Alüminyum Alaşımlarının
Aşırı Plastik Deformasyon İşlemleriyle Üretildiği

Proje No: 105M174

Prof. Dr. C. Hakan GÜR
Prof. Dr. Bilgehan ÖGEL
Prof. Dr. Haluk ATALA
Prof. Dr. Şakir BOR
Araş. Gör. Evren TAN

KASIM 2008 ANKARA
ÖNSÖZ

Yüksek dayançlı alüminyum alanlarında hedeflenen dayanç seviyesi esas olarak çökelme sertleşmesi ile sağlanmaktadır. Ancak, malzeme özelliklerinin optimize edilmesi, tane büyüklüğü kontrolü gibi diğer mekanizmaların da devreye alınması gerektirmektedir. Al alanlarının üretimi kapsamlı yatırım gerektiren büyük tesislerde mümkün olduğundan, alternatif üretim tekniklerinin geliştirilmesi üzerinde son yıllarda ciddi araştırmalar söz konusudur.

Bu projenin konusu alüminyum alanların için aşırı deformasyon sistemi tasarlamak, imal etmek ve bu sistemde deformе edilen malzemeleri karakterize etmektir. Bu kapsamda önce, imal edilecek deformasyon özellikleri tasarmına yardımcı olmak ve deformasyonla etki eden faktörleri irdelemek için sonlu eleman yöntemiyle modelleme çalışmaları yapılmıştır. Takiben, laboratuvar ölçekli olarak hem çubuk şeklinde hacimli parçaları deformе eden Eş Kanalli Açısal Presleme (ECAP) sistemi hem de yassi manulleri kesintisiz deforme edebilen Değişken Kanalli Açısal Presleme (DCAP) sistemi imal edilmiştir. Bu iki sistemde aşırı plastik deformasyon uygulanan 2024 (çubuk) ve 6061 (şerit) Al-alanını numuneler, metalografi (SEM, TEM), X-ışınları kırınımı ve çeşitli mekanik deneyler yardımıyla incelenmiştir.

Projeye katkılarından dolayı TÜBİTAK ve ODTÜ Metalurji ve Malzeme Mühendisliği Bölümü’ne; cihaz üretimi ve tasarımı konusunda Ünal Pehlivan başta olmak üzere LAMASAN A.Ş.’ye ve kesintisiz sistem üretimi için Yeter Makine’ye teşekkürlerimizi sunarız.
TÜRKÇE INDEKS

ÖZNSÖZ ... ii
İÇINDEKİLER ... iii
ÇİZELGE LİSTESİ ... v
ŞEKİL LİSTESİ... vi
ÖZET .. xi

ABSTRACT ... x

1. GİRİŞ .. 1
2. LİTERATÜR ARAŞTIRMASI .. 2
 2.1. Genel Bakış ... 2
 2.2. Eş Kanallı Açısal Presleme (ECAP) .. 2
 2.3. ECAP Yönteminde İç Yapı ve Malzeme Özellikleri .. 4
 2.4. ECAP Sonrası Yaşılandırma .. 6
 2.5. Yassi Mamüllerde Kesintisiz Üretim için Aşırı Deformasyon Yöntemi 9
 2.6. DCAP Düzeniği .. 10
 2.7. Literatürün Genel Değerlendirilmesi .. 14
3. GEREÇ ve YÖNTEM .. 16
 3.1. Modelleme Çalışmaları (Sonlu Eleman Analizi) ... 16
 3.1.1. Eş Kanallı Açısal Presleme (ECAP) İşleminin Simülasyonu ... 16
 3.1.2. 3-Boyutlu Analiz Yöntemi ... 18
 3.1.3. Malzeme Özelliklerinin Etkisini İncelemesi ... 19
 3.1.4. Malzeme Sertleşme Mekanizmaları ve Hasar Oluşumu Etkilerinin İncelemesi 20
 3.2. Laboratuvar Ölçüklü Kalıp (ECAP) ... 23
 3.2.1. Sistem Tasarımı ve Modernizasyonu .. 23
 3.2.1.1. Dikey Eksenli Pres .. 23
 3.2.1.2. Yatay Eksenli Pres .. 26
 3.2.1.2.1. 120°lik 14x14mm kare kesiti kalıp .. 26
 3.2.1.2.2. Çift 120°lik 18mm çaplı daire kesiti kalıp .. 27
 3.2.1.2.3. Son Tasarım (120°lik 18mm çaplı daire kesiti kalıp) .. 28
 3.2.2. Malzeme ve İşil İşlem ... 30
 3.2.3. Numunelerin Karakterizasyonu ... 31
 3.2.3.1. X-İşnleri Kırımı (XRD) ... 31
 3.2.3.2. Mikroyapı İncelemeleri ... 31
 3.2.3.3. Sertlik Ölçümleri ... 31
 3.3. Kesintisiz Tezgah (DCAP) ... 32
 3.3.1. Sistem Tasarımı ... 32
 3.3.1.1. Plakalar için Kesintisiz Üretim Sürecinin Simülasyonu .. 33
 3.3.1.2. Kesintisiz Deformasyon Tezgahı (DCAP) İmalatı .. 35
 3.3.1.3. Sistem revizyonları .. 37
 3.3.1.4. Kesintisiz Tezgahta (DCAP) Sıcak İşlem Tasarımı .. 40
3.3.2. DCAP Numunelerinin Karakterizasyonu ...42
3.3.2.1. Çekme Testi ..42
3.3.2.2. Sertlik Taraması ...42
4. BULGULAR ve TARTIŞMA ...43
4.1. Modelleme Bulguları ..43
4.1.1. Kalıp Geometrisinin Etkisi ..43
4.1.2. Sürünme Etkisi ..46
4.1.3. 3-Boyutlu Analiz Karşilaştırmaları ...48
4.1.4. Malzeme Özelliklerinin ve Köşe Boşluğu Oluşma Mekanizması Etkisi49
4.1.5. Malzeme Sertleşme Mekanizmaları ve Hasar Oluşumu Etkileri53
4.2. Laboratuar Ölçekli Kalıp Bulguları (ECAP) ..57
4.2.1. Tasarım Sürecinde Elde Edilen Bulgular ...57
4.2.2. Sistematik Deneyler ..62
4.2.2.1. X-İşim Kırımı Ölçüm Sonuçları ..63
4.2.2.2. Mikroyaşı İncelemeleri ..64
4.2.2.2.1. Optik Mikroskop ve Taramalı Elektron Mikroskobu İncelemeleri64
4.2.2.2.2. Geçirim Elektron Mikroskobu İncelemeleri ...66
4.2.2.3. Malzeme Sertliğindeki Değişim ...71
4.3. Kesintisiz Tezgah (DCAP) Bulguları ..73
4.3.1. Modelleme ..73
4.3.2. DCAP İşleminin Mekanik Özelliklere Etkisi ...74
4.3.2.1. Kanallı Merdane ...74
4.3.2.2. Dokulu Merdane ..76
4.3.2.3. Kısımı Dokulu Merdane ...77
5. SONUÇLAR ..79
5.1. Modelleme ..79
5.2. Laboratuar Ölçekli Tezgah (ECAP) ..80
5.3. Kesintisiz Tezgah (DCAP) ..81
6. PROJE ÖZDEĞERLENDİRMEŞİ ...82

KAYNAKLAR ..83

TÜBİTAK 105M174 – Sonuç Raporu iv Kasım 2008
ÇİZELGE LİSTESİ

<table>
<thead>
<tr>
<th>Çizelge</th>
<th>Açıklama</th>
<th>Sayfa Numarası</th>
</tr>
</thead>
<tbody>
<tr>
<td>Çizelge 3.1</td>
<td>Analizlerde kullanılan K ve n değerleri</td>
<td>20</td>
</tr>
<tr>
<td>Çizelge 3.2</td>
<td>Çift açılı ECAP kalibiyle elde edilen tecrübe</td>
<td>27</td>
</tr>
<tr>
<td>Çizelge 3.3</td>
<td>Deformasyon sırasında sistemde ölçülen yağ basıncı</td>
<td>29</td>
</tr>
<tr>
<td>Çizelge 3.4</td>
<td>Al-2024 Damon spektral analizi ve standart Damon kimyasal kompozisyonu</td>
<td>30</td>
</tr>
<tr>
<td>Çizelge 3.5</td>
<td>Yaşılandırma sıcaklıklar ve süreleri</td>
<td>30</td>
</tr>
<tr>
<td>Çizelge 3.6</td>
<td>Heckert analog sertlik cihazında kullanılan yükler</td>
<td>31</td>
</tr>
<tr>
<td>Çizelge 4.1</td>
<td>Çözeltiye alınmış Al-2024 Damonında matris ve inklüzyonların EDS analizleri</td>
<td>64</td>
</tr>
<tr>
<td>Çizelge 4.2</td>
<td>Çubuksu fazların kimyasal analizi (EDS)</td>
<td>66</td>
</tr>
<tr>
<td>Çizelge 4.3</td>
<td>Yaşlandırılmış Al-2024 Damon çıkışının kimyasal analizi (EDS)</td>
<td>71</td>
</tr>
<tr>
<td>Çizelge 4.4</td>
<td>Al-2024 Damonının farklı koşullardaki sertlik değerleri</td>
<td>71</td>
</tr>
<tr>
<td>Çizelge 4.5</td>
<td>DCAP tezgahından geçirilmiş numunelerde sertlik değişimi</td>
<td>74</td>
</tr>
<tr>
<td>Çizelge 4.6</td>
<td>DCAP deformasyonu sonucu Al-6061 levhanın sertliğindeki gelişim</td>
<td>75</td>
</tr>
<tr>
<td>Çizelge 4.7</td>
<td>Her paso için uygulanan gerinim değerleri</td>
<td>76</td>
</tr>
<tr>
<td>Çizelge 4.8</td>
<td>Kismi dokulu merdaneli DCAP deformasyonu sonucu Al-6061 levhanın sertligeindeki gelişim</td>
<td>77</td>
</tr>
</tbody>
</table>
ŞEKİL LİSTESİ

Şekil 2.1 Şematik ECAP düzeneği [Matsuki vd. 2000].................................3
Şekil 2.2 Tekrarlı geçişte seçenekler [Nakashima vd. 2000; Furukawa vd. 1998].................................3
Şekil 2.3 6005 Alaşımında tek paso sonrası oluşan tane yapıları [Chang ve Shan 2003].................4
Şekil 2.4 Al 6061 alaşımında ECAP sonrası TEM görüntüleri (a)1 paso (b)4 paso (c) ECAP sonrası gerilim-gerinme diyagramları [Chung vd. 2002].................................5
Şekil 2.5 Vickers sertlik değerlerinin paso sayısına göre değişimi [Kim vd. 2001].......................5
Şekil 2.6 AlMgSi alaşımında ECAP yönteminde akma, çekme ve süneklik değerlerinin paso sayısına göre değişimi [Chang ve Shan 2003].................................6
Şekil 2.7 Farklı sayıda ECAP pasosu uygulanmış 6061 malzemede yalnızca sertliğin değişimi (a)175°C (b)100°C [Kim vd. 2001].................................7
Şekil 2.8 6061 alaşımında gerilim-gerinme diyagramları [Kim vd. 2001].................................7
Şekil 2.9 6061 alaşımı için yaşandırma ve ECAP sıcaklığının mekanik özelliklere etkisi [Cai vd. 2004].................................8
Şekil 2.10 ECAP uygulanmış ve yaşandırmış Al-2024 alaşımı TEM mikroyapısı (a) Dislokasyon çevresindeki küçük çökeltiler, (b) Dendegedi S çökeltileri [Kim vd. 2003].................................9
Şekil 2.11 Al 6061 alaşımında S-N diyagramı [Chung vd. 2002].................................9
Şekil 2.12 Kesintisizäretime uygulanmış aşırı plastik deformasyon yöntemleri (a) Raab vd. 2004; (b) Saito vd. 2000; (c) Lee vd. 2002a.................................10
Şekil 2.13 Tekrarlanabilir tarzda deformasyonunun sağlayıcı kalbin şematik gösterimi........11
Şekil 2.14 Farklı açıdaki kayma deformasyonu deseni optik mikroskop görüntülerini (a) φ=100° (b) φ=110° (c) φ=120° (d) φ=130° [Han vd., 2004c].................................11
Şekil 2.15 Al-1050 alaşımlarının DCAP sonrası mikroyapı durumu [Lee vd., 2001] (a) Kayma deformasyonu desenlerinin optik mikroskop görünümü, (b) A bölgesindeki tane yapısının optik mikroskop görünümü (DCAP öncesi), (c) B bölgesindeki tane yapısının optik mikroskop görünümü (DCAP sonrası), (d) TEM aynalıklı alan görüntüsü ve seçilmiş alan kırımı órgesi ile DCAP sonrası hücre yapıları, (e) SEM ile DCAP sonrası kenar yüzeylerdeki kayma bantları yönünün görünümü...12
Şekil 2.16 DCAP paso sayısına (N) bağlı tane yapısındaki değişim [Lee vd., 2003b] (a) N=1 (ε=0.6), (b) N=2 (ε=1.2), (c) N=3 (ε=1.7), (d) N=5 (ε=2.9), (e) N=9 (ε=5.2), (f) N=70 (ε=40.6).................................13
Şekil 2.17 7050 alaşımı TEM görüntüleri ve çökeltilerin etkisi (Nam vd. 2003) (a) 2 DCAP pasosu sonrası (b-e) 2 DCAP pasosundan sonra 250°C’de 30 dakika ısıtılmış13
Şekil 2.18 Çökeltilerin DCAP sonrası mikroyapı değişimine etkisi (Nam vd. 2003) (a) 6 DCAP pasosundan geçmiş 7050, (b) Geniş plaka şeklinde MgZn₂ çökeltilerinden kırılarak oluşmuş incé hücreli çökeltiler.................................14
Şekil 2.19 Aşırı plastik deformasyonun mekanik özellikleri etkisi [Horita vd. 2001].............15
Şekil 2.20 Al alaşımında aşırı plastik deformasyon sonrasında tane büyüklüğünü tavlama sıcaklığı ile değişim [Horita vd. 2001]..15
Şekil 3.1 ECAP düzeneğinin şematik gösterimi... 16
Şekil 3.2 Tipik bir ECAP sistemi ve malzemenin işlem sırasında davranış........................ 19
Şekil 3.3 Orowan mekanizması ve kinematik sertleşme mekanizması ile olan ilişkisi..............21
Şekil 3.4 ECAP düzeneği (a) 30 ton kapasiteli dikey eksenli hidrolık pres, (b) 90° ECAP kalıbı ..23
Şekil 3.5 6066 numunelerde tek pasoluk deformasyon denemeleri 24
Şekil 3.6 5083 Al-alaşımı numunelerin ECAP öncesi ve sonrası fotoğrafları 24
Şekil 3.7 Numune yüzeyinin kodlanması ..25
Şekil 3.8 5083 Al-alaşımında ECAP sonrası kare desenlerdeki değişim25
Şekil 3.9 Yatay eksenli ECAP sistemi ve kalıbı ... 26
Şekil 3.10 Üretim sırasında çatlayan 14mmx14mm kare yüzeyli kalıp 26
Şekil 3.11 18mm çaplı Çift 120°'lik ECAP kalıbı ..27
Şekil 3.12 Son sistemde başarılıyla kullanılan Ø=18mm dairesel yüzeyli kalıp ve itki punç28
Şekil 3.13 Aşırı basınç yükselmeleri sonucu ters ekstruzyon ve numune sıkışması 29
Şekil 3.14 Kalıp içindeki şematik numune sıralaması ... 30
Şekil 3.15 Kalıptan başarılıyla geçirilmiş örnekler ..30
Şekil 3.16 Kesintisiz düzene için ilk ECAP düzeneği tasarımı ...32
Şekil 3.17 Kesintisiz düzene için ikinci ECAP düzeneği tasarıımı 33
Şekil 3.18 Kesintisiz üretim için DCAP düzeneği tasarımı ... 33
Şekil 3.19 Kesintisiz üretim için tasarlanan çelişti düzeneğin şematik gösterimleri35
Şekil 3.20 DCAP tezgahı ..36
Şekil 3.21 DCAP düzeneği ve birimleri ...36
Şekil 3.22 Numuneyi DCAP kalıbına siren merdane yüzeyinden görünüm 37
Şekil 3.23 DCAP tezgahından geçirilmiş saf alüminyum numuneler37
Şekil 3.24 Dokulu merdane yüzeyi ... 38
Şekil 3.25 Alt-üst kalıbı sabitleyen çerçeve tasarım ...38
Şekil 3.26 6061 çekme testi numunesi (çekme deneyi öncesi ve sonrası) 38
Şekil 3.27 Son merdane yüzeyi ve hassas ayar için komparatörler 39
Şekil 3.28 DCAP düzeneğinin son hali ... 39
Şekil 3.29 DCAP sistemiyile üretilen numuneler (a) kanallı merdane, (b) dokulu merdane, (c) Kısımlı dokulu merdane ...40
Şekil 3.30 (a) Merdane öncesi polyamid numune yol, (b) Tasarlanan firınlı numune yol ... 41
Şekil 3.31 Firin düzeniği ve kontrol ünitesi ...41
Şekil 3.32 Firınlı numune yol iç şematik görünüm .. 41

Şekil 4.1 Sürünmesiz durum için tipik plastik gerinme dağılımı ve köşe boşluğu oluşumu .44
Şekil 4.2 Sürünmesiz durum için kalıp geometrisinin dikey kesitte plastik deformasyon homojenliğine etkisi (a) Φ=90°, (b) Φ=120°, (c) Φ=150° ..45
Şekil 4.3 Değişik sürünme koşulları altında eşdeğer gerinme dağılımları : (a) μ=0, (b) 0.025, (c) 0.050, (d) 0.075, (e) 0.100, (f) 0.125, (g) 0.150...47
Şekil 4.4 Dik açılı kalıp için değişik sürünme durumları için dikey kesit için eşdeğer gerinme dağılımları ...47
Şekil 4.5 ECAP işlemi sırasında iki parçasında eşdeğer plastik gerinme dağılımı48
Şekil 4.6 2 ve 3 boyutlu ECAP simülasyonları sonucunda merkez düzlemdeki eşdeğer plastik gerinmelerin karşılaştırılması..49
Şekil 4.7 ECAP işlemi sırasında eşdeğer plastik gerinme hızı dağılımı50
Şekil 4.8 ECAP işlemi sırasında hız dağılımı...50
Şekil 4.9 Köşe boşluğu açısının (α) gerinme peklemesini üsü (n) ile değişimi ..51
Şekil 4.10 Köşe boşluğu açısının (α) gerinme sertleşmesi çarpanı (K) ile değişimi...52
Şekil 4.11 Köşe boşluğu açısının (α) gerinme sertleşmesi çarpanı (K) ve üsü (n) ile değişimi..52
Şekil 4.12 Sertleşme mekanizmasının uygulanması gereken kuvvete olan etkisi..53
Şekil 4.13 ECAP sonrasında çeşitli sertleşme mekanizmalar için eşdeğer plastik gerinme dağılımı (a) izotropik, (b) kinematik, (c) kombine..54
Şekil 4.14 Malzemenin kesiti boyunca eşdeğer plastik gerinme dağılımı (a) birinci pasodan sonra, (b) ikinci pasodan sonra..54
Şekil 4.15 ECAP sırasında çeşitli sertleşme mekanizmaları için ilk pasodan sonra Cockcroft-Latham hasar indeksine göre malzemedeki hasar birikimi. (a) izotropik, (b) kinematik, (c) kombine..55
Şekil 4.16 ECAP sırasında, çeşitli sertleşme mekanizmaları için ikinci pasodan sonra Cockcroft-Latham hasar indeksine göre malzemedeki hasar birikimi. (a) izotropik, (b) kinematik, (c) kombine..55
Şekil 4.17 ECAP sırasında hidrostatik gerinme dağılımı ..56
Şekil 4.18 Numunelerin farklı yönlerden fotoğrafları ve ortalama sertlik değerleri.................................57
Şekil 4.19 6066 Al-alaşımı numunelerde 450°C’de istıma süresine bağlı sertlik değişimi.....58
Şekil 4.20 ECAP sonrası kesit alanda makro-sertlik dağılımı...58
Şekil 4.21 ECAP sonrası kesit alanda mikro-sertlik dağılımı: ölçme ve simulasyon sonuçları ..59
Şekil 4.22 5083 Al-alaşımı numunelerde 415°C’de istıma süresine bağlı sertlik değişimi..............60
Şekil 4.23 5083 Al-alaşımı numunelerin ECAP öncesindeki ve sonrası fotoğrafları ve ortalama sertlik değerleri.................................60
Şekil 4.24 5083 Al-alaşımı numunede tek paso ECAP sonrasında yan kesitte desen değişimi 61
Şekil 4.25 6066 Al-alaşımı numunede tek paso ECAP sonrasında yan kesitte desen değişimi 62
Şekil 4.26 Sonlu eleman simulasyonunda elde edilen desen değişimi ..62
Şekil 4.27 Uygulanan işlemlerin 2024 Al-alaşımı numunelerinde (111) düzlemine ait x-şini kırmım tepesine etkisi..63
Şekil 4.28 Tavlannmış ve ECAP uygulanmış örneklerin (111) düzlemi için x-şini kırmım analizi ..64
Şekil 4.29 Çözeltiye alınmış Al-2024 alaşımının mikroyapısı (a) Optik mikrograf (100X), (b) Tane boyutu dağılımı ..65
Şekil 4.30 Çözeltiye alınmış Al-2024 alaşımının SEM altındaki görüntüü ..65
Şekil 4.31 Bağlanış konumundaki Al-2024 alaşının TEM görüntüüsü..66
Şekil 4.32 Çözeltiye alınmış Al-2024 alaşımının TEM mikroyapısı..67
Şekil 4.33 ECAP uygulanmış Al-2024 alaşının TEM görüntüleri (a) Parlak alan (BF), (b) Karanlık alan (DF), (c) Seçilmiş alan elektron görüntü (SAED)..67
Şekil 4.34 ECAP uygulanmış Al-2024 alaşımında dislokasyon yapıları..68
Şekil 4.35 ECAP sonrası tavlannmış Al-2024 alaşının (a-d) TEM mikroyapıları, (e) Hücre boyutu dağılımı.................................69
Şekil 4.36 Çözeltiye alma sonrası deforme edilmeden yapılan Al-2024 (a), (c) Karanlık alan (DF) görüntüüsü, (b), (d) Aydınlik alan (BF) görüntüüsü.................................70
Şekil 4.37 Çözeltiye alma sonrası ECAP uygulanmış ve yaşanan Al-2024 TEM mikroyapısı..71
Şekil 4.38 2024 Al-alaşımı numunelerde ECAP sonrası yaşlandırma süresine bağlı sertlik değişimi ...72
Şekil 4.39 DCAP prosesinde malzeme yüzeyindeki gerinim değişiminin FEM analizi73
Şekil 4.40 DCAP paso sayısına göre Al-6061 levha sertliğindeki değişim76
Şekil 4.41 Al-6061-T6 numune için DCAP öncesi ve sonrası çekme deneyi sonuçları77
Şekil 4.42 Tavlanmış konumda Al-6061 numune için DCAP öncesi ve sonrası çekme deneyi sonuçları...78
ÖZET

Yüksek dayançlı alüminyum alaşımından mühendislik parçalarının üretimi, kapsamlı yatırım gerektiren büyük tesislerde termo-mekanik işlemlerde mümkündür. Bu işlemlerin tanı boyutunu ancak 10 mikrona kadar düşürebilmesi ve işlem parametrelerinin her alaşım için yeniden ayarlanma gerekliliği dezavantaj olarak değerlendirilmiştir. Bu nedenle, Al alaşımları için alternatif imalat tekniklerinin geliştirilmesi için son zamanlarda çok sayıda araştırma yapılmıştır. Çalışmalar, aşırı plastik deformasyon ile çok ince taneli iç yapı elde edilerek, Al-alaşımlarının mukavemetinde önemli artış sağlandığı gösterilmiştir.

Bu projenin konusu, alüminyum alaşımları için laboratuvar ölçekli aşırı plastik deformasyon sistemleri tasarlayıp imal etmek ve elde edilen numuneleri karakterize etmektir. Projede gerçekleştirilen aşağıdaki aşamalı olarak özetlenmiştir:

■ Önce, imal edilecek deformasyon düzeneklerinin tasarımına yardımcı olmak ve deformasyona etki eden faktörleri irdelemek için sonlu eleman analizi yöntemiyle modelleme çalışmaları yapılmıştır. İşlem parametrelerinin (kalıp geometrisi, sürtünme katsayısı) ve deformе edilen malzeme özelliklerinin (deformasyon pekleşmesi parametreleri/mekanizmaları ve deformasyon hızı hassasiyeti) işlem performansına etkileri incelenmiştir. Ayrıca malzeme sertleştirme mekanizmaları ve hasar oluşumunun deformasyona ugrayan malzeme üzerine etkileri tartışılmıştır.

■ İkinci aşamada, çubuk şeklinde hacimli parçaları deforme eden Eş Kanalli Açısal Presleme (ECAP) sistemi tasarımında imal edilmiştir. ECAP sistemi kullanarak deformе edilen çeşitli alüminyum alaşımlarının mekanik özelliklerindeki ve mikroyapısındaki değişimler incelenmiştir.

■ Son aşamada, elde edilen tecrübeler işığında, yavaş mamulleri kesintisiz deformе edebilen Değişken Kanalli Açısal Presleme (DCAP) sistemi tasarlanıp imal edilmiştir. Farklı sayıda pasodan geçirilen 6061 Al-alaşımı numunelere sertlik ve çekme deneyleri uygulanarak, DCAP paso sayısına bağlı olarak yüksek mukavemetli, ince taneli alüminyum levha üretebilirliği incelenmiştir.

Anahtar Kelimeler:
Aşırı Plastik Deformasyon, Eş Kanalli Açısal Presleme (ECAP), Değişken Kanalli Açısal Presleme (DCAP), Al-2024 ve Al-6061 alaşımları, Yaşılandırma, Sonlu Eleman Analizi, Geçirim Elektron Mikroskopisi
ABSTRACT

Industrial products of high-strength Al-alloys are currently manufactured by thermo-mechanical processes, which are only applicable in the integrated plants requiring high investment cost. Moreover, reduction of the average grain size not less than 10 μm and re-adjustment of process parameters for each alloy type is evaluated as disadvantage. Therefore, recently there have been many research studies for development of alternative manufacturing techniques for aluminum alloys. Research activities have shown that it is possible to improve the strength of Al-alloys remarkably by severe plastic deformation which results in ultra-fine grain size.

This project aims to design and manufacture the laboratory scale set-ups for severe plastic deformation of aluminum alloys, and to characterize the severely deformed samples. The stages of the project are summarized below:

■ First, for optimization of die design and investigation of parameters effecting the deformation finite element modeling simulations were performed. The effects of process parameters (die geometry, friction coefficient) and material properties (strain hardening, strain-rate sensitivity) were investigated. Beside, the effects of strain hardening and failure mechanisms on the severely deformed samples were discussed.
■ Next, Equal Channel Angular Pressing (ECAP) system that can severely deform the rod shaped samples were designed and manufactured. The variations in the microstructure and mechanical properties of 2024 Al-alloy rods deformed by ECAP were investigated.
■ Finally, based on the experience gained, a Dissimilar Channel Angular Pressing (DCAP) system for severe plastic deformation of flat products was designed and manufactured; then, 6061 Al-alloy strips were deformed. By performing hardness and tension tests on the strips that were deformed by various passes, the capability of the DCAP set-up for production of ultra-fine grain sized high-strength aluminum flat samples were investigated.

Keywords:
Severe Plastic Deformation, Equal Channel Angular Pressing (ECAP), Dissimilar Channel Angular Pressing (DCAP), Al-2024 and Al-6061 Alloys, Aging, Finite Element Analysis, Transmission Electron Microscopy
1. GİRİŞ

Alüminyum ve alüminyum alaşımında üretim, gerek entegre (Seydişehir) gerekse ince döküm (ASSAN ve benzeri) tesislerinde dökümle başlamaktadır. Bu süreç, entegre tesislerde sıcak deformasyon ve takiben soğuk deformasyon işlemini, ince döküm tesislerinde ise doğrudan soğuk deformasyon işlemini içermektedir. Gerekirse, son aşamada isil işlem uygulanmaktadır.

6xxx, 2xxx, 7xxx gibi yüksek dayançlı alüminyum alaşımaları yüksek miktarda sıcak deformasyon işlemi gerektirdiğiinden üretim ancak entegre tesislerde mümkün olmaktadır. Sicak işlemin kontrolü bir program içerisinde yapılması sıcak dayançlı alüminyum alaşımının üretiminde bir zorunluluktur. Ön termo-mekanik işlem olarak isimlendirilen bu kontrollü program çoğu kez sıcak işleme kısıtlı kalmamakta, benzer işlemlerin çözündürme sonrasi evrede uygulanması (son termo-mekanik işlemler) elde edilecek özelliklerde etkili olmaktadır.

Bu çerçevede, ülkemizde yüksek dayançlı alüminyum alaşımının levha olarak üretimi yapılamamaktadır. Entegre yapısı ile Seydişehir, yüksek dayançlı Al alaşımı üretimi en yakın kuruluş olmakla birlikte tezghap kapasiteleri nedeni ile yüksek dayançlı alüminyum alaşımının üretimine olanak sağlamamaktadır.

Aşırı plastik deformasyon yöntemi yukarıda bahseden konvansiyonel teknolojide alternatif olarak ortaya çıkmaktadır. Yöntem, kısaca istenilen kalınlığa indirilmiş yassi mamulun boyut değiştirimeksizin plastik deformasyonunu esas almaktadır. Bu yeni teknoloji, ince döküm tesislerinde veya küçük ölçekli işletmelerde sıcak dayançlı alüminyum alaşımının üretimini mümkün kılma potansiyeline sahiptir.

2. LİTERATÜR ARAŞTIRMASI

2.1. Genel Bakış

Alüminyum alaşımlarında hedeflenen yüksek dayanış seviyeleri esas olarak çökme sertleşmesi ile sağlanmakla beraber özelliklerin optimize edilmesi için diğer mekanizmaların da devreye alınmasını gerektmektedir. Niteliksel bu alaşımlarda tane büyüklüğünün kontrolü, termo-mekanik işlemleri temelini oluşturmaktaadır. Bu uygulamada, alaşımlara çökme sertleşmesinde etkili olmayan elementlerden az miktarda alüminyum ve alüminyum alaşımı potansiyeli ile Eşetry şımlık yöntemlerden daha iyi kombinasyondan özelliklerin elde edilebileceği anlaşılmaktadır.

2.2. Eş Kanallı Açışal Presleme (ECAP)

Tekerle değişte malzeme davranışını kanala besleme yönüne bağdır. En sık kullanılan dört yöntemi Şekil 2.2’de verilmektedir. Birincisinde malzeme olduğu gibi aynı yönde kalıp boşluğu tekrar beslenmektedir; diğerlerinde ise kalıptan çıkan malzeme uzun eksenin boyunca belirli açılara döndürülmektedir. Lee vd. (2003a), nispeten daha yüksek açılı tane sınırları oluşturduğundan, B_C yönteminin tane inceltme açısından en iyi sonucu verdiği öne sürmektedir.

2.3. ECAP Yönteminde İç Yapı ve Malzeme Özellikleri

Son yıllarda yapılan çalışmalarla ECAP yöntemi birinci planda alüminyum ve alüminyum alaşımaları takiben ise bakır, magnezyum, nikel, titanyum ve çeliklere uygulanmıştır. Özellikle çökelti sertleşme uygulanan 2xxx, 6xxx ve 7xxx serisi Al-alaşımaları da için bu yöntemin, geleneksel termomekanik işlemlerin ne ölçüde yerini alabileceğini irdelenmiştir.

ECAP yönteminin 2xxx serisi Al-alaşımaları uygulanması hakkında çeşitli yayınlar mevcuttur (Mao vd. 2005; Kim vd. 2003; Lee vd. 2003a, Zheng vd. 2003; Horita vd. 2001). Lee vd., 2024 alaşımını T0 (su verilmiş) durumunda 8 kez kalıptan geçirerek toplam ~8’lik gerçek gerinme uygulamışlardır. Oda sıcaklığında ve 100°C ‘ta yapılan bu işlem sonucunda malzeme tane büyüklüğünün sırası ile 0.3 ve 0.5 μm olduğunu tespit etmişlerdir. Diğer önemli husus ise malzemenin ısıl kararlıgı: 400–450°C ’de tavlama tane büyüklüğü 1 μm ‘nin üstüne çıkmamıştır.

Şekil 2.3 6005 Alasından tek paso sonrası oluşan tane yapısı. [Chang ve Shan 2003]

Şekil 2.4 Al 6061 alaşımdında ECAP sonrası TEM görüntülerı
(a)1 paso (b)4 paso (c) ECAP sonrası gerilim-gerinme diyagramları [Chung vd. 2002]

Şekil 2.5 Vickers sertlik değerlerinin paso sayısına göre değişimi [Kim vd. 2001]

Şekil 2.6 AlMgSi aleminda ECAP yönteminde akma, çekme ve süneklik değerlerinin paso sayısına göre değişimi [Chang ve Shan 2003]

Yapılan çalışmalar çok pasolu ECAP yönteminin malzemede çatlak oluşturabileceği göstermektedir, oluşan iyileşmenin büyük oranda tek pasoda gerçekleşmesi bir avantaj olmuştur. ECAP işleminin ilk sıcaklıklarda (100–125°C) yapılması ile çatlak oluşumunun engellenebileceği öne sürülmüştür (Chung vd. 2002). Yüksek sıcaklıklarda yapılan ECAP işleminin etkisi Chang vd. (2003) tarafından 6xxx alemindada yapılmış, 100°C ve 300°C aralığında artan sıcaklıkta, ECAP ile malzeme dayancınız düştüğünü saptanmıştır.

2.4. ECAP Sonrası Yaşandırma

Şekil 2.7 Farklı sayıda ECAP pasosu uygulanmış 6061 malzeme yaşılanma ile sertliğin değişimi (a)175°C (b)100°C [Kim vd. 2001]

Kim vd. (2001), 6061 alaşımlına uygulanan ECAP+yaşılandırma işleminin T6 yaşılandırma pratiğinden daha üstün olduğunu göstermiştir. Şekil 2.8, 4 paso ECAP uygulanan numunelerin çekme dayancının standart T6 işlemine göre %40 daha iyı olduğunu göstermektedir.

Şekil 2.8 6061 alaşımda gerilmiş-gerinme diyagramları [Kim vd. 2001]

Cai vd. (2004) sıcak ECAP sonucu oluşan yaşlanma durumunu incelemiştir. 6061 numuneleri çözeltiye alındıktan sonra suda hızlı (WQ) veya firında (FC) yavaş soğutulmuştur. ECAP 343 K ve 398 K olmak üzere iki farklı sıcaklıkta ve tek paso olarak uygulanmıştır. WQ numuneleri ECAP sonrasında 373 K’de 48 saat yaşlandırılmış, Şekil 2.9’da verilen çekme deneyi sonuçlarına göre, 343K ECAP sonrası yaşlandırılan alamın akma direncindeki artış ihmal edilebilir düzeyde iken çekme dayanımında artış %10 civarındadır. 398K ECAP sonrası yaşlandırılan alamın akma ve çekme dayanımında artış %15 civarındadır. Bu sonuçlardan ECAP sonrası durgun yaşlandırmanın WQ-ECAP işlemi uygulanması mukavemetin artması üzerinde etkili olduğu kanısına varılabilirmektedir. FC-ECAP işlemi uygulanan alamında düzenli uzama miktarında belirgin bir düşme (%25’ten %1,2–2,7’ye); WQ-ECAP işlemi uygulanan numunede ise azalmının daha az (%10’dan %1,7–4,6’ya) olduğu göstermektedir. Yaşlandırma işlemi senekle etkisi incelenmiştir; WQ-ECAP uygulanan alamılarda uzama daha fazla iyileşme sağlanığı (%1,7–4,6’dan %7–7,6’ya) görülmektedir.

2.5. Yassı Mamullerde Kesintisiz Üretim için Aşırı Deformasyon Yöntemi

malzeme 270° lik bir dönme sonrası sabit kalıbı birinciyce paralel hazırlanmış çıkış kanalından terketmektedir. Kare ve yuvarlak kesitli parçaların yanı sıra, kanalın uygunsuz tarzda açılması ile levhaların da aşırı plastik deformasyonu mümkün olmaktadır (Şekil 2.12a). Bu yöntem her bir malzeme kalınlığı ve kesiti için ayrı tezgah gerektirmektedir. Nispeten kolay ayarlamalarla farklı kalınlıklara cevap verebilecek alternatif yöntemler Şekil 2.12b ve Şekil 2.12c'de gösterilmiştir.

Şekil 2.12 Kesintisiz üretime uyarlanmış aşırı plastik deformasyon yöntemleri
(a) Raab vd. 2004; (b) Saito vd. 2000; (c) Lee vd. 2002a

2.6. DCAP Düzeneği

Şekil 2.15 Al-1050 alaşımlarının DCAP sonrası mikroyapı durumu [Lee vd., 2001]
(a) Kayma deformasyonu desenlerinin optik mikroskop görünümü,
(b) A bölgesindeki tane yapısının optik mikroskop görünümü (DCAP öncesi),
(c) B bölgesindeki tane yapısının optik mikroskop görünümü (DCAP sonrası),
(d) TEM aydınlatılan görüntüleri seçilmiş alan kırımları ile DCAP sonrası hücre yapıları,
(e) SEM ile DCAP sonrası kenar yüzeylerindeki kayma bantları yönünün görünümü

DCAP sisteminin bir diğer avantajı ise çoklu paso deformasyonu izin vermesidir. Han vd.ın (2004c) birden fazla DCAP pasosunun etkisini inceleyen bir çalışmasında, düşük gerinme miktarları için ($\varepsilon_{\text{eff}} < 5.8$) doku bileşenleri yoğunluklarının biriken gerinme ile değiştiği, fakat yüksek gerinme miktarlarında ($\varepsilon_{\text{eff}} > 5.8$) doku bileşenleri yoğunluğunda önemli bir değişim olmadığı rapor edilmiştir. Lee vd. (2003b) tarafından ise saf alüminyumda, düşük gerinme miktarının ($\varepsilon < 2$) sebebi oldugu sertleşme ve aşırı yüksek gerinme miktarının ($3 < \varepsilon < 58$) sebebi olduğu yumuşama araştırılmış ve mikroyapı ile ilişkilendirilmiştir. Şekil 2.16’da $\phi = 120^\circ$ için DCAP paso sayısına (N) bağlı olarak tane yapısındaki değişim TEM görüntüleri verilmiştir.

Şekil 2.16 DCAP paso sayısına (N) bağlı tane yapısındaki değişim [Lee vd., 2003b]
(a) N=1 (ε=0.6), (b) N=2 (ε=1.2), (c) N=3 (ε=1.7), (d) N=5 (ε=2.9), (e) N=9 (ε=5.2), (f) N=70 (ε=40.6)

Şekil 2.17 7050 alasımı TEM görüntüleri ve çökeltilerin etkisi (Nam vd. 2003)
(a) 2 DCAP pasosu sonrası (b-e) 2 DCAP pasosundan sonra 250°C’de 30 dakika ısıtılmış.
Şekil 2.18 Çökeltilerin DCAP sonrası mikroyapı değişiminine etkisi (Nam vd. 2003)
(a) 6 DCAP pasosundan geçmiş 7050,
(b) Geniş plaka şeklinde MgZn₂ çökeltilerinden kırılarak oluşan ince küresel çökeltiler

Han vd. (2008) tarafından yapılan bir diğer araştırma ise çok yüksek plastik gerinmenin etkilerini incelemektedir. DCAP sisteminde kayma deformasyonu oluşturduğu birikmiş gerinmenin şekillendirme ve düzlemsel eşyonsuzluk üzerindeki etkisi incelenmiştir. Malzeme 32 paso DCAP ile çok yüksek plastik gerinme (\(\varepsilon_{eff} \approx 19\)) elde edilmiştir. Doku ölçümleri sonucunda Lankford parametresi (r-value) hesaplanmış ve çok pasoluk geçiş sonucundaki doku oluşumunun şekillendirme ve düzlemsel eşyonsuzluk üzerine etkisi incelenmiştir.

2.7. Literatürün Genel Değerlendirmesi

Literatürdeki bilgiler, aşırı plastik deformasyon yöntemlerinin uygulanmakta olan termo-mekanik işlemlerin yerini alabileceğini göstermektedir.
Şekil 2.19 Aşırı plastik deformasyonun mekanik özellikleri etkisi [Horita vd. 2001]

Şekil 2.20 Al alaşımlarında aşırı plastik deformasyon sonrasında tane büyüklüğünün tavlama sıcaklığı ile değişimi [Horita vd. 2001]
3. GERÇ ve YÖNTEM

İlk olarak, imal edilecek laboratuvar ölçekli deformasyon düzeneklerinin tasarımına yardımcı olmak ve deformasyona etki eden faktörleri incelemek için sonlu eleman yöntemiyle modele çalışmalari yapılmıştır. Takiben, önce çubuk şeklinde hacimli parçaları deformat eden Eş Kanallı Açısal Presleme (ECAP) sistemini; daha sonra yassı mamulleri kesintisiz deforme edebilen Değişken Kanallı Açısal Presleme (DCAP) sistemini imal edilmişdir. Bu iki sistemde aşırı plastik deformasyon uygulanan 2024 (çubuk) ve 6061 (şerit) Al-alaşımı numuneler, metalografi (SEM, TEM), X-ışınları kırımı ve çeşitli mekanik deneyler altında incelenmiştir.

Raporun bu kısmını modelele çalışmalarında kullanılan analiz yöntemlerini, ECAP ve DCAP sistemlerinin tasarım ve modernizasyon aşamalarını açıklamaktadır. Daha sonra, elde edilen örneklerin karakterizasyonu için uygulanmış olan inceleme metotları anlatılmaktadır.

3.1. Modelleme Çalışmaları (Sonlu Eleman Analizi)

Proje kapsamında üretilmesi planlanan kesintisiz deformasyon tezgahlı için, tasarım aşamasında önce ECAP yöntemi ele alınarak deformasyon mekanizmasının anlaşılması ve kesintisiz işlem tasarımı için temel oluşturulması hedeflenmiştir. Tasarım tamamlandktan sonra devam edilen modelleme çalışmalarında malzeme özelliklerinin ve işlem parametrelerinin ECAP performansına etkisi incelenmiştir.

3.1.1. Eş Kanallı Açısal Presleme (ECAP) İşleminin Simülasyonu

Şekil 3.1 ECAP düzeneğinin şematik gösterimi
ECAP işlemi Şekil 3.1’de gösterilen bir düzenekle gerçekleştirilmektedir. Sistemde esit kalınlıkta giriş ve çıkış kanalları iç kalıp açısı (Ψ) ve dış kalıp açısı (Φ) ile belirtilen açılardarda kesişmektedirler. Giriş kanalına beslenen metal parça, presle kontrol edilerek bir sahnerdan yardımı ile deformasyon bölgesinde geçirilip, çıkış kanalına yönlendirilmektedir.

Kare kesiti düzeneğinde, kayma doğruğu alan teorisinde yararlanılan sürtünmesiz durum için ulaşılabilecek etkin gerinme miktarı bağıntısı (3.1) ile hesaplanabilir (Segal vd. 1995). Tek pasoda elde edilecek gerinme miktarı sadece Φ açısıına bağlıdır.

\[\bar{\varepsilon} = \frac{2}{\sqrt{3}} \cot(\Phi) \]

(3.1)

Daha sonra, Iwahashi vd. (1996) tarafından Ψ açısının etkisi de hesaba katılmış ve bağıntısı (3.2) önerilmiştir.

\[\bar{\varepsilon} = \frac{1}{\sqrt{3}} \left[2 \cot \left(\frac{\Phi + \Psi}{2} \right) + \Psi \cos \left(\frac{\Phi + \Psi}{2} \right) \right] \]

(3.2)

ECAP işleminde deformasyon homojenliğine malzeme özellikleri dışında işlem parametreleri olarak kalıp geometrisi ve sürünme katsayısı etki etmektedir. Bu nedenle, çeşitli kalıp geometrileri ve sürünme katsayılari ile simulasyonlar gerçekleştirilerek optimum kalıp geometrisi ve sürünme katsayısı belirlenmeye çalışılmıştır.

İşlemin simulasyonu için yüksek dayançlı alüminyum alemalarını temsil eden varsayım bir malzeme tanımlanmıştır. Kullanılan malzeme modelinde:
- elasto-plastik deformasyon davranış gösterdiği,
- von Mises akma yüzeyi aracılığı ile elastik-plastik geçişinin belirlendiği,
- ilişkili akma kuralı aracılığı ile plastik akma vektörünün belirlendiği,
- malzemenin parçalı sürekli izotropik sertleşme kuralına göre pekleştiği varsayılmıştır. Yüksek dayançlı alüminyum alemalarını temsil eden tipik değerler olarak, elastik modül 69 GPa, Poisson oranı 0.33 alınmış ve plastik bölgede gerilmeme-gerimme ilişkisi için bağıntı (3.3) kullanılmıştır. σ ve ε sırasıyla etkin akma gerilmesi ve etkin plastik gerimmedir.

$$\sigma = 150 + 250\varepsilon^{0.35}$$ (3.3)

3.1.2. 3-Boyutlu Analiz Yöntemi

2 boyutlu “düzlemsel gerinme (plane strain)” varsayımının doğrulanması amacı ile aynı parametrelerle simulasyonların bir kısmı 3 boyutlu olarak modellenmiş ve sonuçlar karşılaştırılmıştır. 3 boyutlu simulasyonlar için 90° iç açılı kalıp kullanılmıştır. 50 mm x 10 mm x 10 mm boyutlarındaki iş parçası ortalamda kenar uzunluğu 1 mm olan 5000 tane sonu eleman ile modellenirken kalıp ve presin boyut değiştirildiğinde kabul edilmiştir. Çarpılma ve yüksek deformasyon etkilerinden ötürü “ağ örgüsünün tamamen yenilenmesi (global remeshing)” seçeneği etkinleştirilmiştir. Deformasyon bölgesinde hasasiyeti arttırmak amacı ile daha önce bir ağ örgüsü oluşturulmak için uyarlamalı yöntemlere başvurulmuştur. 3 boyutta gerçekleştirililen simulasyonlar, iki boyutlu simulasyonlara göre 16-20 kat daha fazla zaman almıştır.
3.1.3. Malzeme Özelliklerinin Etkisinin İncelenmesi

ECAP performansı ve gerinme homojenliği üzerinde yapılan çalışmalarla kalıp geometrisinin etkisi sıkça incelenmiş olsa da, kullanılan malzemeden plastik deformasyon karakteristiklerinin deformasyon homojenliği ile olan etkisi üzerinde yapılan sistemati̇k ve nicel sonuçlara dayanan bir çalışma literatürde mevcut değildir. Yapılan çalışmaların çoğunda malzemeden gerinme sertleşmesine uğramadığı var sayımı veya uğradığı varsayılsa da malzeme özelliklerinin işlem performansına olan etkisi detaylı olarak irdelenmemiştir.

ECAP kalıp tasarımını yaparken işleme tabii tutulacak malzemeden özellikleri de göz önünde bulundurulmazsa tahmin edilen eşdeğer gerinme sertleşmesi var sayılır. Örneğin, Iwamatho’nun bağntısında eşdeğer boyut değitirmeye bağlı (3.4)’de belirtildiği üzere sadece iç ve dış kalıp açılarına bağlıdır. (3.4) numaralı bağntıda kalıbın geometrik dış köse açısı (ψ) yerine malzemeden oluşturduğu köse boşluğu açısı (α) konulursa tahmin edilen değerlerin gerçek değerlerle daha çok yaklaştırığı gözlenmemedir. Diğer bir deyişle, geometrik dış kalıp açısı malzemeden köse boşluğu açısı denklik olduğuna sürece sonuçları etkilememektedir. Aksi durumda ise sistemde ölü metal bölgesi oluşarak gerinme homojenliğini kötü etkilemektedir. Bu durumda, kalıbın dış köse açısı için ideal değer malzemeden köse boşluğu açısı olmadığı belirlenir. Bu hususun dikkate alınarak kalıp tasarımını yapılması işlem performansını önemli ölçüde arttırabilir.

\[
\bar{\epsilon} = \frac{1}{\sqrt{3}} \left[2 \cot \left(\frac{\Phi + \Psi}{2} \right) + \Psi \cos \epsilon \left(\frac{\Phi + \Psi}{2} \right) \right]
\]

(3.4)

Oysa, Şekil 3.2’de görüldüğü üzere, gerinme peklenmesine uğrayan malzemelerde köse boşluğu oluşumu gözlenmemektedir ve bu durum tahmin edilen eşdeğer boyut değişirmeyi etkilememektedir. (3.4) numaralı bağntıda kalıbın geometrik dış köse açısı (ψ) yerine malzemeden oluşturulduğu köse boşluğu açısı (α) konulursa tahmin edilen değerlerin gerçek değerlerle daha çok yaklaştırıldığı gözlenmemedir. Diğer bir deyişle, geometrik dış kalıp açısı malzemeden köse boşluğu açısından küçük olduğu sürece sonuçları etkilememektedir. Aksi durumda ise sistemde ölü metal bölgesi oluşarak gerinme homojenliğini kötü etkilemektedir. Bu durumda, kalıbın dış köse açısı için ideal değer malzemeden köse boşluğu açısı olmadığı belirlenir. Bu hususun dikkate alınarak kalıp tasarımını yapılması işlem performansını önemli ölçüde arttırabilir.

Şekil 3.2 Tipik bir ECAP sistemi ve malzemenin işlem sırasındaki davranış.

Yukarıdaki husus göz önünde bulundurularak literatürdeki bu boşluğun doldurulması için sistematik bir sonlu elemanlar analizi çalışması gerçekleştirilmiştir. Sonuçlar, malzemenin plastik deformasyon özelliklerinin ECAP performasına etkisini açık bir şekilde ortaya çıkarmıştır.
Simulasyonlarda 90° iç açılı kalp kullanılmış ve problem düzlem boyut değişirme varsayımı yapılarak 2 boyuta indirgenmiştir. Bunların yanı sıra deformasyon hızı ve isıma etkileri ihmal edilmiştir. 50 mm x 10 mm x 10 mm boyutlarındaki numune ortalaması kenar uzunluğu 0.5 mm olan 2000 sonlu elemana bölünerek modellenmiştir. Ayrıca, önceki çalışmalarla benzer şekilde kalp ve presin deformasyonu ihmal edilmiştir. Malzeme parametreleri bilinen bütün alüminyum analizleri için 3.1.4. Analizler sonunda tartışılmaktadır. Metalik malzemelerin elastoplastik davranışı 3.1.4. Analizler s. akma fonksiyoneli, akma yasası ve dislokasyon konusudur. Çizelge 3.1'de sunulmuştur. \[\sigma = \sigma_0 + K\varepsilon^n \] (3.5)

İfade \(\sigma \) malzemenin akma dayancı, \(K \) ve \(n \) sırası ile gerinme peklesmesi çarpanı ve üssüdür. Analizler sırasında kullanılan \(K \) ve \(n \) değerleri Çizelge 3.1’de sunulmuştur.

Analizlerin sonunda Şekil 3.2’de \(\alpha \) olarak gösterilen malzeme köşe boşluğu açısı ölçülen malzeme parametreleri ile ilişkilendirilmiştir.

3.1.4. Malzeme Sertleşme Mekanizmaları ve Hasar Oluşumu Etkilerinin İncelenmesi

Metalik malzemelerin elastoplastik davranışının betimlenmesi için 3 temel eğeye ihtiyaç vardır: akma fonksiyon, akma yasası ve sertleşme yasasıdır. İzotropik metalik malzemeler için von Mises akma yüzeyi ve Prandtl-Reuss akma yasası yaygın olarak kullanılmaktadır. Fakat, metalik malzemeler için 3 farklı sertleşme mekanizması (izotropik, kinematik ve kombine) söz konusudur. İzotropik sertleşme akma yüzeyi merkezi sabit kalanak genişlemeye uğramakta, kinematik sertleşme boyutu sabit kalanak merkezi gerilmeyi uyandırarak hareket etmekle, kombine sertleşme ise her iki etki bir arada gözlemlemektedir. İzotropik sertleşmeye uyan bir malzemenin tek yönlü mekanik testlerde yüklemeye yönünden bağımsız olarak (çekme ya da basınma) aynı özellikleri gösterdiği varsayılmaktadır. Bu varsayımda, bir çok metal ve alüminyum için (özellikle yanında Al-alaşımının genel ve lokal temprlerinin için) doğru değildir. Malzemenin ters yönlüde daha kolay plastik deformasyona uğraması (Bauschinger etkisi) durumuna çözeltiye alınıp verilmiş yapılandırılmalar Al-alaşımında (2XXX, 6XXX) sıkça rastlanılmaktadır. Bu etkinin ardından yatan nedenler üstek deformatözden oluşan dislokasyon yıklıkları ve Orowan mekanizmasıdır. Orowan mekanizmaları ince tane yapıla malzemelede sıkça karsılaşan olgular olmasına rağmen, Orowan mekanizmasının etkisi genel olarak daha yoğun olarak hissedilmektedir. Şekil 3.3’te görüldüğü gibi, ince ve homojen dağılım sert çökelteler arasında dislokasyon hareketi çok zordur. Bu etki, malzemenin akma dayancı torment ile kendini göstermektedir. Sabitlevici görevi gören çökelteler arasında dislokasyonlar kritik bir yarış çapa kadar eğilmektedir. Kritik yarıçapı dislokasyon bütünüğünü yitirir, bir yarım dislokasyon sahnelmek ve çökelteler etrafında 2 tane dislokasyon çemberi birakılmaktadır. Bu, aynı zamanda bir dislokasyon oluşurma

Çizelge 3.1 Analizlerde kullanılan \(K \) ve \(n \) değerleri

<table>
<thead>
<tr>
<th>(K)</th>
<th>50</th>
<th>100</th>
<th>150</th>
<th>200</th>
<th>250</th>
<th>300</th>
<th>350</th>
<th>400</th>
<th>450</th>
<th>500</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n)</td>
<td>0.05</td>
<td>0.1</td>
<td>0.15</td>
<td>0.2</td>
<td>0.25</td>
<td>0.3</td>
<td>0.35</td>
<td>0.4</td>
<td>0.45</td>
<td>0.5</td>
</tr>
</tbody>
</table>

TÜBİTAK 105M174 – Sonuç Raporu

20

Kasım 2008

![Şekil 3.3 Orowan mekanizması ve kinematik sertleşme mekanizması ile olan ilişkisi](image)

Kinematik sertleşme etkilerini belirgin olarak görebilmek için yükleme-ters yükleme durumlarının ardışık olarak bulunması gereken bir sistem ihtiyaç vardır. Bu amaçla 2 adet ters yöne kayma deformasyonuna sebep olan kanallı bir sistem kullanılmıştır. Modellerde kullanılan sisteme benzer toplam 4 tane kanal içeren bir kalıp proje kapsamında üretilmiş ve kullanılmaktadır. Sonlu elemanlar analizi için, 130 mm x 10 mm x 10 mm boyutlarına bir çubuk modelleme yapılmıştır. Modelde kalıplar ve RAM sürtünmesiz katı cisimler olarak kabul edilmiş ve RAM 1 mm/s sabit hızla hareket ettirilmiştir. Hasar parametrelerinin enterpolasyonu etkilenmesini engellemek için otomatik tekrar ağ örgüsü oluşturulması gerekmektedir. İlk ağ örgüsü ile analize başlanılsa da ilk ağı kendi malzemenin akma eğrisi Ludwig kanuna göre aşağıdaki gibi tanımlanmıştır:

\[\sigma_f = 328,3 + 83,1 \left(\frac{\varepsilon_p}{\varepsilon} \right)^{0,32} \]

(3.6)

\[\int \frac{\sigma_{\max}^+}{\sigma} \varepsilon dt \geq C \]

(3.7)

\(\sigma_{\max}^+ \) maksimumum çekme asal gerilimi, \(\sigma \) eğilim von Mises gerilimi, \(\varepsilon \) eğilim gerinme hızı ve \(C \) hasar limitidir.
3.2. Laboratuar Ölçekli Kalıp (ECAP)

Projede laboratuar ölçekli kalıp olarak geçen sistem hacimli (bulk) malzeme deformasyonunda kullanılan ECAP sistemini ifade etmektedir. ECAP deformasyonu hakkında yapılan çalışmaların kesintisiz sistem için temel oluşturması bakımından son derece önemlidir. İlk olarak deformasyon sistemi tasarlanmış ve gereksinimler doğrultusunda modernize edilmiştir. Sistematik deneylere başlanmasına rağmen tek pasoluk örnekler mekanik özellikleri, mikroyapıları açısından karakterize edilmiştir. Alt başlıklarla tasarım ve inceleme yöntemlerine dair bilgiler sunulmuştur.

3.2.1. Sistem Tasarımı ve Modernizasyonu

Laboratuar ölçekli deformasyon sistemi tasarımında temel olarak iki çeşit pres kullanılmıştır: dikey ve yatay eksenli. Dikey eksenli sistemde bağılanan denemeler sistem sabitlemenin daha rahat olduğu yatay sistemde devam ettirilmiş; 90° ve 120° açılı kalıp sistemleri kullanılmıştır. Sistematik denemelere geçiş öncesi yapılan çalışmalar aşağıda özetlenmiştir.

3.2.1.1. Dikey Eksenli Pres

Laboratuar ölçekli kalıp (ECAP) için ön çalışmalar optimum işlem parametrelerinin belirlenmesi konusunda önem teşkil etmektedir. Bölüm imkanları ile imal edilen ECAP düzeneği kullanılmıştır. Sistem dikey eksenli hidrolik prese (Şekil 3.4a) yerleştirilen 90° açılı kanala sahip takım çeliğinden imal edilen ECAP kalıbından (Şekil 3.4b) oluşmaktadır. MoS₂ ile yağlanan numuneler ortalama 20 ton yük ile kalıptan geçirilmiştir.

![Şekil 3.4 ECAP düzeneği (a) 30 ton kapasiteli dikey eksenli hidrolik pres, (b) 90° ECAP kalıbı](image-url)
3 adet 6066 Al-alaşımı numunede (14mmx14mmx130mm) tek pasoluk deformasyon yapılmıştır. İlk numune deformasyon sırasında çeşitli noktalardan kırıldığında, ısımlaşme numuneler daha sünek hale getirilmiştir. 450°C’de 60 saat ve 120 saat ısıtılmış numunelerde kırılmının sadece başlangıç ve bitiş kısmında olduğu ve kalan kısmın çatlaksız olduğu görülmuştur (Şekil 3.5).

6066 Al-alaşımı numuneler 120 saat ısıtılarak daha sünek hale getirilseler dahi başlangıç ve bitiş uçlarındaki çatlak oluşumunun önüne geçilememiştir. Bu kapsamında farklı malzemelerin davranışını değerlendirmek üzere 5083 Al-alaşımı tek pasoluk deformasyon edilmistiştir. İlk numune başlangıç ve bitiş kısımlarının yanı sıra orta bölgeden de çatlamıştır. 415°C’de 6 gün tavlanarak yumuşatılan numunede ise orta bölgedeki çatlakın kaybolduı ancak başlangıç kısmının üretim sırasında koptuğunu gözlemmiştir (Şekil 3.6).

Malzemenin kalıpta uğradiği deformasyonu gözlemlemek amacıyla malzeme yüzeyinde kare desenler oluşturulmuştur. 5083 Al-alaşımının üst, yan ve alt yüzeylerin orta bölgesine maket biçağı yardımıyla çizilen desenlerdeki değişim Şekil 3.8’de verilmiştir. Genel olarak alt ve üst yüzeydeki kare formu bozulmamış; ancak alt yüzeydeki çizgiler aşırı sürtünmeden dolayı kaybolma eğilimindeyken, üst yüzeydeki çizgiler ise çatılaşmış mevkeileri olarak davranışlardır. Deformasyon etkisini yan yüzeydeki kare deseni paralel-kenar desene dönüştürerek ortaya koymıştır. Kare desendeki kayma miktarı; sonlu eleman analizlerindeki eleman kaymasıyla kriyaslanarak modelleme ve deneysel yöntem karşılaştırılmıştır. Dikey eksenli sisteme yapılan ön çalışma sonuçları Bulgular kısmında detaylandırılmıştır.

Şekil 3.7 Numune yüzeylerinin kodlanması

Şekil 3.8 5083 Al-alaşımında ECAP sonrası kare desenlerdeki değişim
3.2.1.2. Yatay Eksenli Pres

Ön çalısmalarda, çatlaksız numune elde edilmeye çalışılmış; 6066 ve 5083 Al-alaşımı numunelere (14mmx14mmx130mm) 90° tek paso ECAP uygulanmıştır. ECAP kalibinin, uzun süreli kullanımdan dolayı kanal içi yüzey kalitesi bozulmuştur. Sonlu eleman modellemesinde düşük sürtünme yüksek sürtünen çok daha az zararlı bulunmuş ve mümkün olan en iyi yağlama tavsiye edilmiştir. Bu bağlamda varolan kalıbın modernizasyonu gündemde alınmıştır. Kalıp iç yüzeyinin elektro polisaj ve plazma nitrasyon yapılarak pürüzsüz yüzey elde edilmesi, kalıp sisteminin sabitlenmesine gerek duymaktadır. Yüksek sürtünme sabitlemesine gerek duyan kalıplar modernizasyonu gündeme alınmıştır. Kalıp sistemde sıkça sabitlenebildiğinden üretim sırasında oynama probleminin önüne geçilmiştir; sabit sistemde peş peşe üretim kolaylığı sağlanmıştır. Yatay eksenli preste (Şekil 3.9) 120° açıyla kestirilmiş kanallar bulunduran kalıplar kullanılmıştır. İki farklı kalıpla (120°lik Ø=18mm dairesel kesitli) denemeler yapılarak son karara varılmıştır.

Şekil 3.9 Yatay eksenli ECAP sistemi ve kalıbı

3.2.1.2.1. 120° lik 14x14mm kare kesitli kalıp

İlk olarak 14mmx14mm kesitli numune için üretilen AISI H13 sıcak iş takım çeliğinden mamul kalıp kullanılmıştır. 100mm uzunluğundaki numunelerin deformasyonu sırasında kenar bölgelerinden patlamıştır (Şekil 3.10). Kirılma anında tesbit edilen yük 212,76 kg/mm² mertebeledir. Kalıp köşelerindeki gerinim birikmesinin patlamaya neden olduğu düşünülmektedir. Köşelerin yuvarlatılarak yük birikiminin engellenmesi yerine dairesel kesitli kalıp hazırlanması tercih edilmiştir.

Şekil 3.10 Üretim sırasında çatlayan 14mmx14mm kare kesitli kalıp
3.2.1.2.2. Çift 120° lik 18mm çaplı dairesel kesitli kalıp
Kare kesitli kalıpta yaşanacak patlama sonucunda tasarım değiştirilerek 18 mm çapında kanal boşluğuna sahip çift açılı kalıp (Şekil 3.11) üretilmiş ve çalışmalar bu kalıp vasıtasıyla yürütülmüştür. Bu kalıpta amaçlanan kalıp açılmadan tek defada çift deformasyon verilebilmesidir. Bu kalıp sistemiyi elde edilen tecrübe Çizelge 3.2’de sunulmuştur.

Şekil 3.11 18mm çaplı Çift 120°lık ECAP kalıbı.

<table>
<thead>
<tr>
<th>Çizelge 3.2 Çift açılı ECAP kalıbıyla elde edilen tecrübe.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uygulama</td>
</tr>
<tr>
<td>1. Geri tepme basıncı uygulanmamış deformasyon</td>
</tr>
<tr>
<td>Örnek parçalara bölünmüştür.</td>
</tr>
<tr>
<td>2. 2,5 – 3 ton geri tepme basıncı uygulanmış</td>
</tr>
<tr>
<td>deformasyon denemesi</td>
</tr>
<tr>
<td>Parçalanma azalmiş ama çatlaklar mevcuttur.</td>
</tr>
<tr>
<td>3. Örnek deforme edilmişden önce bakır içine gümüllere</td>
</tr>
<tr>
<td>hidrostatik basınçla çatlak oluşumu engellenmeye</td>
</tr>
<tr>
<td>çalışılmıştır. Çatıklarda gözle görülür azalma</td>
</tr>
<tr>
<td>mevcuttur.</td>
</tr>
<tr>
<td>4. Deformasyon öncesi 420 °C de 1 saat tavlanarak</td>
</tr>
<tr>
<td>örnek yumuşatılmıştır.</td>
</tr>
<tr>
<td>Çatlaksız tek parça ürün elde edilmiştir.</td>
</tr>
<tr>
<td>5. Deformasyon öncesi örnekler 495 °C de 1 saat</td>
</tr>
<tr>
<td>çözeltiye alınarak suda su verilmiştir.</td>
</tr>
<tr>
<td>Derinlemesine çatlak oluşumu mevcuttur.</td>
</tr>
</tbody>
</table>
Bu sistemde elde edilen en önemli bulgu numunenin çatlaksız tek parça çıkarılabilmesi için geri tepme basıncı uygulamasının gerekliğiğidir. Geri tepme basıncının arttırılmasyla çatlık oluşumu kısıtlanmaktadır. Tavlanmış numune tek parça çatlamasına rağmen, projede amaçlanan su verilmiş numunenin tek parça halinde çatlamasını gerektirdiğinden kalıp tasarımını yeniden revize edilmiştir.

3.2.1.2.3. Son Tasarım (120°lik 18mm çaplı dairesel kesiti kalıp)

Kazanılan deneyimler neticesinde, son kalıp tasarımı olarak tek 120°lik 18mm çaplı dairesel kesiti kalıp (Şekil 3.12) kullanılamasına karar verilmiştir. Kalıp H13 sıcakış takım çelişkiden üretilmiştir; kanal iç yüzeyleri elektro polisaj ve plazma nitrasyon yapılarak pürüzsüz yüzey elde edilmiştir. Gereken itki 150mm çapındaki pistonlara bağlı tungsten-karbürden mamul punçlarla (Şekil 3.12b) sağlanmıştır.

Son sistemde başarıyla kullanılan Ø=18mm dairesel kesiti kalıp ve itki punç

Hidrolik aksamın azami itme basıncı 360 bar civarında olup, kritik geri tepme basıncı asılrsa numuneler kalıp içerisinde sıkışığında (Şekil 3.13) kalbin açılması gerekmekte ve bu işlem çok uzun sürmektedir. İlk Al-2024 numune öncesi iki bakır parça; devamındaki her bir numune için en az bir bakır parça kullanılamasının kalıp açımdan en fazla sayıda numune üretimmesine olanak sağladığı saptanmıştır. Al numune öncesi konan bakır sayısı basıncı artışı göz önüne alınarak iki veya üçü çıkarılabilmektedir. Kalıp içerisindeki numune yerleşimi Şekil 3.14’de; numuneler açıkl bölgeden geçerken ölçülen basınç değerleri ise Çizelge 3.3’de sunulmuştur.
Şekil 3.13 Aşırı basınç yükselmesi sonucu ters ekstrüzyon ve numune sıkışması

Şekil 3.14 Kalıp içindeki şematik numune sıralaması

Çizelge 3.3 Deformasyon sırasında sistemde ölçülen yağ basıncı

<table>
<thead>
<tr>
<th>Açılı bölgeden geçen malzeme</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidrolik yağ basıncı (bar)</td>
<td>80</td>
<td>80</td>
<td>160</td>
<td>140</td>
<td>260</td>
<td>260</td>
<td>320</td>
<td>310</td>
<td>280</td>
<td>360</td>
</tr>
</tbody>
</table>

Elde edilen deneyimler sonucunda Al-2024 aletsümları tek parça ve çatıaksız olarak geçirilebilmiştir (Şekil 3.15). Projenin bundan sonraki incelemeleri bu sistem kullanarak yapılmış ve elde edilen ürünler karakterize edilmiştir.
3.2.2. Malzeme ve Isıl İşlem

Sistematik çalışmanın boyunca kimyasal bileşimi Çizelge 3.4’de belirtilen Al-2024 ağızını kütük kullanılmıştır. Kütükten çıkarılan 18mm çapında 100mm boyunda çubuklar ECAP sisteminde deformede edilmiştir.

Çizelge 3.4 Al-2024 ağızını spektral analizi ve standart ağızının kimyasal kompozisyonu

<table>
<thead>
<tr>
<th></th>
<th>Al</th>
<th>Si</th>
<th>Fe</th>
<th>Cu</th>
<th>Mn</th>
<th>Mg</th>
<th>Zn</th>
<th>Cr</th>
<th>Ti</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kullanan</td>
<td>92,6</td>
<td>0.106</td>
<td>0.217</td>
<td>4.9</td>
<td>0.595</td>
<td>1.24</td>
<td>0.156</td>
<td>0.0166</td>
<td>0.0292</td>
</tr>
<tr>
<td>Standart</td>
<td>90,7–94,7</td>
<td><0,5</td>
<td>3,8–4,9</td>
<td>0,3–0,9</td>
<td>1,20–1,80</td>
<td><0,250</td>
<td><0,100</td>
<td><0,150</td>
<td></td>
</tr>
</tbody>
</table>

Çözeltiye alma işlemi için numuneler muffle firında 495°C de 1 saat tavlanmış ve takiben buzlu suda (0°C) soğutulmuştur. Ara basamaklarda oluşabilecek doğal yaşlanmanın önüne geçebilmek için numuneler –18°C’de derin dondurucuda tutulmuştur. ECAP uygulanmış ve uygulanmamış numunelerin yaşandırılmasında ±1°C hassasiyetiyle yağ banyosu kullanılmıştır. Yağ ortamı olarak 1000cp viskositede silikon yağı tercih edilmiştir. Yaşandırma sıcaklıkları ve süreleri Çizelge 3.5’de sunulmuştur.

ECAP sonrası ısıtılmış araçtırılması ve TEM incelemelerinde tane sınırının görünebilir yapılması için tavlama işlemi gerçekleştirilmiştir. Tavlama işlemi muffle firinda 400°C de 1 saat süreyle gerçekleştirilmiştir.

Çizelge 3.5 Yaşandırma sıcaklıkları ve süreleri.

<table>
<thead>
<tr>
<th>Deforme edilmemiş örnekler</th>
<th>Sıcaklık (°C)</th>
<th>Süre (saat)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>190</td>
<td>0.5 1 2 4 8 12</td>
</tr>
<tr>
<td>ECAP uygulanmış örnekler</td>
<td>80</td>
<td>30 43 55 65 86</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>6 12 24 32 6 12</td>
</tr>
<tr>
<td></td>
<td>190</td>
<td>0.25 0.5 1 2 4 6</td>
</tr>
</tbody>
</table>
3.2.3. Numunelerin Karakterizasyonu

3.2.3.1. X-İşnleri Kırmımı (XRD)

X-ışı kırmım profilleri bakır hedef metale sahip Kα monokromatik dalga boyunda x-ışı üretken (λ=1.54183Å) Rigaku DMAX2200 X-ışı cihazıyla elde edilmiştir. Kırmım verileri, 2θ = 37,5° – 40° aralığında (111) düzlemi için toplanmış ve karşılaştırmıştır.

Deformasyon sonrası hücre yapısı boyutunun (cell size) ölçülmesi amacıyla X-ışı çizgi genişlemesi (line broadening) yönteminden yararlanmıştır. Limitli hücre boyutu sayesinde kırmım genişlemektedir. Kırmım genişliği, B, yarım maksimumdaki tam genişlik (FWMH) yöntemiyle ölçülmektedir; hücre boyutu, t ile aşağıdaki bağıntı ile ilişkilendirilmiştir:

\[t = \frac{0.9\lambda}{(BS \cdot \cos \theta_B)} \]

(3.8)

BS yapısalsal genişleme (structural broadening), λ kullanılan dalga boyu ve θ_B kırmım Bragg açısıdır. Yapısalsal genişleme, \(BS^2 = BE^2 - BR^2 \) formülüyle hesaplanmıştır. BE yapısalsal ve cihaz nedenli genişlemeyi içeren ECAP uygulanmış numuneye ait kırmım genişliğini; BR ise sadece cihazsal genişleme içerdği düşünülen referans kırmım genişliğini ifade etmektedir.

3.2.3.2. Mikroyapı İncelemeleri

Mikroyapı incelemesi için optik mikroskop (OM), taramalı elektron mikroskobu (SEM) ve geçirim elektron mikroskobu (TEM) kullanılmış ve ECAP işlemi ve sonrası isıl işlemlerin etkileri araştırılmıştır. OM ve SEM incelemeleri öncesi numuneler standart metalografi yöntemleriyle hazırlanmış ve Keller dağılımcısı (2.5ml HNO₃ + 1.5ml HCl + 1.0ml HF + 95ml su) ile dağılanmıştır. Hazırlanan örnekler Nikon Optiphot-100 optik mikroskop ve Jeol JSM6400 Tarama Mikroskopu ile incelemiştir. 25% nitrik asit + 75% metanol çözeltisinde –33°C’de elektropolatma yöntemiyle hazırlanan örnekler JOEL 2100 Geçirim Elektron Mikroskopu ile incelemiştir. Karanlık Alan (DF), Parlak Alan (BF), Seçilmiş Alan Elektron Kırmımı (SAED) ve EDS teknikleriyle mikroyapı araştırılmıştır.

3.2.3.3. Sertlik Ölçümleri

Brinell sertlik taramaları 2,5mm çelik top uçlu Heckert analog sertlik cihazıyla Çizelge 3.6’da verilen yükler altında yapılmıştır.

<table>
<thead>
<tr>
<th>Çizelge 3.6 Heckert analog sertlik cihazında kullanılan yükler.</th>
<th>kp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Çözeltiye Alınmış (495 °C, 1s)</td>
<td>31.25</td>
</tr>
<tr>
<td>Tavanlanmış (420 °C, 3s)</td>
<td>31.25</td>
</tr>
<tr>
<td>Çözeltiye Alınmış (495 °C, 1s) + ECAP uygulanmış</td>
<td>62.5</td>
</tr>
<tr>
<td>Çözeltiye Alınmış (495 °C, 1s) + ECAP uygulanmış + Yaşandırılması</td>
<td>62.5</td>
</tr>
<tr>
<td>Çözeltiye Alınmış (495 °C, 1s) + ECAP uygulanmış + Tavanlanmış</td>
<td>31.25</td>
</tr>
</tbody>
</table>
3.3. Kesintisiz Tezgah (DCAP)

Proje grubunun ECAP sisteminde edindiği bilgi birikimi ve tecrübenin aktararak plaka deformasyonu yapabilecek kesintisiz tezgahın (DCAP: Dissimilar Channel Angular Pressing) tasarımını, imalatı ve denemeler bu bölümde anlatılmaktadır. Cihaz imalatının ardından sistemin sağlıklı çalışması için bir dizi merdane ve kalıp revizyonlarına gidilmiş; numunenin rahat beslenebilmesi, çoklu paso yapılabilmesi, son ürünü yüzey kalitesi ve mekanik test yapılabilirliği gibi kriterler göz önüne alınmıştır. Sistem tasarım aşamaları bu bölümde; mekanik deneylerin sonuçları ise bulgular bölümünde yer almaktadır.

3.3.1. Sistem Tasarımı

![Şekil 3.16 Kesintisiz düzeneği için ilk ECAP düzeneği tasarım](image-url)
3.3.1.1. Plakalar için Kesintisiz Üretim Sürecinin Simulasyonu

Alüminyum plakalar için kesintisiz üretime uygun bir aşırı plastik deformasyon yöntemi tasarımında ECAP temellerden yararlanılarak çeşitli işlem önerileri ortaya atılmıştır.

Bu problemlerin giderilmesi ve deformasyon işleminin gerçekleştirilmesi ancak kayma kuvvetleri ile deformasyon gerçekleşirse mümkündür. Bir malzemeye kesme kuvvetleri uygulamanın en
temel yöntemi sürtünme kuvvetlerinden faydalanmaktr. Projede tasarlanan süreç ve ekipman tasarmlarında bu prensip göz önüne alınmış ve haddeleme işleminde esinlenerek bazı sürekli ECAP tasarımları yapılmıştır. Bunlardan ikili Şekil 3.19’a’dan sunulan 270°’lik bir merdane dönüşü sonrasında malzemenin sürtünme kuvvetleri aracılığı ile 90° dış kalıp ve 120°’lik iç kalıp açısı ile çıkış kanalına yönlendirildiği tasarımı vardır.

Bu üretici süreci için çeşitli kalınlıkta plakalar için sonlu elemanlar simülasyonları gerçekleştirilmiştir. Simülasyonlar sonucunda işlenin gerçekleştirilmesinin teorik limite çok yüksek hadde sürtünme katsayları ile ancak ve ancak çok ince plakalarda (1 mm veya daha ince) gerçekleştirilebileceği gözelemlenmiştir. Aynı zamanda bu işlemde haddenin plakayı kavraması için başlangıçta plaka bir miktar kalıba sürülmesi gerekmektedir. Bunlar göz önüne alnarak bu işlemin uygulanmasını çok veya pratik olarak imkansız olduğu kararına varılmıştır.

3.3.1.2. Kesintisiz Deformasyon Tezgahı (DCAP) İmalatı
Düzeneğin çalışabilirliğini denemek için çeşitli alüminyum saclara DCAP uygulanmış ve karşılaşılan problemler giderilmeye çalışılmıştır. Temel sorun, numunelerin merdaneler yardımıyla kalıp içerisine ilerletilmesi olmuştur. Bu problemi gidermek ve numune üzerinde yeterli sürünmeyi sağlamak için merdane yüzeylerinde kanallar açılmıştır (Şekil 3.22).

Tezgah kullanılarak (110 mm x 600 mm x 2 mm) boyutlarında 99.6% safılıkta alüminyum saclardan tek pasoluk ve çift pasoluk birer numune üretilmiştir. Şekil 3.23’te görülen numuneler incelenmiş ve makro sertlik ölçümleri sonucunda, düzenekte “merdane – alt kalıp” ve “alt kalıp – üst kalıp” ölçülarının ayarlı olduğu anlaşılmıştır. Kalıp kanal boşluğundaki ayarlamaları takiben yapılan denemelerde 2xxx serisi sac ve saf alüminyum saclar kullanılmış ve makro sertliklerinde gözle görülür bir iyileşme sağlanmıştır.
3.3.1.3. Sistem Revizyonları

Şekil 3.27 Son merdane yüzeyi ve hassas ayar için komparatörler

Şekil 3.28 DCAP düzeneğinin son hali
Şekil 3.29 DCAP sistemiyle üretilen numuneler
(a) kanallı merdane, (b) dokulu merdane, (c) Kısmi dokulu merdane

3.3.1.4. Kesintisiz Tezgahtı (DCAP) Sıcak İşlem Tasarımı

Sıcak işlem için malzemenin merdaneye girmeden önce istenen sıcaklığa ısıtılması amacıyla polyamid parçanın yerine bir fırın tasarlanmış ve bölüm imkanları ile imal edilmiştir (Şekil 3.30). İstici eleman grubu olarak rezistans tel, standart oacak ısıtıcısı ve levha ısıtıcılar denenmiş; en verimli sonuç levha ısıtıcıya alınmıştır. Tasarında üst bölümde sadece yaltım malzesinin, alt bölümde ise Şekil 3.32’de şematik olarak gösterilen yaltım tuğlası–levha ısıtıcı grubunun yer alması planlanmıştır. Bu tasarım 25mm x 11mm ölçüyün levhayı DCAP öncesi ısıtacak yapıdadır. Isıtma hızının ayarlanabilmesi ve sıcaklık sabitlenmesi amaçlı tasarlanan ısıtıcı kontrol sistemi (Şekil 3.31); katı-hal rölesi (solid state relay), akım ayarlayıcı (dimmer), ampermetre ve sıcaklık kontrolöründen oluşmaktadır. Sistemin sıcaklığı ikinci bir termokupl ile kontrol edilebilmektedir. Ön işlemlerde 300–600°C aralıklarında ısıtma süreleri ve ayarlanan sıcaklıkta sabitlenmeyi kolaylaştıracak amperaj değerleri saptanmıştır. Merdane tasarımının ve son yapılan değişimle cihaz ana iskeletindeki değişimle fırın kısmını modifiye gerektirmiş ve montaj tamamlanamamıştır. DCAP sisteminde öncelik hatasız test yapılabilir numune üretimine verildiği için sıcak işlem safhasına geçilememiştir.
Şekil 3.30 (a) Merdane öncesi polyamid numune yolu, **(b)** Tasarlanan firınlı numune yolu

Şekil 3.31 Firın düzeneği ve kontrol ünitesi

Şekil 3.32 Firınlı numune yolu iç şematik görünümü
3.3.2. DCAP Numunelerinin Karakterizasyonu

3.3.2.1. Çekme Testi
Çekme testi için numuneler ASTM B557M-02a standartına göre hazırlanmıştır. Numuneler 10kN kapasiteli Schimadzu dijital çekme cihaz sistemi ile 0,5mm/dakika sabit hızla çekilerek koparılmış; yük-uzama verileri analiz edilmiştir.

3.3.2.2. Sertlik Taraması
Numunelerin Brinell sertlik taramaları 2,5mm çelik top uçlu Heckert analog sertlik cihazıyla ve Vickers sertlikler (HV30) ise EMCO Universal Digital cihazıyla yapılmıştır.
4. BULGULAR ve TARTIŞMA

Projenin temelinde deformasyon sistemi tasarlayıp; malzeme mekanik ve mikroyapı incelemesi olmasına karşın; laboratuar ölçekli kalıp (ECAP) deformasyonu üzerine modellleme çalışmalarına proje süresince devam edilerek katkı sağlanmıştır. Dolayısıyla ECAP sistemi modellleme çalışmalarından elde edilen bulgular ayrı bir başlık altında sunulmuştur. Modellleme sonuçlarının ardından sırası ile ECAP deformasyonunun Al-2024 alemi mikroyapı ve mekanik özelliklerine etkilerinin incelendiği bölüm, ve kesintisiz tezgahla (DCAP) deformasyonun modelleme sonuçlarının sunulduğu ve malzeme özelliklerine etkilerinin incelendiği son bölüm yer almaktadır.

4.1. Modelleme Bulguları

Modellleme çalışmalarıyla ECAP işlem parametrelerinin (kalıp geometrisi, sürünme katsayısı) ve deforme edilen malzeme özelliklerinin (deformasyon peklemesi parametreleri/mekanizmaları ve deformasyon hızı hassasiyeti) işlem performansına etkileri incelenmiştir. Ayrıca malzeme sertleşme mekanizmaları ve hasar oluşumunun ECAP deformasyonuna uğrayan malzeme üzerine etkileri tartışılmıştır.

4.1.1. Kalıp Geometrisinin Etkisi

Kalıp geometrisinin gerinme homojenliğine etkisinin incelenmesi amacıyla Φ ve Ψ açılarının çeşitli kombinasyonları için simulasyonlar gerçekleştirilmiştir. Φ için literatürde sıkça kullanılan 90°, 120° ve 150°, Ψ için ise 0°, 22°, 30°, 60° tercih edilmiştir.

Şekil 4.2’de plastik gerimlerin parçanın orta kesimlerinde teorik değerlere yakın bir plato oluştuğunu ve buradan kalıp yönündeki iki kenara doğru uzaklaştırılmış plastik deformasyonun azaldığı görülmektedir. Kalınların üst yüzeyinde yakın tarafta bu düşme bir süre sonra tekrar artsız dönüşürken, alt yüzeyde böyle bir davranış gözlenmemektedir. Bu nedenle, minimum plastik deformasyon bölgesi alt yüzeyden bir miktar yukarıda konumdadır.
Diğer önemli bir sonuç ise, dış kalıp açısının malzemeye bir pasoda verilebilecek maksimum etkin plastik deformasyonu değiştirdiğidir. Sonlu elemanlar simulasyonları sonucunda parçanın orta kısımlarında bağıntı (3.1) ile öngörülen teorik değere yakın maksimum gerinmeler gözlemlenmiştir. Buna göre, \(\Phi \) arttuşça bir pasoda ulaşılabilen maksimum plastik deformasyon azalmaktadır. Zira maksimum eşdeğer plastik gerinmenin \(\Phi = 90^0, 120^0 \) ve \(150^0 \) için değerleri sırasıyla yaklaşık olarak 1.1, 0.6 ve 0.3 olarak hesaplanmıştır. \(\Psi \) açısı ise sadece \(90^0 \)-lık kalıp için maksimum plastik deformasyona kaynağı değer bir etki yapmaktadır. Geniş açılı kahplarda iç kalıp açısının maksimum plastik gerinmeye ciddi bir etkisi bulunmamıştır. Simülasyonlarda elde edilen değerlerin bağıntısı (3.1)’de sunulan değerleri Başka bir kalıp açısı \(\Phi \) için maksimum plastik deformasyona kayda değer bir etki yapamamaktadır. Zira maksimum eşdeğer plastik gerinmenin \(\Phi = 90^0, 120^0 \) ve \(150^0 \) için değerleri sırasıyla yaklaşık olarak 1.1, 0.6 ve 0.3 olarak hesaplanmıştır. \(\Psi \) açısı ise sadece \(90^0 \)-lık kalıpların maksimum plastik deformasyona etkisi yok denecek kadar azdır. Zira, boşluk oluşumunun temel nedeni farklı yöllarda hareket edip deforme olan kısımların farklı miktarlarda sertleşmesidir. Pekleșmeyen plastik malzeme için böyle bir hız farklılık olmadığından köşe boşluğu oluşumu beklenemez.

Deformasyon homojenliği bakımından \(\Phi \) açısı, \(\Psi \) açısından daha etkindir. Hatta geniş açılı kalıplar için iç kalıp açısının etkin plastik gerinme profiline olan etkisi yok denecek kadar azdır. Deformasyonun homojenliğinin nicel olarak değerlendirilmesi oldukça zordur, homojenlik kriteri olarak orta bölgedeki homojen bollenin genişliği ve maksimum plastik gerinmenin minimuma oran dikkate alınmıştır. Buna göre, geniş açılı kalıpların nispeten daha homojen deformasyona sebep olduğu söylenebilir. Fakat maksimum plastik gerinmeden bir miktar feragat ederek dik açılı kalıpta \(60^0 \) ya da \(90^0 \) iç kalıp açısını kullanarak benzer bir homojenlik oranına ulaşmak mümkündür. Bu şekilde bir pasoda elde edilen maksimum plastik gerinme ile deformasyon homojenliği arasında bir denge kurulabilmesidir. Bu yüzden dik açılı kalıp ve geniş iç kalıp açısı veya \(120^0 \)-lık kalıbın pratik uygulanabilirlikleri daha yüksektir. Zira, \(\Phi = 150^0 \) için bir pasoda ulaşılabilcek maksimum plastik deformasyon oldukça düşüktür ve istenen tane incelmesinin elde edilebilemesi için işlem deneşlerine defalarca tekrarlanması gerekmektedir.

\[\text{Şekil 4.1 Sürünmesiz durum için tipik plastik gerinme dağılımı ve köşe boşluğu oluşumu.} \]
Şekil 4.2 Sürtünmesiz durum için kalıp geometrisinin dikey kesitte plastik deformasyon homojenliğine etkisi (a) $\Phi=90^0$, (b) $\Phi=120^0$, (c) $\Phi=150^0$
4.1.2. Sürtünme Etkisi

Dik açılı kalıp üzerinde sürtünmesiz durumdan, sürtünme katsayısının $\mu=0.15$ olduğu duruma kadar 0.025’lik adımlarla sürtünme katsayısı değişirilerek simulasyonlar tekrarlanmıştır. Simulasyon sonuçları, Şekil 4.3 ve Şekil 4.4’de özetlenmiştir.

Şekil 4.4’teki sürtünme katsayısı arttıkça köşe boşluğu oluşumunun azaldığı, hatta $\mu=0.1$’den büyük değerler için boşluğun tamamen kapandığı görülmektedir. ECAP işleminin başlangıcında oluşan köşe boşluğu, deformasyonun ilerleyen süreçte alt yüzeydeki etkin sürtünme kuvvetlerinin etkisiyle metalin ters yönde akması sonucunda kapanmıştır. Fakat bu bölgeler, sürtünme kuvvetleri tarafından aşırı miktarla plastik deformasyona uğramıştır. Bu durum, köşe boşluğu oluşumun engellenmesine rağmen, daha kötü bir etki yarataarak, deformasyon homojenliği için kayına sebep olmuştur.

Şekil 4.3’teki sürtünme katsayısı ise, soldaki kalıp üzerindeki kalınlıkta 0.025, sağdaki kalıplarda ise 0.075 ile 0.1 arasında değişecektir. Sonuçlar, ideal deformasyon homojenliği için sürtünme katsayısının 0.075 ile 0.1 arasında olması gerektiğini göstermektedir.

Bu sonuçlardan yararlanılarak proje ile ilgili şu kararlar alınmıştır:

1. Laboratuvar ölçekli veya kesintisiz üretim için dils kalıp açısı 90° veya 120° olmalıdır. 90° kalıplar için yüksek iç kalıp açısı tercih edilmelidir. Bu şekilde bir pasoda hem yüksek plastik gerinme hem de uygun gerinme homojenliği elde edilebilecektir.

2. Mükümkün olduğunca iyi bir yapılama yapılmalıdır. En iyi sonuçlar $\mu=0.75-0.1$ arasında elde edilmiş olsa da sürtünmenin bu kadar hassas kontrolü pratikte soraktan elde edilebileceğin için yapılan uygulanamadır. Zira düşük sürtünme yüksek sürtünmeden çok daha az zararlı bulunmaktadır.
Şekil 4.3 Değişik sürünme koşulları altında eşdeğer gerinme dağılımları:
(a) $\mu=0$, (b) 0.025, (c) 0.050, (d) 0.075, (e) 0.100, (f) 0.125, (g) 0.150

Şekil 4.4 Dik açılı kalıp için değişik sürünme durumları için dikey kesit için eşdeğer gerinme dağılımları
4.1.3. 3-Boyutlu Analiz Karşılaştırması

Şekil 4.5’de 3 boyutlu simulasyonlarda elde edilen numune üzerindeki eşdeğer plastik gerinmelerin dağılımı sunulmuştur. Temel olarak 2 boyut varsayımının doğruluğunu kontrol etmek için 2 boyutta sabit olduğu varsayılan derinlik yönündeki gerinmelerin dağılımdan faydalanılabilir. Bu şekilde de açıkça görüldüğü üzere parçanın x-z ve y-z düzlemlerindeki eşdeğer plastik gerinme miktarı oldukça homojendir. Aynı zamanda parçanın derinlik yönünün ortasından alınan bir kesitteki plastik gerinme miktarları 2 boyutlu modele karşılaştırılmıştır. ECAP işlemi sonunda her iki varsayımın sonuçlarının karşılaştırılabilmesi için merkez düzlemdeki eşdeğer plastik gerinme dağılımları Şekil 4.6’da sunulmuştur. Bu değerlerin 2 boyut varsayımı ile elde edilen değerlere çok yakın olduğu gözlenmiştir. Bu noktadan yola çıkarak ve 3 boyutlu simulasyonların daha uzun zaman almasıdan ötürü, simulasyon çalışmalarının düzlem gerinme varsayımı ile yapılmasına karar verilmiştir.
4.1.4. Malzeme Özelliklerinin ve Köşe Boşluğu Oluşma Mekanizması Etkisi

İdeal durum varsayımda, ECAP işlemi sırasında deformasyon iç ve dış kalıbı birleştiriren düzlem üzerinde basit kayma ile gerçekleşmektedir. Fakat malzemenin gerçek davranışının bundan uzak olduğu gözlemlenmiştir. Yol farkı ve malzemenin gerinme pekleşmesi karakteristiklerinden ötürü köşe boşluğu oluşmaya ve bu deformasyon bölgeminin bir düzlem olmaktan çıkıp hacimsel bir durum almasına neden olmaktadır. ECAP işlemi sırasında deformasyon bölgeminin belirlenmesi için eşdeğer gerinme hızı veya eşdeğer gerilme konturlarından yararlanabilir. Şekil 4.7’de görüldüğü üzere deformasyon bölgesi bir düzlem değil yaklaştı elips şeklinde bir bölgedir. Dikkat edilmesi gereken diğer husus, bu bölgede gerinme hızının değişken olması.

Köşe boşluğu oluşmasının nedeni deformasyon bölgeminin üst ve alt kısımlarındaki hizlar arasındaki farklılık olarak belirlenmiştir. Şekil 4.8’de hızın deformasyon bölgesindeki değişimine bakıldığında, kalbin alt tarafına temas ederek akan kısımdan üst tarafına temas eden kısımdan daha hızlı aktığı ve bunun sonucunda köşe boşluğu oluştuğu görülmektedir. Bu hız farkına yol farkı, sürünme ve malzemenin pekleşme özellikleri neden olmaktadır. İster pekleşen, ister pekleşmemeyen malzeme olsun deformasyon sırasında kalbin iç kısmına yakın olan noktaların takip ettiği yol dış kısmına yakının olanlardan daha kısıdır. Fakat bu durum, parça çok kalın olmadığı sürece hatrı sayılır bir hız farkına ve köşe boşluğu oluşumuna sebep olmamaktadır. Literatürde de Al-6061 gibi neredeyse pekleşmemeyen aluminyum alaşımlarda köşe boşluğu oluşumu belirgin biçimde gözlemlenmemiştir.
Sürtünme de, yol farkı etkisini artırması nedeniyle, köşe boşluğu oluşumunda etkendir. Bununla birlikte, kalbin üst ve alt yüzeylerinde aynı düşük sürtünme katsayısı varsayılrsa sürtünmenin bu kısımlara yaklaştık aynı şekilde etki ederek sonuçları çok değiştirmeyeceğini varsayılabilir. Buradan yola çıkarak kalbin alt kısmına üst kısımdan daha yüksek bir sürtünme vererek köşe boşluğunun azaltılmasını mümkün olabileceğini sonucuna varılabılır.

ECAP sırasında köşe boşluğu oluşumunun en önemli sebebi malzemenin pekleşmesidir. ECAP işleminin ilk aşamasında deformasyon bölgesine giren parçacıklar farklı gerinme geçmişlerine sahiptirler. Örneğin, deformasyon bölgesine giren çıkış kanalının üst kısmına yakın olan parçacıklar alt kısımdakilere oranla daha büyük gerinmelere maruz kalırlar ve yerel bir pekleşme

Şekil 4.7 ECAP işlemi sırasında eşdeğer plastik gerinme hızı dağılımı.

Şekil 4.8 ECAP işlemi sırasında hız dağılımı.

![Şekil 4.9 Köşe boşluğu açısının (α) gerinme pekleşmesi üssü (n) ile değişimi](image)

Şekil 4.10 Köşе boşluğu açıının (α) gerinme sertleşmesi çarpanı (K) ile değişimi

Şekil 4.11’de K ve n’nin köşe açısı üzerindeki birleşik etkisini görmek için 3 boyutlu bir grafik sunulmuştur. Elde edilen veri noktalara çok değişkenli regresyon analizi uygulananak bu noktalara en yakın 2. derece yüzey belirlenmiştir. Buna göre, köşe boşluğu açısının K ile değişimi doğrusal, n ile değişimi parabolik kabul edilebilir. Sonuç olarak, gerinme pekleşmesine uğrayan malzemeler için ECAP kalıbı tasarlanırken geometrik faktörlerin yanı sıra malzeme özelliklerinin de göze alınması gerektiği anlaşılmuştur.

Şekil 4.11 Köşе boşluğu açıının (α) gerinme sertleşmesi çarpanı (K) ve üssü (n) ile değişimi
4.1.5. Malzeme Sertleşme Mekanizmaları ve Hasar Oluşumu Etkileri

Bu kısmından çıkarılabilen önemli bir sonuç, kinematik sertleşme bir malzemenin ECAP işlemine tabii tutulmasının daha küçük bir presle uygulanabileceği ve aynı zamanda bu durum, kalıp dizayn için de avantajlidir. Zira, kullanılan kuvvetin azalması ile kalıba binecek yük de azalacaktır. Fakat, ECAP tasarımı için uygulanan kuvvet ve kalıbın yansıtsı gerinme homojenliği ve hasar birikimi de incelenmelidir.

![Şekil 4.12 Sertleşme mekanizmalarının uygulanması gereken kuvvete olan etkisi.](image_url)

Şekil 4.13 ECAP sonrasında çeşitli sertleşme mekanizmaları için eşdeğer plastik gerinme dağılımı
(a) izotropik, (b) kinematik, (c) kombine

Şekil 4.14 Malzemenin kesiti boyunca eşdeğer plastik gerinme dağılımı
(a) birinci pasodan sonra, (b) ikinci pasodan sonra
Şekil 4.15’te, ilk paso sonunda değişik sertleşme mekanizmalarına sahip malzemelerde Cockcroft-Latham hasar indeksinin dağılımı sunulmuştur. Sonuçlara göre, ilk paso sonunda sertleşme mekanizmasının hasar birikime etkisi zayıftır, kinematik ve kombine sertleşen malzemelerde burun bölgesinde fazladan küçük bir hasar bölgesinin oluşması dışında belirgin bir fark yoktur.

Şekil 4.15 ECAP sırasında çeşitli sertleşme mekanizmaları için ilk pasodan sonra Cockcroft-Latham hasar indeksine göre malzemedeki hasar birikimi. (a) izotropik, (b) kinematik, (c) kombine

Şekil 4.16 ECAP sırasında, çeşitli sertleşme mekanizmaları için ikinci pasodan sonra Cockcroft-Latham hasar indeksine göre malzemedeki hasar birikimi. (a) izotropik, (b) kinematik, (c) kombine

Şekil 4.17 ECAP sırasında hidrostatik gerinme dağılımı
4.2. Laboratuar Ölçekli Kalıp Bulguları (ECAP)

Bu bölümde ECAP sistemi kullanılarak deformе edilen farklı alüminyum alaşımlarının mekanik özelliklerinde ve mikroyapısındaki değişim incelenmektedir. İlk bölümde sistem tasarımında elde edilen deneyim paylaşılacak ve ECAP sisteminin getirdiği sonuçlar sunulmaktadır. İkinci kısım ise ECAP sistemi yapılandırıldıktan sonra gerçekleştirilen sistematik Al-2024 deneylerini kapsamaktadır.

4.2.1. Tasarım Sürecinde Elde Edilen Bulgular

İlk denemeler bölüm olanaklarıyla üretilmiş 90°lik kalıp kullanılarak yapılmıştır. Bu çalışmalar Al-6066 ve Al-5083 alaşımları kullanılmış ve ECAP yönteminin tanınmasında faydalı sonuçlar elde edilmiştir.

Öncelikle, 3 adet 6066 Al-alaşımda numunede (14mmx14mmx130mm) tek paso ECAP deformasyonu yapılmıştır. İlk numune deformasyon sırasında çeşitli noktalardan kırıldıktan sonra, isı ile numuneler daha sünek hale getirilmiş. 450°C’de 60 saat ve 120 saat ısıtılmış numunelerde kırmanın sadece başlangıç ve bitiş kısmında olduğunu ve kalan kısmın çatlaşı olduğu görülmüştür. Numunelerin yan yüzeylerinde, uzunluk boyunca 6 farklı noktada sertlik ölçümü alınmıştır (Şekil 4.18).

<table>
<thead>
<tr>
<th>Numune</th>
<th>Ortalama Sertlik</th>
<th>Numune</th>
<th>Ortalama Sertlik</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>67 ± 0,82</td>
<td>1D</td>
<td>84 ± 1,97</td>
</tr>
<tr>
<td>2</td>
<td>56 ± 0,52</td>
<td>2D</td>
<td>84 ± 3,16</td>
</tr>
<tr>
<td>3</td>
<td>52 ± 1,17</td>
<td>3D</td>
<td>85 ± 1,55</td>
</tr>
</tbody>
</table>

Heckert Analog Sertlik Cihazı (Brinell): 2,5 mm bilye 31,25kP

Şekil 4.18 Numunelerin farklı yönlerden fotoğrafları ve ortalama sertlik değerleri
Isıl işlemle yumuşatma sırasında firin içerisinde yerleştirilen şahit numune vasıtasıyla sertlik değişimi gözlenmiştir. Şekil 4.19'da sertliğin zamana bağlı değişimi, üçüncü gün sonunda sertlik değerinin sabitlendiğini göstermektedir.

Şekil 4.19 6066 Al-alaşımı numunelerde 450°C'de ısıtma süresine bağlı sertlik değişimi

450°C'de 120 saat ısıtılan numunenin orta bölümden parça çıkartılarak; kesit bölgesinin makro ve mikro sertlik dağılımı incelenmiştir. Şekil 4.20'deki makro sertlik değişimi incelendiğinde yatay eksende pek bir değişim gözlenmediği buna rağmen deformasyonun etkilerinin dik eksende oluştuğu saptanmıştır. Dik eksendeki sertlik taraması birbirinden eşit uzaklıkta mikro-sertlik (Knoop) yöntemiyle tekrar edilmiştir (Şekil 4.21).

Şekil 4.20 ECAP sonrası kesit alanda makro-sertlik dağılımı

Şekil 4.21 ECAP sonrası kesit alanda mikro-sertlik dağılımı: ölçme ve simulasyon sonuçları

Şekil 4.22 5083 Al-alaşımı numunelerde 415°C ’de ısıtma süresine bağlı sertlik değişimi

<table>
<thead>
<tr>
<th>Numune</th>
<th>Ortalama Sertlik</th>
<th>Ortalama Sertlik</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>96 ± 3,38</td>
<td>1D 117 ± 2,04</td>
</tr>
<tr>
<td>2</td>
<td>72 ± 1,10</td>
<td>2D 116 ± 0</td>
</tr>
</tbody>
</table>

Heckert Analog Sertlik Cihazı (Brinell): 2,5 mm bilye 31,25kP

Şekil 4.23 5083 Al-alaşımı numunelerin ECAP öncesi ve sonrası fotoğrafları ve ortalama sertlik değerleri

Malzemenin kalıpta uğradığı deformasyonu gözlemlemek amacıyla malzeme yüzeyinde maket biçtiği yarıştıyla kare desenler oluşturulmuştur. Çizgilerdeki değişim, Şekil 3.8 ’de sunulmuştur. Bütün yan yüzeyin desenlendirildiği çalışma ise, üç farklı bölgenin varlığını ortaya çıkarmaktadır. Başlangıç ve bitiş çatıkları arasındaki çatılsız bölge, deformasyon karakteristiğini göstermektedir. Yatay çizgilerde pek bir değişiklik gözlemememesine rağmen

Şekil 4.24 5083 Al-alaşımı numunede tek paso ECAP sonrasında yan kesitte desen değişimi

Çatıkların varlığı desen morfolojisini etkilese de orta kısmındaki durum ve desen açısı literatürdeki benzer çalışmalarla ve yapılan sonlu eleman analizi sonuçlarıyla (Şekil 4.26) uyum içerisindeidir.
4.2.2. Sistematik Deneyler

4.2.2.1. X-İşini Kırmım Ölçüm Sonuçları

Al-2024 alaşımına uygulanan deformasyon ve yaşlandırma işlemleri malzemenin mikroyapısını değiştirmekte ve x-şiş X-ray kırmım profilini etkilemektedir. Ortalama \(\theta = 38.3^\circ \) değerinde gözüken alüminyum (111) düzlemine ait karakteristik kırmım tepesindeki değişimi göstermektedir (Şekil 4.27).

Kırmım tepesi, su verme, deformasyon ve yaşlandırma işlemlerine bağlı olarak genişlemekte, sağa-sola kaymaktadır. Çözeltiye alma sonrası artan yarı yükseklik genişliği; sistemde kalıntı gerilmelerinin oluştuğuna işaret etmektedir. Deformasyon sonrası tepe noktası aşağıya düşmüş ve daha da genişleyerek sola kaymıştır. Bu durum kalıntı geriliminin varlığı ve hücreli yapı (cell structure) oluşumuna işaret etmektedir. ECAP sonrası yaşlandırılan örnekte ise profil sağa kaymış ve X-şiş X-ray kırmım şiddeti azalmaktır.

ECAP sonrası oluşan hücre boyunun x-şiş X-ray kırmım çizgi genişlemesini (line broadening) yöntemiyle tayini için ECAP uygulanmış ve referans olarak seçilen tavlanmış durumdaki kırmım profillerinden çizgi genişlemesi (BE ve BR) tayin edilmiştir (Şekil 4.28). Bağıntı (3.8) kullanılarak ECAP sonrası elde edilen ortalama hücre boyutu yaklaşık 50nm olarak tayin edilmiştir.

![Şekil 4.27 Uygulanan işlemlerin 2024 Al-alaşımı numunelerinde (111) düzlemine ait X-şiş X-ray kırmım tepesine etkisi](image-url)
4.2.2.2. Mikroyapı İncelemleri

Al-2024 alanının başlangıç konumunun belirlenmesi için optik mikroskop ve taramalı elektron mikroskobundan faydalanılmıştır. Deformasyon (ECAP) ve sonrası ısı işlemler sırasında mikroyapı değişimlerinin kontrolü ise geçirim elektron mikroskobuyla tayin edilmeye çalışılmıştır.

4.2.2.2.1. Optik Mikroskop ve Taramalı Elektron Mikroskobu İncelemleri

Çizelge 4.1 Çözeltiye alınmış Al-2024 alanında matris ve inklüzyonların EDS analizleri

<table>
<thead>
<tr>
<th>Matris</th>
<th>İnkluzyon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Element</td>
<td>Ağırlıkça %</td>
</tr>
<tr>
<td>Al</td>
<td>94,46</td>
</tr>
<tr>
<td>Cu</td>
<td>5,29</td>
</tr>
<tr>
<td>Mg</td>
<td>0,25</td>
</tr>
<tr>
<td>Fe</td>
<td>-</td>
</tr>
<tr>
<td>Mn</td>
<td>-</td>
</tr>
<tr>
<td>Si</td>
<td>-</td>
</tr>
</tbody>
</table>
Şekil 4.29 Çözeltiye alınmış Al-2024 alışıımının mikroyapısı
(a) Optik mikrograf (100X), (b) Tane boyutu dağılımı

Şekil 4.30 Çözeltiye alınmış Al-2024 alışıımının SEM altındaki görünümü
4.2.2.2. Geçirim Elektron Mikroskobu İncelemeleri

TEM çalışmaları başlangıç durumu, çözeltiye alınmış, ECAP uygulanmış, ECAP sonrası tavlanmış ve yaşlandırılmış olmak üzere 5 başlık altında toplanmıştır. Karanlık Alan (DF), Parlak Alan (BF), Seçilmiş Alan Elektron Kırımı (SAED) ve EDS teknikleriyle inklüzyon ve çökelti tayini, dislokasyon durumu ve tane/hücre boyutu saptanmaya çalışılmıştır.

- **Başlangıç Durumundaki Örnekler**

![Başlangıç konumundaki Al-2024 alaşımının TEM görüntüsü](image)

Şekil 4.31 Başlangıç konumundaki Al-2024 alaşımının TEM görüntüsü

Çizelge 4.2 Çubuksu fazların kimyasal analizi (EDS)		
Element	**Ağırlıkça %**	**Atomik %**
Al	86,81	93,15
Cu	4,70	2,48
Mg	0,69	0,82
Mn	7,79	3,55

- **Çözeltiye Alınmış Örnekler**

Şekil 4.32 ECAP öncesi çözeltiye alınmış numunelerin TEM görüntüsünü göstermektedir. Çözeltiye alınma sonrasında bile T-fazının mevcudiyetini koruduğu gözlenmiştir.
ekte 4.32 Çözeltiye alınmış Al-2024 alamının TEM microyapısı

- **ECAP Uygulanmış Örnekler**

Şekil 4.33 ECAP uygulanmış Al-2024 alamının TEM görüntüleri

(a) Parlak alan (BF), (b) Karanlık alan (DF), (c) Seçilmiş alan elektron kırmını (SAED)

Alamın ECAP yöntemiyle deforme edildikten sonraki iç yapı durumu Şekil 4.33’de sunulmuştur. Karanlık alan (DF) yöntemiyle elde edilen fotoğrafta (Şekil 4.33b) beyaz tanemsi yapılar saptanmıştır. Bu yapıların boyutlarının X-ışınları yöntemiyle elde edilen hücre boyun ile
tutarlı olduğu görülmüştür. Şekillerde yüksek dislokasyon yoğunluğunun yaptığı gerilme alanlarından (strain field) dolayı tane sınırları net olarak seçilememektedir. Şekil 4.33c’de sunulan seçili alan elektron kırımı halka paternine sahiptir. Halka paterni ECAP deformasyonu sonrası farklı oryantasyondaki tanelerin varlığına işaret etmektedir.

Şekil 4.34 ECAP uygulanmış Al-2024 alaşımında dislokasyon yapısı
ECAP Sonrası Tavlanmış Örnekler

Şekil 4.35 ECAP sonrası tavlanmış Al-2024 alışı (a-d) TEM mikroyapıları, (e) Hücre boyutu dağılımı

Yüksek dislokasyon yoğunluğunun yarattığı gerinim alanları üst üstü binmesinden ötürü; elde edilen TEM görüntülerinin hiçbirinde tane sınır seçilmemektedir. Bunun önüne geçilmek için numuneler 400°C ‘de 1 saat tavlanarak tane-altı/hücre yapısı simrlarının gözükmesine olanak
tanınmıştır. Şekil 4.35(a-d)’de tavlama sonrası oluşan yapılarla örnekler sunulmuştur. Görüntü analizi yöntemiyle (Şekil 4.35e) ortalama hücre boyutu 0,4μm mertebesinde tespit edilmiştir. Yukarıdaki bölümlerde bahsetildiği üzere; ECAP sonrası oluşan hücre boyutu, hem X-ışınları çizgi genişlemesi yöntemi hem de TEM görüntülerinden 0,05 μm olarak sıncanmıştır. Dolayısıyla; tavlama süresince işleyen toparlanma ve yeniden-kristalleşme mekanizmaları; dislokasyon düzenlenmesi ve tane-altı yapının büyümesiyle sonuçlanmıştır. Görüntülerde tane-altı/hücre yapıları içeriklerinde dislokasyonlar rastlanmaktadır. Bu çalışma 1 saatlik sürenin yeniden-kristalleşme için yeterli olmadığını göstermektedir. Bu durum ECAP yönteminin isıl kararlık açısından bir diğer avantajı olarak gözükmektedir.

- **Yaşlandırılmış İşlem Uygulanmış Örnekler**

Yaşlandırma işlemi hem deforme edilmiş hem de ECAP uygulanmış numunelere uygulanmıştır. Şekil 4.36’da 190°C ‘de 12 saat yaşlandırılmış alaşının karanlık alan (DF) ve parlak alan (BF) TEM görüntüleri verilmektedir. Görüntülerde belirli bir doğrultuda hizalanmış çökeltiler bulunmaktadır. Yapılan EDS analizleri çökeltilerin S’ ve/veya S” (Al₂CuMg) olduğunu göstermektedir. EDS analizi sonuçları Çizelge 4.3’te sunulmuştur. Çizelgede Cu ve Mg atomik oranlarının birbirine yakın olduğu; fazla miktardaki Al ise matristen geldiği düşünülmektedir.

![Şekil 4.36 Çözeltiye alma sonrası deforme edilmenden yaşlandırılan Al-2024 (a), (c) Karanlık alan (DF) görüntü, (b), (d) Aydınlatılmış alan (BF) görüntü](image_url)
Çizelge 4.3 Yaşlandırılmış Al-2024alsağiçokeltisininkimyasalanalizi(EDS)

<table>
<thead>
<tr>
<th>Element</th>
<th>Ağırlık %</th>
<th>Atomik %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>86,47</td>
<td>91,55</td>
</tr>
<tr>
<td>Cu</td>
<td>10,27</td>
<td>4,62</td>
</tr>
<tr>
<td>Mg</td>
<td>3,26</td>
<td>3,83</td>
</tr>
</tbody>
</table>

ECAP sonrası 190°C ’de 2 saat yaşlandırmanın etkisi Şekil 4.37’de sunulmuştur. Yüksek dislokasyon yoğunluğu, net bir kontrast farkını engellese de ufak çökeltiler seçilebilmektedir.

Şekil 4.37 Çözeltiye alma sonrası ECAP uygulanmış ve yaşlandırılan Al-2024 TEM mikroyapısı

4.2.2.3. Malzeme Sertlüğindeki Değişim

Çizelge 4.4 Al-2024alsağının farklı koşullardaki sertlik değerleri

<table>
<thead>
<tr>
<th>Başlangıç Durumu</th>
<th>Sertlik (HB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Çözeltiye Alınmış (495°C / 1saat)</td>
<td>141 ± 6</td>
</tr>
<tr>
<td>Tavlanmış (420°C / 3saat)</td>
<td>82 ± 1</td>
</tr>
<tr>
<td>Çözeltiye Alınmış + ECAP</td>
<td>64 ± 1</td>
</tr>
<tr>
<td>Çözeltiye Alınmış + ECAP + Tavlanmış (400°C / 1saat)</td>
<td>160 ± 11</td>
</tr>
<tr>
<td>Çözeltiye Alınmış + Tavlanmış (400°C / 1saat)</td>
<td>72 ± 1</td>
</tr>
<tr>
<td>Çözeltiye Alınmış + Yağlandırılmış (190°C / 1saat)</td>
<td>69 ± 3</td>
</tr>
<tr>
<td>Çözeltiye Alınmış + Yağlandırılmış (190°C / 24saat)</td>
<td>189 ± 8</td>
</tr>
<tr>
<td>Çözeltiye Alınmış + Yağlandırılmış (190°C / 1saat)</td>
<td>142 ± 6</td>
</tr>
</tbody>
</table>

TÜBİTAK 105M174 – Sonuç Raporu 71 Kasım 2008
ECAP sonrası tavlama işlemiyle sertlik 72HB’ye düşmektedir. Tavlamaya beraber yumuşama, alüminyum gibi yüksek yıga devamlı hatası enerjisine sahip metallerde beklenilen bir olaydır. Sertliğin dislokasyon miktarına ve dağılımasına bağlı olduğu düşünülmektedir; tavlama sırasında aktive olan toparlanma mekanizmasının dislokasyonları yeniden dizilerek tane-alt hücre yapıları oluşturmasını ve sertlik düşünüldüğünde açıklamaktadır.

Tek paso ECAP sonrası uygulanan yaşandırmanın malzemenin özellikleri üzerine etkileri incelenirken, ilk olarak deforme edilmiş 2024 Al-alamının yaşama sertleşmesi takip edilmiş, 190°C’de yaşandırılan örneklerde maksimum sertliğe (141 HB) 24 saat yaşandırma sonucunda ulaşılmıştır. Daha sonra çözeltiye alınmış numuneler ECAP sisteminde tek paso deforme edilerek yaşandırma işlemine tabi tutulmuştur. 80°C, 100°C, 190°C’de yapılan yaşandırmaların malzemenin sertliğine etkisi Şekil 4.38’de sunulmuştur.

Şekil 4.38 2024 Al-alamın numunelerde ECAP sonrası yaşandırma süresine bağlı sertlik değişimi

4.3. Kesintisiz Tezgah (DCAP) Bulguları

Raporun bu kısmı, kesintisiz tezgah (DCAP) sisteminin modelleme çalışmaları ve Al-alışımlarının mekanik özelliklerine etkisinin araştırma bulgularını içermektedir.

4.3.1. Modelleme

Sonlu eleman analizi (FEM) yöntemiyle yapılan araştırmalarda kesintisiz plaka deformasyonu için en uygun yöntem olarak DCAP saptanmış ve giriş-çıkış kanalları arasında olması gereken deformasyon miktarının önemi vurgulanmıştı. Ardarda yineleden simulasyonlar aracılığı ile merdaneler tarafından verilen deformasyonun %8’den az olduğu durumlarda malzemenin çıkış kanalının doldurulduğu ve işlemin problemsiz gerçekleştirdiği gözlemlemiştir.

DCAP sisteminin en önemli özelliği kaynağı deformasyonu sayesinde tek pasoda dahti malzemeye çok yüksek gerinimler verilebilmesidir. Şekil 4.39, FEM analizi ile DCAP işlemi sırasında malzemeye uygulanan gerinimleri göstermektedir. Şekilden de görüldüğü gibi DCAP sırasında malzemeye uygulanan gerinim tek paso da 0,3 ile 0,6 arasında değişmektedir. Bu gerinim değerlerine ancak aşırı haddeleme ile ulaşılabilmektedir. DCAP yönteminde boyut değişmemiştir için, deformasyon sırasında oluşan enerjinin tamamı dislokasyon oluşumu için harcan défini ve bunun da malzemeye daha iyi mekanik özellikler kazandırıldığı düşünülmektedir.

Şekil 4.39 DCAP prosesinde malzeme yüzeyindeki gerinim değişiminin FEM analizi
4.3.2. DCAP İşleminin Mekanik Özelliklere Etkisi
Kesintisiz tezgahın amacı ECAP sisteminde yapılaman çok pasolu levha deformasyonunun gerçekleştirilmesidir. Mekanik test yapılabilirliği de göz önüne alarak farklı merdane yüzeyleri denenmiş ve DCAP işleminin sertlik-akma dayançısı üzerine etkileri tartışılmıştır.

4.3.2.1. Kanalh Merdane
DCAP sisteminin çalıştırılmasını test etmek için saf alüminyum ve 2xxx Al-alaşımı deformе edilerek malzeme sertliğindeki değişim gözlenmiştir. Deformasyon sonrası elde edilen sertlikler Çizelge 4.5’te sunulmuştur.

<table>
<thead>
<tr>
<th>Numune</th>
<th>Deformasyon Öncesi Ortalama Sertlik (HB)</th>
<th>Deformasyon Sonrası Ortalama Sertlik (HB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saf alüminyum</td>
<td>25 ± 0</td>
<td>30 ± 0,28</td>
</tr>
<tr>
<td>2xxx serisi Al aşaması</td>
<td>58 ± 2,25</td>
<td>66 ± 0,57</td>
</tr>
</tbody>
</table>

Çalışmalardan devamda, farklı başlangıç konumlarındaki Al-6061 levhalar kullanılmıştır. 170mmx27,5mmx2mm boyutlarındaki numunelerde 4 farklı durum (6061-T6 haddeleme, 6061-T6 DCAP, Çözeltiye alınmış 6061 DCAP, Tavlanması 6061 DCAP) için sertlik incelemesi yapılmıştır (Çizelge 4.6). ECAP uygulanan numunelerdeki alt ve üst yüzeyler arasındaki sertlik farkı, DCAP uygulamasında da göz öneunde bulundurulmuştur.

Diğer incelemeler, çözeltiye alınmış ve su verilmiş numunelerde yapılmıştır. Çözeltiye alma işlemi 530°C’de yapılmış ve oda sıcaklığında hızla soğutulmuştur. Numunenin sertliğinde beklenenden daha fazla haddeleme, 6061-T6 DCAP, Çözeltiye alınmış 6061 DCAP, Tavlanması 6061 DCAP) için sertlik artışı gözlenmiştir. 4 paso geçirilen numunede sertlik artışı yine beklenildiği şekilde gözlenmektedir. 5 paso geçen numunede ise beklenenin üzerinde sertlik artışi vardır. Bu nedenle numunenin 5. paso’dan önce 8 gün oda sıcaklığında beklemesi ve buna bağlı olarak yaşamlı maruz kalması olması durumunda edilmektedir. Numunelerin derin dondurucuda saklanarak doğal yaşlanmanın önüne geçilebileceği tespit edilmştir.

Çizelge 4.6 DCAP deformasyonu sonucu Al-6061 levhanın sertliğindeki gelişim

<table>
<thead>
<tr>
<th>#</th>
<th>Malzeme Durumu</th>
<th>U/D</th>
<th>HB</th>
<th>Standart Sapma</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Alındaki gibi (T6)</td>
<td>AG</td>
<td>109</td>
<td>± 0,00</td>
</tr>
<tr>
<td>1</td>
<td>AG + Haddeleme</td>
<td>-</td>
<td>110</td>
<td>± 0,00</td>
</tr>
<tr>
<td>2</td>
<td>AG + DCAP-1</td>
<td>-</td>
<td>116</td>
<td>± 0,00</td>
</tr>
<tr>
<td></td>
<td>AG + DCAP-2</td>
<td>-</td>
<td>119</td>
<td>± 0,00</td>
</tr>
</tbody>
</table>

#	Çözeltiye Alınmış (ÇÖ)	-	42	± 1,16
3	ÇÖ + DCAP-1	U	59	± 0,98
	ÇÖ + DCAP-1	D	62	± 0,75
	ÇÖ + DCAP-2	U	69	± 0,00
	ÇÖ + DCAP-3	U	71	± 0,00
	ÇÖ + DCAP-3	D	70	± 0,58
	ÇÖ + DCAP-4	U	74	± 0,50
	ÇÖ + DCAP-4	D	72	± 0,29
	ÇÖ + DCAP-5	U	88	± 1,00

#	Tavlanmış (16saat) (T)	-	39	± 0,00
4	T + DCAP-1	U	45	± 0,00
	T + DCAP-1	D	42	± 0,50
	T + DCAP-2	U	45	± 0,50
	T + DCAP-2	D	44	± 0,58
	T + DCAP-3	U	45	± 0,50
	T + DCAP-3	D	45	± 0,00
	T + DCAP-4	-	Patinaj	
	T + DCAP-5	-	Patinaj	
	T + DCAP-6	-	Patinaj	

Metal şekillendirmede mekanik özelliklerdeki değişimleri etkin gerinime bağlı olarak analiz etmek daha doğrudur. Segal vd.nin de (1995) bahsettiği gibi DCAP sonucunda elde edilecek etkin gerinim, paso sayısı (N), kalınlık oranı (K) ve oblik açı (Φ) ile ilişkilendirilebilir. Çizelge 4.7, 120°'de her paso için K= 0.950 değerine sahip malzemenin gerinim değerlerini göstermektedir.
\[
\epsilon = \frac{2N}{\sqrt{3}} K^2 \cot \left(\frac{\Phi}{2} \right)
\]
(4.1)

İçerik 4.7 Her paso için uygulanan gerinim değerleri

<table>
<thead>
<tr>
<th>N</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε</td>
<td>0.602</td>
<td>1.203</td>
<td>1.805</td>
<td>2.407</td>
</tr>
</tbody>
</table>

Kanallı merdane sisteminde deforme edilen farklı başlangıç koşullarındaki Al-6061T6 alemi pekleşme davranışı Şekil 4.40’ta sunulmuştur. Çözeltiye alınmış ve hızlı sóğutulmuş numunelerin sertlikleri 4 paso sonucunda 42 HB’den 74 HB’ye çıkmıştır. Sadece ikinci pasodan sonra %60’lık bir iyileşme görülmektedir. Tavlannmuş numunelerde de benzer davranışı gözlemekle birlikte, sertlik artış çözeltiye alınmış hızlı sóğutulanlara göre çok belirgin değildir.

![Etkin Gerinme](image)

Şekil 4.40 DCAP paso sayısı göre Al-6061 levha sertliğindeki değişim

4.3.2.2. Dokulu Merdane

Ayrıntılar tasarm kısmında verilen dokulu merdane sayesinde, kanallı merdanelde karşılaşılan sürtünme, numunenin kalp içerisine sürülmesi, patinaj gibi sorunlar ortadan kalkmıştır. Yeni merdane yüzeyi numunenin istenilen paso sayısında geçirilmesini sağlamıştır. Bu durum projenin amacı doğrultusunda daha fazla aşırı plastik deformasyona uğramış numune elde edilmesine olanak sağlamaktadır. Ancak dokulu merdane yüzeyi ile üretilmiş numuneler üzerinde sertlik alınabilecek alanlar azaldığından sağlıklı sertlik ölçümleri yapılanılamamıştır. Şekil 4.41’de deforme
edilmemiş ve 2 paso deforme edilmiş 6061-T6 numunenin çekme deneyi sonuçları sunulmuştur. Akma dayancı iki paso deformasyonla 275 MPa’dan 305 MPa’a yükselmiştir. Bu durum Hall-Petch denklemine göre tane boyutu incelmesine işaret etmektedir. Ancak malzemenin kırılğan davranış dokunun çentik etkisi yaptığı izlenimini vermektedir.

4.3.2.3. Kısmi Dokulu Merdane
Dokulu merdanelerin getirmiş çok paso deformasyon imkanı ve düz merdaneların getireceği test yapılabilirlik birleştirilerek tasarlanan merdane sistemi sayesinde tavlanmış konumda Al-6061 levhalar 2 pasoya kadar deforme edilmişdir. Deformasyon sonucunda elde edilen sertlik gelişimi ve çekme testi davranışı sırasıyla Çizelge 4.8 ve Şekil 4.42’de sunulmuştur.

<table>
<thead>
<tr>
<th>Malzeme Durumu</th>
<th>U/D</th>
<th>HV</th>
<th>Standart Sapma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tavlanmış (415°C-2 saat) (T)</td>
<td>-</td>
<td>37 ± 0,58</td>
<td>0,58</td>
</tr>
<tr>
<td>T + DCAP-1</td>
<td>U/D</td>
<td>53 ± 1,51</td>
<td>1,51</td>
</tr>
<tr>
<td>T + DCAP-2</td>
<td>U</td>
<td>55 ± 0,58</td>
<td>0,58</td>
</tr>
<tr>
<td>T + DCAP-2</td>
<td>D</td>
<td>58 ± 1,05</td>
<td>1,05</td>
</tr>
</tbody>
</table>

Şekil 4.41 Al-6061-T6 numune için DCAP öncesi ve sonrası çekme deneyi sonuçları

Çizelge 4.8 Kısmi dokulu merdaneli DCAP deformasyonu sonucu Al-6061 levhanın sertliğindeki gelişim
Mekanik özelliklerdeki gelişim irodelendiğinde, ilk paso deformasyonda sertliğin %40 mertebesinde arttığı; ikinci pasoda ise artışın sürdüğü tespit edilmiştir. Tavlanmış durumda 50MPa akma dayancına sahip alaşım bir paso deformasyon sonunda yaklaşık 100 MPa akma dayancına ulaşmaktadır. Mukavemette %100’e varan bu artışa rağmen sünektike ciddi bir düşme saptanmamıştır. Bu durum dokulu merdanede öngörülen çentik etkisini doğrulamakta ve DCAP deformasyonunun bu tasarında başarı ile uygulandığını göstermektedir.

Şekil 4.42 Tavlanmış konumdaki Al-6061 numune için DCAP öncesi ve sonrası çekme deneyi sonuçları
5. SONUÇLAR

5.1. Modelleme

Kalıp Geometrisi ve Sürünmenin Etkileri

1. Dış kalıp açısını artırmak, bir pasoda malzemeye verilen azami plastik gerinme miktarını azaltmaktadır. İç kalıp açısının, sadece dik açılı kalıplar için dikkate değer bir etkisi vardır.

3. Sürünme katsayısının artması, köşe boşluğu oluşumunu azaltmaktadır veya yok etmektedir.

Üç Boyutlu Analizler

5. Parçanın x-z ve y-z düzlemlerindeki eşdeğer plastik gerinme miktarı oldukça homojendir.

6. Parçanın derinlik yönünün ortasından alınan bir kesitde plastik gerinme miktarları 2 boyutlu modelle oldukça yakın sonuçlar vermektedir.

7. Üç boyutlu simulasyon süresi, iki boyutlu gerçekleştirilenlerden 16-20 kat daha uzundur. Sonuç benzerliğinden dolayı simulasyon çalışmalarının düzlem gerinme varsayımı ile yapılabilir.

Malzeme Özellikleri ve Köşe Boşluğu Oluşumu Etkileri

9. Kalbin alt tarafına temas ederek akan kısmın üst tarafına temas eden kısımdan daha hızlı aktiği ve bunun sonucunda köşe boşluğu oluştuğu görülmektedir.

10. Gerinme pekleşmesi köşe boşluğu oluşturmakta heterojen gerinme dağılımına sebep olmaktadır \((\sigma = \sigma_0 + K\varepsilon^n) \). Malzeme gerinme pekleşmesi çarpanı (K) ve pekleşme üssünün (n) köşe boşluğu etkisi 2. derece yüzey olarak belirlenmiştir. Buna göre, köşe boşluğu açısının K ile değişimi doğrusal, n ile değişimi parabolik kabul edilebilir.
11. İzotropik ve kombine sertleşen malzemeleri 2 kanalli ECAP kalıbından geçirebilmek için 500MPa civar bir basınç uygulanması gerekirken, kinematik sertleşme durumunda 400MPa yeterli olmaktadır.

12. Sertleşme mekanizması, deformasyon bölgesini veerinme dağılımını etkilemekle birlikte basınç değildir.

13. Cockcroft-Latham hasar indeksinin dağılımasına göre, sertleşme mekanizmasının hasar birikime etkisi zayıftır, kinematik ve kombine sertleşen malzemelerde burun bölgesinde küçük bir hasarın oluşması dışında belirgin bir fark yoktur.

5.2. Laboratuvar Ölçekli Tezgah (ECAP)

Ön Çalışma

1. 6066 ve 5083 Al-alaşımları tek paso ECAP ile deforme edilmiş; sertlik miktarındaki değişim gözlemmiştir. Yan yüzeyden alınan ortalamalı sertlik değerleri, firında yumuşatılmış 6066 alicesında 52 HB’den 85 HB’ye, yumuşatılmış 5083 alicesında ise 72 HB’den 116 HB’ye yükselmiştir.

2. Kesit alandan alınan mikro-sertlik değerleri, yatay eksende sertliğin değişmediğini, dikey ekserde ise sertliğin malzememin ortasında plato oluşturduğu, alt ve üst kenarlara yaklaşılık sertlikte azalma olduğunu göstermektedir.

Sistematiğini Deneyler

4. Yenilenen kalıp sistemi sayesinde çatılsız 2024 Al-alaşımı numuneler (18 mm çap, 30 mm uzunluk) elde edilebilmiştir. Numunelerin önüne konan bakır bloklar sayesinde geri tepme basıncı ayarlanarak kalıp sökmeye işlemi olmadan ardışık numune geçirilmesi mümkün olmaktadır.

5. Tek paso ECAP deformasyonuyla sertlik değeri, ortalama 82 HB’den 160 HB’ye çıkmaktadır.

7. TEM görüntülerinden, Al-2024 aalışının çözeltiye alınmış durumda çubuksu T-fazına sahip olduğu anlaşılmaktadır. ECAP sonrası dislokasyonlar T-fazı etrafında yumaklanmış ve sertleşmeye katkı sağlamıştır. Artan disloksiyon yoğunluğu nedeniyle tane sınırlarının saptanmasında güçlük çekildiğinden, ECAP sonrasında tavlama işlemi uygulanmıştır. Tavlama sonucunda, iç yapıda toparlanma ve yeniden-kristalleşme mekanizmaları devreye girmiş ve ortalama hücre boyutu 0,4 µm mertebesine ulaşmıştır. ECAP sonrası yaşandıran örneklerde ise S’S ve S” çözeltiye rastlanmamaktadır.

8. 2024 Al-aalışları tek paso ECAP sonrası yaşandırmış; deformasyonsuz yaşandırmaya göre sertlik miktarındaki değişim incelemiştir. Kesit alandan alınan ortalama sertliklerde 190°C’de yaşandırmış örneklerde 24 saatte 141HB ‘ye ulaşılabilirken, yaşandırılma öncesi ECAP uygulanan örneklerde aynı sertliğe 1 saat sonunda ulaşılmaktadır. ECAP işlemi, yaşlanma kinetikini heterojen çekirdeklenme mekanizması sayesinde arttırdığı düşünülmektedir.

5.3. Kesintisiz Tezgah (DCAP)
1. Sonlu eleman analizi (FEM) yöntemiyle yapılan araştırmalarda DCAP giriş – çıkış kanalları arasında olması gereken deformasyon miktarı %8’den az olduğu durumlarda malzemenin çıkış kanalının doldurulduğu ve işlemi problemçalıştırdığı gözlenmemiştir.

2. Merdaneler arası mesafemin 1,95 cm ve çıkış kalıp boşluğunun 2,00 cm olduğu DCAP sistemi için yapılan simulasyonda, malzemeye uygulanan gerimem tek pasoda 0,3 ile 0,6 arasında değişmektedir. Böylelikle, kaynağı deformasyonu sayesinde tek pasoda daha malzemeye çok yüksek gerimemler verilebildiği saptanmıştır.

4. Çözeltiye alınmış 6061 aalışında ise sertlik 42 HB’den birinci paso sonunda 60 HB’ye, dördüncü pasodan sonra ise 73 HB’ye çıkılmaktadır. Sertlik 4 paso sonucunda 1,7 kat oranında artış göstermiştir. Gerimemin 2’den düşük olduğu aralığa hızlı sertlik artış gözlendiği; fakat 2’den büyük olan değerlerde sertlik artış hızı düşmüş ve azalma eğilimine geçmiştır.

5. Kısımsız dokulu merdane yüzeyine sahip son tasarım uygulamalarında; DCAP öncesi tavlanan numunenin sertliği tek paso deformasyon sonrasında 1,4 katına çıkarken; akma dayanıcında %100’e varan artış tespit edilmiştir. Bu durumda dahi malzeme sünkliğini korunmuştur.
6. PROJE ÖZDEĞERLENDİRMESİ

Proje bütünüği içerisinde incelenip özdeğerlendirilme yapıldığında projenin büyük ölçüde başarılı olduğu ve ciddi kazanımlar elde edildiği düşünülmemektedir.

Proje dört ay uzatma ile yirmi sekiz aylık sürede tamamlanmıştır.

Proje süresince üç adet gelişme raporu, zamanında TÜBİTAK’a gönderilmiştir.

Bazı alanlarda, proje önerisinde yer alandan daha fazla iş gerçekleştirilmiştir. Proje önerisinde sadece tek sistem üzerine çalışma bulunmasına rağmen, deneysel çalışmalar iki koldan yürütülmüştür. Hem çubuk numuneler için ECAP tezgahı (B planı) hem de yassi mamul deformasyonu yapabilen DCAP sistemi ile çalışılmıştır. Ayrıca, projenin ilk aşamasında yapılan öngörülen cihaz tasarımına yönelik modelleme çalışmalarını, proje boyunca geliştirilerek sürdürülmiştir. Projedeki eksik tarihi kısm ise sıcak deformasyon uygulamasıdır.

Projenin gidişatını olumuz yönde etkileyen hususlar aşağıdaki sıralanmıştır:

- Proje önerisinde talep edilen yardımcı personel sayısının azaltılması ve proje süresinin kısaltılması nedeniyle hedef kaybı olmuştur.
- Çok pasolu deformasyonla numune üretilecek kesintisiz tezgah tasarımı, yapımı ve deneme-yanılma ile modernizasyonu tamamlarken biraz uzun zaman almıştır. Özellikle sistemin oturulmasına verildiğinden sıcaklık parametresi devre dışı bırakılmak zorunda kalmıştır.
- TEM incelemeleri için ilave donanım alımı, ODTÜ Metalurji ve Malzeme Mühendisliği Bölümü’nde yeni TEM alındığı aksamalar nedeniyle geciktirmiştir. Bu durum, TEM incelemelerinin sarkmasına neden olmuş ve projenin uzatılamasını gerekli kılmıştır.
- 2008 yılında iki yardımcı personelin arada ayrılması ve yeni eleman istihdamı, son dönemdeki çalışma temposunu düşürtmüştür.

Proje kapsamında, uluslararası hakemleri dergilerde 2 adet makale yayılanmış, 2 adet makale de değerlendirme/yayın aşamasidasıdır.

Uluslararası kongrelerde, özellikle Rusya ve Güney Kore ‘deki uzmanlarla temas sağlanmış, yeni uluslararası projelerin başlatılması için altyapı oluşturulmuştur.

Modellene, tasarım ve uygulama sürecinde elde edilen tecrübeler ve uluslararası bağlantıların oluşturulması bu projenin ciddi kazanımları olarak görülmektedir.

Proje ile bağlantılı olarak 1 yüksek lisans çalışması bitirilmiş (E. Saraloğlu) olup, bir yüksek lisans (G.E. Uzunçakmak) ve iki doktora çalışması (E. Tan, P. Karpuz) devam etmektedir. Bu durum, proje kazanımlarının kullanılmaya devam edeceğinin ve yeni geliştirmelerin sağlanacağını göstergesidir.
KAYNAKLAR

