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Abstract. In the preliminary design stage of wind turbine blade, faster and simpler methods are 

preferred to predict the aeroelastic response of the blades in order to get an idea about the 

appropriateness of the blade stiffness. Therefore, in the present study, applicability of the 

quasi-steady aeroelastic analysis of wind turbine blade is investigated in terms of how 

accurately the quasi-steady aeroelastic analysis predicts the deformed state of the blade at 

certain azimuthal positions. For this purpose, comparative study of transient and quasi-steady 

aeroelastic analysis of a composite wind turbine blade in steady wind conditions is conducted. 

To perform the transient analysis, a multi-body wind turbine model is generated with almost 

rigid components except for the dynamic superelement blade that is inverse designed. Transient 

analysis of the multi body wind turbine system is performed by imposing constant rotational 

speed to the main shaft and bypassing the controller. Quasi-steady aeroelastic analysis of the 

same composite wind turbine blade is performed, by coupling a structural finite element solver 

with a blade element momentum tool, in steady wind conditions at different azimuthal 

positions including the effect of the centrifugal and gravitational forces. Results show that for 

the wind turbine system taken as the case study, reasonably good agreement is obtained 

between the tip deflections and flapwise root shear forces determined by the transient 

aeroelastic analysis of the wind turbine and quasi-steady aeroelastic analysis of the blade only. 

1. Introduction 

In the design of wind turbine blades, for accurate load analysis, complete turbine model has to be 

generated in a multi-body framework, and transient aeroelastic analysis of the wind turbine system, 

which includes major components such as turbine blades, rotor hub and rotor shaft, gearbox, generator 

and tower, has to be performed. However, building the multi-body model of the complete wind turbine 

requires specialized software and detailed information about the major components which build-up the 

turbine system. In the preliminary design stage, faster and simpler methods are usually preferred to 

predict the aeroelastic response of the blades in order to get an idea about the appropriateness of the 

blade stiffness. For this purpose, quasi-steady aeroelastic analysis is an approach that is commonly 

employed in the preliminary design stage of wind turbine systems. In the early studies, external loads 

on wind turbines were evaluated by utilizing quasi-static aerodynamic calculations, with the effect of 

structural dynamics either ignored or included through the use of estimated dynamic magnification 

factors [1]. From the beginning of 1980s, more reliable methods of dynamic analysis of wind turbine 

systems were considered. Garrad presented a review work on the development of wind turbine 
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modelling techniques [2]. Pedersen has performed a study focusing on the aeroelastic codes for wind 

turbine calculations [3]. A more recent study on the comprehensive review of wind turbine 

aeroelasticity is performed by Hansen et al. [4]. The number of studies focusing on the wind turbine 

aeroelasticity in the literature can be increased. In general, there are two major ways of performing 

dynamic analysis of wind turbine systems. One approach is to have detailed finite element models of 

the sub-structures of the wind turbine system in the multi-body model of the wind turbine. Finite 

element models of the sub-structures can be either detailed 3D finite element models or 1D finite 

element models representing the slender sub-structures such as blades, tower etc. However, due to the 

complexity of the wind turbine system, including detailed 3D finite element models of the sub-

structures into the multi-body model of the wind turbine system is not preferred due to the modelling 

effort needed and the computational cost of transient aeroelastic analysis of the wind turbine system. 

Therefore, current trend is to use geometrically linear and non-linear beams models of the tower and 

the blades in the multi-body model of the wind turbine system. In such models, drive train components 

are modelled by multi-body simulation features, such as springs, kinematic joints etc., inside real finite 

elements models. Another reduced order modelling approach is to use superelement models of the 

sub-structures of the wind turbine system in the multi-body model. In the superelement modelling 

approach, large displacements and rotations in space are allowed, with the only limitation that with 

respect to the local frame fixed to the sub-structure, sub-structure behaves geometrically linear. 

Blades, tower, gearbox, bedplate are typical sub-structures that are modelled as superelements in the 

wind turbine system. With superelement restitution, displacements, forces and stresses within a 

superelement can be retrieved on the basis of a given transient analysis. 

In the present article, a preliminary study is performed on the comparison transient and quasi-

steady aeroelastic analysis of a composite wind turbine blade in steady wind conditions. Comparison 

of the blade tip displacements obtained by the quasi-steady aeroelastic analysis of the blade only and 

blade tip displacements obtained by the transient aeroelastic analysis of the wind turbine system are 

made at different azimuthal positions. The applicability of quasi-steady aeroelastic analysis is 

investigated in terms of how accurately the quasi-steady aeroelastic analysis predicts the deformed 

state of the blade at certain azimuthal positions for the turbine taken as the case study. Reasonably 

good agreement is seen between the tip deflections obtained by the transient aeroelastic analysis of the 

complete wind turbine system and quasi-steady aeroelastic analyses of the blade only. It is considered 

that  for the wind turbine system taken as the case study, quasi-steady aeroelastic analysis can be 

reliably used for the preliminary design study of the wind turbine blade. 

 

2. Inverse design of the reference blade  

In the present study, unsteady aerodynamics experiment (UAE) research wind turbine NREL Phase VI 

is chosen as the reference turbine model [5] to perform the inverse design of the turbine blade for the 

purposes of conducting quasi-steady aeroelastic analysis of the blade and transient aeroelastic analysis 

of the wind turbine system. The root of the reference blade starts at the blade-hub connection at a 

radius of 0.508 m from the center of the hub. Between the radial locations 0.508 m - 0.660 m, blade 

has a circular cross-section. Transition part of the blade lies between 0.660 m and 1.257 m. From the 

end of the transition section to the tip of the blade, the blade has NREL S809 airfoil shape with linear 

taper and nonlinear twist distribution. It should be noted that although sectional beam properties of 

blade used in the (UAE) research wind turbine NREL Phase VI exist [6], laminate definitions in the 

spanwise and chordwise directions could not be determined from the literature. In order to account for 

the coupling stiffness effects due to material lay-out and blade geometry appropriately, in the present 

study 3D blade geometry is used in the quasi-aeroelastic analysis of the blade, and superelement of the 

blade is used in the transient aeroelastic analysis of the wind turbine system. Therefore, inverse design 

of the three dimensional blade is performed such that sectional flapwise stiffness and mass properties 

of the 3D blade approximately match the corresponding properties of blade of the unsteady 

aerodynamics experiment (UAE) research wind turbine [6]. Matching of the blade mass density is 

accomplished by assigning appropriate mass densities to the material in each blade section so that 

The Science of Making Torque from Wind 2014 (TORQUE 2014) IOP Publishing
Journal of Physics: Conference Series 524 (2014) 012051 doi:10.1088/1742-6596/524/1/012051

2



 

 

 

 

 

 

sectional blade mass densities approximately match the sectional blade mass densities of the NREL 

blade. Although the assigned mass densities in each section do not reflect the actual density of the 

material used in the inverse design, sectional mass properties of the inverse designed blade match the 

mass properties of the NREL blade within %10. It should be noted that the goal of the inverse design 

methodology is to come up with a blade design, with realistic stiffness and mass properties, to be used 

in the quasi-steady aeroelastic analysis of the blade and transient aeroelastic analysis of the wind 

turbine system. Therefore, exact match of the sectional beam properties of the inverse design blade 

with the sectional beam properties of the NREL blade is not required. The following materials are 

used in the D-Spar cap and trailing edge of the wind turbine blade to match the flapwise stiffness and 

sectional mass of the blade with the corresponding properties given for the NREL Phase VI blade. 

 Prepreg hybrid Carbon Fiber AS4 12k/997 Unidirectional / fiberglass Triax, 70% 0° for the D-

Spar cap [7] 

 E-Glass 7781/EA 9396 8-harness satin weave fabric for rear part of the wing [7] 

For each section of the blade, appropriate laminate definitions are made for the D-spar cap and 

trailing edge regions. Two dimensional finite element of each blade section is then prepared in 

PreVABS
 
[8] whose output is processed by the variational asymptotic beam section code VABS [9] to 

calculate the sectional beam properties of the blade which are in turn compared with the known beam 

properties of the NREL blade [6]. Iterations continue until acceptable differences between the 

sectional beam properties are obtained for each section of the blade. Figure 1 compares the sectional 

flapwise bending stiffness of the inverse designed blade and the NREL blade [6], respectively. It is 

seen that very good match of the flapwise stiffness has been obtained with the implementation of the 

inverse design approach.  

 

 
Figure 1. Comparison of the variation of the flapwise stiffness of the 

NREL blade [6] and the inverse design blade 

 

3. Quasi-steady aeroelastic analysis of the wind turbine blade 

Quasi-steady aeroelastic analysis of the blade is performed by coupling the blade element momentum 

solver of the wind turbine performance predictor tool, WT_Perf [10] with the finite element solver 

MSC Nastran. Aerodynamic coefficients obtained by WT_Perf are used to calculate the sectional lift, 

drag and moment forces at the aerodynamic center of each blade section. Aerodynamic forces 

calculated at the aerodynamic center of each blade section are applied to the nodes created at the 

aerodynamic center locations in the structural finite element model. In addition, gravity and 

centrifugal forces due to the rotation of the wind turbine blade are created by generating inertia load 

cards, and assigning the gravitational acceleration and the rotation speed to the whole 3D blade as 

body forces accordingly. For the 0
o
, 90

o
 and 180

o
 azimuthal locations, the direction of the gravity 

vector is changed accordingly to take the gravity forces into account correctly. The interaction of the 
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aerodynamic model and the structural finite element model is performed in a loosely coupled fashion. 

At each iteration, after the blade deformation is determined, incremental changes in the angle of attack 

values at each blade section are calculated. Incremental changes in sectional angle of attack values in 

turn cause incremental changes in the aerodynamic loading which are then applied to the structural 

finite element model to calculate the next set of incremental changes in angle of attack values at the 

blade sections. The iterative process is repeated until the blade deformation converges within a 

prescribed tolerance. Aerodynamic forces acting at the aerodynamic center of blade sections are 

distributed to the suction side nodes of the finite element model by means of multi-point constraint 

element RBE3 that is available in MSC Nastran [11]. RBE3 element defines a constraint relation in 

which the motion at a reference grid point is the least square weighted average of the motions at other 

grid points [11]. Forces and moments applied to reference points are distributed to a set of independent 

degrees of freedom based on the RBE3 geometry and local weight factors. The manner in which the 

forces are distributed is analogous to the the classical bolt pattern analysis. The force and moment is 

transferred directly to the weighted center of gravity location along with the moment produced by the 

force offset. The force is distributed to the bolts proportional to the weighting factors. The moment is 

distributed as forces, which are proportional to their distance from the center of gravity times their 

weighting factors. For the distribution of the forces applied at the aerodynamic center, weight factors 

are taken as 1 since nodes represent same size bolts. Figure 2 shows the variation of the flapwise and 

leadwise forces at the blade sections for the 90
o
 azimuth. Flapwise and leadwise forces are calculated 

by decomposing the lift and the drag forces calculated by WT_Perf with respect to the blade root 

reference system. Figure 3 shows the distribution of aerodynamic forces applied at the aerodynamic 

center of each blade section to suction side nodes by RBE3 elements. 

 
Figure 2. Variation of sectional flapwise and leadwise forces along the blade span   

 

 
Figure 3. Distribution of aerodynamic forces to suction side nodes  
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It should be noted that as it is seen in Figure 2, in accordance with the blade element momentum 

theory, aerodynamic forces calculated by WT_Perf at the aerodynamic center of each blade element 

are distributed to the nodes on the suction side of the corresponding blade element only. In the quasi-

steady aeroelastic analysis, the cylindrical root part of the blade (r=0.508 m-0.66 m), shown in Figure 

2, is clamped. It is considered that in the actual assembly of the blade to the rotor hub, the cylindrical 

root of the blade is fixed to the rotor hub which is assumed to be rigid in the quasi-steady aeroelastic 

analysis. Quasi-steady aeroelastic analysis of the blade is performed at 15 m/s steady wind speed with 

a wind shear exponent of 0.2. As shown in Figure 4, calculations  are performed at azimuthal locations 

of 0
o
, 90

o
 and 180

o
. 

 
Figure 4. Azimuthal locations where quasi-steady aeroelastic analyses are performed  

During the quasi-aeroelastic analysis process, incremental changes in the aerodynamic loads are 

computed by utilizing the “shifting nodes” feature of MSC.Patran. Figure 5 shows that at each 

iteration, all node locations are shifted to the deformed positions. After the shifting of the nodes, new 

positions of the node locations at the leading and trailing edges of each blade section are recorded, and 

incremental changes in the sectional angle of attack values are calculated at each blade element. As an 

example, for azimuth 90
o
, Table 1 gives the incremental changes in angle of attack values with the 

iteration number at each blade element. The first blade element corresponds to the circular root where 

there is no lift. It is seen that in three iterations, incremental changes in the angle of attack values 

become almost neglible. Therefore, in the quasi-steady aeroelastic analysis, four iterations are 

performed. The fourth iteration essentially gives the same deformation of the blade as the third.  

 

 
Figure 5. Shifting of nodes to the deformed positions  

 

 

 

 

 

 

The Science of Making Torque from Wind 2014 (TORQUE 2014) IOP Publishing
Journal of Physics: Conference Series 524 (2014) 012051 doi:10.1088/1742-6596/524/1/012051

5



 

 

 

 

 

 

Table 1. Incremental changes in angle of attack values with the iteration number - Azimuth 90
o
 

Blade element 1
st
 iteration (Deg.)       2

nd
 iteration (Deg.) 3

rd
 iteration (Deg.) 

2 -0.0346 -0.00014 -0.00006 
3 -0.2696 -0.00197 -0.00023 
4 -0.3287 -0.00249 -0.00027 
5 -0.3908 -0.00296 -0.00032 
6 -0.4017 -0.00316 -0.00033 
7 -0.4117 0.00331 -0.00034 
8 -0.4024 0.00330 -0.00034 
9 -0.4348 0.00362 -0.00037 

10 -0.4102 0.00310 -0.00034 
 

Table 2 gives the maximum axial tip displacements towards downwind obtained as a result of 

quasi-aeroelastic analysis of the blade at three different azimuthal locations. It is seen that the change 

in the maximum tip displacement in each iteration is very small. This is an indication that the inverse 

designed blade structure is actually very rigid. However, the whole process of quasi-steady aeroelastic 

analysis would not change if the blade structure were more flexible. For flexible blade structures, 

quasi-steady aeroelastic analysis could still be performed if geometrically non-linear solver MSC 

Nastran (Sol 106) is used as the structural solver instead of the linear solver Sol 101. However, for 

long and flexible blades, one would likely to have larger differences between the results of quasi-

aeroelastic analysis and transient aeroelastic analysis because of the differences in the nature of 

transient aerodynamic loading on a stiff blade and on a highly flexible and slender blade. 

Table 2. Maximum axial tip displacements towards downwind at different azimuthal positions 

# of 

Iterations 

Tip Displacement 

Azimuth 0
o
 

(mm) 

Tip Displacement 

Azimuth 90
o
 

(mm) 

Tip Displacement 

Azimuth 180
o
 

(mm) 

1
st
 Iteration 110.5  102.5 99.6 

2
nd

 Iteration 111.6 103.2 99.8 

3
rd

 Iteration 111.7 103.3 100 

4
th
 Iteration 111.7 103.3 100 

 

4. Multi-body modeling of the wind turbine and transient aeroelastic analysis of the blade 

In the design of wind turbine blades, for accurate load analysis, complete turbine model has to be built 

in a multi-body framework and transient aeroelastic analysis of the wind turbine system which 

includes major components such as turbine blades, rotor hub and rotor shaft, gearbox, generator and 

tower has to be performed. Building the multi-body model of the complete wind turbine requires 

specialized software and detailed information about the major components which build-up the turbine 

system. For this purpose, in the present study, multi-body dynamic code Samcef Wind Turbines 

(SWT) is utilized for performing the transient aeroelastic analysis of the blade [12]. Samcef Wind 

Turbines integrates the aerodynamic, structural and control features of the wind turbine in a fully 

dynamic environment. Aerodynamic solver of SWT is based on BEM theory with typical corrections 

such as tip and hub losses, tower shadow, and deactivation of induction factors at low tip speed ratios. 

Samcef Wind Turbines also has built-in semi-empirical sub-models to treat unsteady aerodynamics 

with higher accuracy. Specifically, SWT has dynamic wake sub-model, skewed flow correction sub-

model and dynamic stall sub-models which are of Beddoes-Leishman type. The controller is integrated 

to the wind turbine model by means of dynamic link library which can be used for typical wind turbine 

simulations. Multi-body simulation of the wind turbine system is performed by the implicit non-linear 

finite element solver Samcef Mecano [13] which has the ability to allow the use of multi-body 

simulation features, such as kinematic joints etc., inside real finite elements models. Transient 

The Science of Making Torque from Wind 2014 (TORQUE 2014) IOP Publishing
Journal of Physics: Conference Series 524 (2014) 012051 doi:10.1088/1742-6596/524/1/012051

6



 

 

 

 

 

 

simulations are performed in time domain taking into account the structural, multi-body, aerodynamic 

and control features in a fully non-linear dynamic way with strong coupling.  

In the present study, to conduct the multi-body dynamic analysis of the wind turbine system, 

dynamic superelement of the turbine blade is created in the Samcef Field [14] and it is introduced into 

the multi-body model of the wind turbine system. Before the generation of the dynamic superelement 

of the blade, three dimensional finite element model of the blade is created in Samcef Field in a 

similar manner to the creation of the finite element model in MSC Patran that is described before. In 

order to reflect the stiffness and mass properties of the blade appropriately, three dimensional finite 

element model of the blade is used rather than the beam model. It should be noted that neither MSC 

Nastran nor SWT have beam formulations that are suitable for modelling composite blades with 

coupling coefficients. Therefore, in the quasi-steady aeroelastic analysis performed by MSC Nastran, 

three dimensional shell finite element model of the blade is used. On the other hand, in the transient 

aeroelastic analysis performed by SWT, dynamic superelement of the blade is used since SWT does 

not allow the use of three dimensional finite element model in the multi-body model of the wind 

turbine system. Figure 6 shows the generation of the superelement of the wind turbine blade. In the 

superelement generation process, at each blade section a retained node must be created at the %25 

chord of the blade measured from the leading edge of the blade. Once the superlement of the blade is 

imported into the multi-body model of the wind turbine system, retained nodes are used for applying 

external loads on the turbine blade. Retained nodes are also used as the connector nodes of the blade to 

the wind turbine system through the rotor hub. Therefore, at the root section retained node is created at 

the center of the circular cross-section. As shown in Figure 6, retained nodes are tied to the faces on 

the leading and trailing edge of the blade. In the current study, the link between the retained nodes and 

the faces of the related blade section is established via mean elements which connect the retained 

node, which is taken as the slave node, to the master nodes on the faces of the particular section. By 

the use of mean elements, mean displacement of the master nodes is assigned to the retained node. It 

should be noted that superelement could also be generated by the use of rigid elements between the 

master and the slave nodes. Such superelements behave more rigid than the real structure, on the other 

hand, superelement generated by mean elements is more flexible than the real structure since no 

additional rigidity is added. Therefore, the real behaviour would be between these two idealizations. 

A critical step in the generation of the superelement of the wind turbine blade is to assign the correct 

displacement boundary conditions to the retained node at the root of the blade that connects the blade 

to the rotor hub in the wind turbine system. At this node, a free rotation about the pitch axis must be 

defined to allow for the pitch motion of the blade in the multi-body simulation of the wind turbine 

system. It should be noted that as shown in Figure 6, the cylindrical root of the blade is connected to 

the blade-hub link node on the very stiff rotor hub node via mean elements established between the 

retained node at the blade root and the cylindrical root of the blade.   

 

 
Figure 6. Generation of the superelement of the wind turbine blade    
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Verification of the superelement of the blade is done in Samcef  by performing modal analysis of 

the baseline blade which is clamped at the root. Free vibration frequencies of the first five modes in 

the still air obtained by the complete three dimensional finite element model of the blade are compared 

with the frequencies obtained by the modal analysis of the superelement of the blade in Table 3.  

Table 3. Comparison of first five frequencies of the turbine blade clamped at the root 

Modes 3D FE Model (Hz)          Superelement Blade (Hz) 

1 4.13 4.13 
2  8.32 8.33 
3 17.52 17.54 
4 28.40 28.44 
5 32.47 32.52 

 

As it is seen from Table 3, very good agreement exists between the natural frequencies obtained by 

the 3D finite element model and superelement of the blade. Such an agreement is an indication that the 

superelement of the blade represents the stiffness and mass properties of the three dimensional blade 

accurately, and it can be included in the multi-body model of the complete wind turbine system. 

To study the aeroelastic response of the superelement blade, a 20 kW multi-body wind turbine 

model is created in SWT. For realistic and reliable computation of the internal loads in the wind 

turbine system, several sub-structures, including the controller, are included in the multi-body model 

of the turbine.  For  the  parameters  of  the  wind  turbine, known  properties  of  NREL Phase VI 

turbine are taken as the reference and aerodynamic coefficients of the NREL S809 airfoil obtained 

from the wind tunnel tests [5]  are used in the transient aeroelastic analysis. For the drive train model, 

the so-called FAST drive train model that is available in SWT is included in the wind turbine multi-

body dynamic model. Figure 7 shows the wind turbine model with the FAST drive train. For 

explanation purposes, typical sub-components that exist in FAST drive train are also shown in Figure 

7. FAST drive train includes the bedplate, simple gearbox and generator, rotor shaft, coupling shaft, 

nacelle, main frame and rear frame. When FAST drive train is used, it is not necessary to include 

components of the drive train separately into the multi-body model of the wind turbine system.  In 

case of separate inclusion of the drive train components, detailed properties must be provided for each 

component. Therefore, in the present study, to keep the modeling effort of the wind turbine system 

simple, FAST drive train is used. The default properties of the FAST drive train are initially replaced 

by the known  properties  of  the NREL Phase VI turbine [5,6]. 
 

 
Figure 7. Multi-body model of the wind turbine system with the FAST drive train    

 In order to include only the transient effects due to the rotation of the wind turbine blades in the 

multi-body simulation of the wind turbine system, multi-body model of the wind turbine is created 
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with almost rigid drive train and tower as the main sub-structures. By assigning a modulus of elasticity 

of 1000 times the modulus of elasticity of steel to the tower, flexibility of the tower is eliminated. 

Similarly, equivalent drive shaft torsional spring constant value is also increased 1000 times compared 

to the default value given for the FAST drive train in SWT. By eliminating the flexibility of the drive 

train and the tower, more realistic comparison of the results of the transient aeroelastic analysis of the 

complete wind turbine system with the results of the quasi-steady aeroelastic analysis of the turbine 

blade can be made. In order to compare the results of the quasi-steady aeroelastic analysis with the 

results of the transient aeroelastic analysis, wind turbine is rotated at constant speed of 72 rpm. For 

this purpose, constant rotational speed is applied to the control node at the main shaft main bearing 

which is the closest bearing to the rotor hub shown in Fig. 7. In addition, rotor conicity and tilt angle is 

not considered and pitch angle of the blades is fixed at 0 degree. As for the aerodynamics, except for 

the tip losses, which are also taken into account in the WT_Perf calculations, not other unsteady 

effects are considered in the transient aeroelastic analysis. Figure 8 gives the axial displacement 

towards downwind of the blade tip section for 30 seconds of rotation of the wind turbine blade at 

constant rotational speed. It is seen that due to the wind shear, displacement fluctuates within a band. 

 
Figure 8. Axial tip displacement of the blade towards downwind 

 

 

 

 

Comparison of the blade tip axial displacements towards downwind obtained by the quasi-steady 

aeroelastic analysis of the blade only and transient aeroelastic analysis of the wind turbine system is 

given in Table 4 for different azimuthal positions. For the blade and the wind turbine system studied, 

reasonably good agreement is observed between the tip displacements at different azimuthal positions. 

It is noted that in the transient analysis, tip deflections towards downwind are not equal to each other 

for the 90
o
 and the 270

o
 azimuthal positions. The reason for the difference is due to the wind shear 

effect. In the 0
o
 azimuthal position, the blade is vertically up, therefore aerodynamic forces are high, 

and as the blade rotates to the 90
o
 azimuthal position, due to the transient effect of the higher 

aerodynamic forces, the blade deflection at the 90
o
 azimuthal position is higher than the blade 

deflection at the 270
o
 azimuthal position. On the other hand, blade comes to the 270

o
 azimuthal 

position from the vertically down position of the blade at the 180
o
 azimuthal position where the 

aerodynamic forces are lowest due to the wind shear effect. Obviously, quasi-steady aeroelastic 

analysis predicts the same displacements at the 90
o
 and the 270

o
 azimuthal positions of the blade. The 

pronounced difference in the tip displacement at 90
o
 azimuth is attributed to the transient effect 

associated with the rotation of the blade. In the transient analysis, it is seen that the peak tip 

displacement does not occur at 0
o
 azimuth but it occurs at about 47.5

o
 azimuth. 
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Table 4. Comparison of blade tip axial displacements towards downwind  

Azimuth  

  

 Quasi-steady aeroelastic analysis (mm) 

 

 Transient aeroelastic analysis (mm) 

 0
o
 111.7 114 

90
o
 103.3 113.8 

180
o
 100 99.9 

270
o
 103.3 101.9 

 

Table 5. Comparison of flapwise shear force at the blade root for different azimuthal positions 

Azimuth  

  

 Quasi-steady aeroelastic analysis (N) 

 

 Transient aeroelastic analysis (N) 

 0
o
 1364.3 1379.1 

90
o
 1298 1312.2 

180
o
 1238.2 1204.6 

270
o
 1298 1293 

 

Table 5 compares the flapwise shear forces at the blade root predicted by the quasi-steady 

aeroelastic analysis of the blade and transient aeroelastic analysis of the wind turbine system. Since the 

flapwise shear force is mainly due to aerodynamic loading, the good agreement of the shear forces 

obtained by the quasi-steady aeroelastic analysis of the blade and transient aeroelastic analysis of the 

wind turbine system is an indication that transient effects due to the rotation of the blade is not 

significant on the aerodynamic loading on the blade for the wind turbine system studied.  

5. Conclusion 

Comparative study of quasi-steady and transient aeroelastic analysis of a composite wind turbine 

blade in steady wind conditions is conducted. Quasi-steady aeroelastic analysis of the blade showed 

that inverse designed NREL Phase VI blade structure is actually very rigid. Results also show that for 

the NREL Phase VI wind turbine system considered in the case study, reasonably good agreement is 

obtained between the tip deflections and the flapwise root shear forces obtained by the transient 

aeroelastic analysis of the complete wind turbine system and the quasi-steady aeroelastic analysis of 

the blade only for the steady wind load case. For the NREL Phase VI wind turbine system considered 

in the case study, it is concluded that in the preliminary design stage, quasi-steady aeroelastic analysis 

of the blade can be used reliably in predicting the overall deformation of the blade and sectional blade 

forces which would otherwise be obtained by the multi-body simulation of the complete wind turbine 

system. Finally, it should be noted that the present study is performed in steady wind conditions. 

Quasi-steady aeroelastic analysis can be used in the preliminary design for the initial sizing of the 

internal blade structure. However, in the detailed design phase, multi-body simulations of the wind 

turbine system must be performed considering all load cases to fine tune the initial sizing obtained 

utilizing quasi-aeroelastic analysis. 
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