2 [39]. For
the mass of the c quark we have used its MS value m̄c(m̄c) =
1.28 ± 0.03 GeV [40].

Beside these input parameters, the sum rules do also con-
tain two auxiliary parameters, namely, the Borel mass param-
eter M2 and the continuum threshold s0. The continuum
threshold is correlated with the energy of the first excited
state. It is usually chosen as

√
s0 = (mground +0.5) GeV and

we look for the domain of s0 which satisfies this restriction.
In this work the continuum thresholds for X (3872), Y (3940)

and Y (4260) are chosen as
√
s0 = (4.2 ± 0.1) GeV [9],√

s0 = (4.4 ± 0.1) GeV [11,12],
√
s0 = (4.7 ± 0.1) GeV

[14], respectively, which are obtained from the analysis of
two-point function. The working region of the Borel mass
parameter M2 can be obtained using the following procedure.
The upper bound of M2 is determined from the condition that
the continuum and higher state contributions constitute about
30 % of the pole contribution, i.e.,

∫ ∞
s0

dsρ(s)e−s/M2

∫ ∞
4m2

c
dsρ(s)e−s/M2 < 1/3,

where ρ(s) is the spectral density which is related to the
imaginary part of the invariant function 
(s) according to

ρ(s) = 1

π
Im
(s).

The lower bound for M2 is determined from the condition
that the perturbative contributions exceed the nonperturbative
ones. From these conditions we get the following working
regions for M2: 2 ≤ M2 ≤ 4 GeV2 for X (3872), Y (3940),
and 2 ≤ M2 ≤ 5 GeV2 for the gμν − pμ pν/p2 struc-
ture.

In Fig. 1 we present the dependence of the mixing angle θ

on the Borel mass parameter M2 at
√
s0 = (4.4 ± 0.1) GeV

for the gμν − pμ pν/p2 structure for the X (3872) state. We
observe from this figure that this structure predicts for the
mixing angle θ 
 (2.4 ± 0.6)0, which is considerably small
compared to the value of θ = (9 ± 4)0 obtained in [9] in
order to reproduce the mass of X (3872).

In Fig. 2 we present the dependence of the mixing angle
θ on M2 at a fixed value of

√
s0 = (4.4 ± 0.1) GeV for the

Y (3940) state. The mixing angle we obtain from this figure
is θ = (20 ± 2)0, which is about 3.5 times smaller compared
to the mixing angle θ = (76 ± 5)0, which is predicted in
[11,12].

In Fig. 3 we present the dependence of the mixing angle θ

on the Borel mass parameter M2 at
√
s0 = (4.6 ± 0.1) GeV

for the gμν − pμ pν/p2 structure for the Y (4260) state. We
see from this figure that the mixing angle has the value θ =

√
s0 = 4.4 GeV

M 2 (GeV2)

X(3872)

θ

4.03.53.02.52.0

4.0

3.0

2.0

1.0

0.0

Fig. 1 The dependence of the mixing angle θ on the Borel mass square
M2, at the fixed value of the continuum threshold

√
s0 = 4.4 GeV, for

the structure gμν − pμ pν/p2 for the X (3872) state

√
s0 = 4.4 GeV

M 2 (GeV2)

Y (3940)

θ

4.03.53.02.52.0

40.0

35.0

30.0

25.0

20.0

15.0

10.0

5.0

0.0

Fig. 2 The dependence of the mixing angle θ on the Borel mass square
M2, at the fixed value of the continuum threshold

√
s0 = 4.4 GeV, for

the Y (3940) state

√
s0 = 4.6 GeV

M 2 (GeV2)

Y (4260)

θ

4.03.53.02.52.0

40.0

35.0

30.0

25.0

20.0

15.0

10.0

5.0

0.0

Fig. 3 The same as in Fig. 1, but at the fixed value of the continuum
threshold

√
s0 = 4.6 GeV for the Y (4260) state

(20 ± 3)0, which is approximately 2.5 times smaller than the
mixing angle θ = (53 ± 0.5)0, predicted in [14]. We finally
note that, using the mixing angles obtained in this work, the
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masses of the states orthogonal to the X (3872), Y (3940),
and Y (4260) are calculated in [41].

In summary, in this work, based on the assumptions that
the X (3872) is a mixture of charmonium and D∗0 D̄0 states,
Y (3940) is a mixture of scalar c̄c and D∗D∗ molecule, and
Y (4260) is a mixture of tetra-quark and charmonium states,
we estimate the respective mixing angles within the QCD
sum rules method. The result is obtained that the mixing
angles calculated in the present work for all considered pic-
tures are considerably smaller than the ones predicted in
[9,11,12,14]. Therefore, in our view the considered pictures
for X (3872), Y (3940), and Y (4260) are not successful in
describing these states.

OpenAccess This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
Funded by SCOAP3.

Appendix A

In this appendix we present the spectral densities for the
Y (4260), X (3872), and Y (3940) states.

Y(4260)

Spectral densities corresponding to the gμν− pμ pν/p2 struc-
ture:

ρ11(s) − ρ22(s) = − 1

3072π6

∫ αmax

αmin

dα

∫ βmax

βmin

dβ

×
{

12(1 − α − β)μ2
1m

2
q(αβμ1 + 6mQmQ′)

−μ3
1(1 − α − β)

[
3αβ(1 + α + β)μ1

−2(1 − α − β)2mQmQ′
]

+16π2mq

[
12αβμ2

1 + m2
0mQmQ′

+6(5 − α − β)μ1mQmQ′
]
〈q̄q〉

}

+ 〈q̄q〉
192π4

∫ αmax

αmin

dα
{
mq(1 − α)α

[
6μ2

2

−m2
0(μ2 + 2s)

]
− 6m2

0mqmQmQ′

−8π2
[
(1 − α)α(m2

0 − 7μ2 + 8s − 2m2
q)

+10mQmQ′
]}

,

ρ12(s) = ρ21(s) = −〈q̄q〉2

8π2

∫ αmax

αmin

dα
[
(1 − α)

×α(μ2 − s) − mQmQ′
]
. (13)

X(3872)

Spectral densities corresponding to the gμν− pμ pν/p2 struc-
ture:

ρ11(s) − ρ22(s) = 3μ1

4096π6

∫ αmax

αmin

dα

∫ βmax

βmin

dβ
{

− αβ

×
[
1 − (α + β)2

]
μ3

1 + 2(1 − α − β)μ1mq

[
α(3+α+β)

×μ1mQ′ + β(3 + α + β)μ1mQ − 12mqmQmQ′
]

−8π2〈q̄q〉
[
m2

0 − 2(1 + α + β)μ1 + 2m2
q

]

×(αmQ′ + βmQ) + 32π2mq〈q̄q〉(αβμ1 − 4mQmQ′)
}

+ 〈q̄q〉
512π4

∫ αmax

αmin

dα
{

6m2
0μ2

[
(1 − α)mQ + αmQ′

]

−32π2
[
mQmQ′ + m2

qα(1 − α)
]
〈q̄q〉

+3m2
q(m

2
0 + 4μ2)

[
(1 − α)mQ + αmQ′

]

−4mqα(1 − α)
[
3μ2

2 + m2
0(μ2 − s)

]
− 12m2

0mqmQmQ′

+24π2mq

[
(1 − α)mQ + αmQ′

]
〈q̄q〉

}
,

ρ12(s) = ρ21(s) = −〈q̄q〉2

96π2

∫ αmax

αmin

dα

×
[
α(1 − α)(μ2 − s) + mQmQ′

]
. (14)

Y(3940)

Spectral densities for the Y (3940) state:

ρ11(s)−ρ22(s)= 3μ1

512π6

∫ αmax

αmin

dα

∫ βmax

βmin

dβ
{
− (1−α−β)

×μ1

[
αβμ2

1 + 12m2
qmQmQ′ − 2μ1mq(αmQ′ + βmQ)

]

+8π2
[
μ1(αmQ′ + βmQ) − 8mqmQmQ′

]
〈q̄q〉

}

+ 〈q̄q〉
384π4

∫ αmax

αmin

dα
{

6(m2
0+3μ2)m

2
q

[
(1−α)mQ+αmQ′

]

+9m2
0μ2

[
(1 − α)mQ + αmQ′

]

−12mqα(1−α)
[
3μ2

2+m2
0(2μ2 − s)

]
−36m2

0mqmQmQ′

+16π2
[
−α(1−α)(14μ2−7s+ +9m2

q)+3(1−α)mqmQ

+(3αmq − 13mQ)mQ′
]
〈q̄q〉

}
,

ρ12(s) = ρ21(s) = 〈q̄q〉2

4
√

2π2

∫ αmax

αmin

dα

×
[
α(1 − α)(2μ2 − s) + mQmQ′

]
, (15)
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where

μ1 = m2
Q

α
+ m2

Q′

β
− s,

μ2 = μ(β → 1 − α),

βmin = αm2
Q′

sα − m2
Q

,

βmax = 1 − α,

αmin = 1

2s

[
s+m2

Q−m2
Q′ −

√
(s+m2

Q−m2
Q′)2−4m2

Qs
]
,

αmax = 1

2s

[
s+m2

Q−m2
Q′ +

√
(s+m2

Q−m2
Q′)2−4m2

Qs
]
.
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