Görev Amaçlı Döner Kanat İHA Tasarımı

Program Kodu: 1005

Proje No: 114E149

Proje Yürütücüsü:
Prof. Dr. Mehmet Kemal LEBLEBİÇİOĞLU

Araştırmacı(lar):
-

Danışman(lar):
Doç. Dr. İlkay YAVRUCUK

Bursiye(r)er(ler):
Ferit ÇAKICI
Raha SHABANI

MAYIS 2016
ANKARA
2014 yılının Ekim ayında, TÜBİTAK desteği alınarak başlayan “Görev Amaçlı Döner Kanat İHA Tasarımı” isimli ve 114E149 kodlu TÜBİTAK-1005 projemiz, 18 ay sonra, 2016 yılının Nisan ayında sona ermiştir. Proje kapsamında döner kanat İHA sistemlerinin tasarımında kullanılan temel parametrelerin görev amaçlı bir yaklaşımla ele alınıp en iyileştirmesi yapılmaktadır. Bu çerçevede tedarik edilen motor, pervane, batarya vb. bileşenleri test edilerek matematiksel modelleri oluşturulmuş, elde edilen modlar arasında görev amaçlı başarının arttırılmasına yönelik parametreler eniyileştirme yöntemleri ve bilgisayar ortamındaki simülemlerle belirlenmiş ve elde edilen simülasyon sonuçlarına göre hava araçlarının tasarım elde edilmiştir. Görev amaçlı tasarımın uygun olarak gerçek malzemelerle inşa edilen örnek platformlar olan döner kanat hibrit İHA ve döner kanatlı X5 İHA platformları uçuş testlerine tabi tutularak kullanılan yöntemlerin sağladığı faydalar ortaya konulmuştur.

<table>
<thead>
<tr>
<th>İçindekiler</th>
</tr>
</thead>
<tbody>
<tr>
<td>ÖNSÖZ ..</td>
</tr>
<tr>
<td>İÇİNDEKİLER ..</td>
</tr>
<tr>
<td>ŞEKİL LİSTESİ ..</td>
</tr>
<tr>
<td>TABLO LİSTESİ ..</td>
</tr>
<tr>
<td>ÖZET ..</td>
</tr>
<tr>
<td>ABSTRACT ...</td>
</tr>
<tr>
<td>BÖLÜMLER ..</td>
</tr>
<tr>
<td>1. GİRİŞ ..</td>
</tr>
<tr>
<td>1.1 Performans Karşılaştırması</td>
</tr>
<tr>
<td>1.1.1 Havada Kalma Süresi ..</td>
</tr>
<tr>
<td>1.1.2 Faydalı Yük Kapasitesi ...</td>
</tr>
<tr>
<td>1.1.3 Maksimum Hız ...</td>
</tr>
<tr>
<td>1.1.4 Maksimum Mesafe ..</td>
</tr>
<tr>
<td>1.2 Optimizasyon Hedefleri ...</td>
</tr>
<tr>
<td>2. LİTERATÜR ÖZETİ ...</td>
</tr>
<tr>
<td>3. GEREÇ VE YÖNTEM ...</td>
</tr>
<tr>
<td>3.1 İHA Sistemi ..</td>
</tr>
<tr>
<td>3.2 Modelleme ..</td>
</tr>
<tr>
<td>3.2.1 Batarya ..</td>
</tr>
<tr>
<td>3.2.2 Motor ..</td>
</tr>
<tr>
<td>3.2.3 Pervane ...</td>
</tr>
<tr>
<td>3.2.4 Döner Kanatlı Hibrit İHA Platformu</td>
</tr>
<tr>
<td>3.2.5 Döner Kanatlı X5 İHA Platformu</td>
</tr>
</tbody>
</table>
ŞEKİL LISTESİ

Şekil 1. İHA'ların kalkış ağırlığına göre havada kalış süreleri... 3
Şekil 2. İHA'ların kalkış ağırlığına göre faydali yük taşıma kapasiteleri.................................. 4
Şekil 3. İHA'ların kalkış ağırlığına göre ulaşabileceği maksimum ileri hız değerleri 5
Şekil 4. İHA'ların kalkış ağırlığına göre ulaşabileceği maksimum mesafeler 6
Şekil 5. İHA optimizasyonu akış şeması ..15
Şekil 6. İHA sistem yapısı ..17
Şekil 7. İHA platformu kırılım ağacı...18
Şekil 8. Batarya tiplerine göre enerji yoğunluğu ..19
Şekil 9. Li-Po bataryaların tipik boşalma karakteristiği ..20
Şekil 10. Li-Po batarya boşalma karakteristiği test düzeneği ...21
Şekil 11. Li-Po batarya boşalma test grafiği ..22
Şekil 12. Fırçasız elektrik motorları ..22
Şekil 13. Pervane geometrisi ve değişkenleri ...24
Şekil 14. Döner kanatlı hibrit İHA platformu bileşenleri ...26
Şekil 15. Döner kanatlı X5 İHA platformu bileşenleri..27
Şekil 16. Farklı hedef fonksiyonları için 2 değişkenli bir fonksiyon optimizasyon grafiği29
Şekil 17. Ağırlıklı toplam metoduyla çok amaçlı optimizasyon problemi30
Şekil 18. İtki sistemi simulasyonu akış diyagramı ..31
Şekil 19. İtki test sistemi ve bileşenleri ..32
Şekil 20. İtki sistemi optimizasyon algoritması akış şeması ..33
Şekil 21. İtki ihtiyaci belirleme algoritması akış şeması ...34
Şekil 22. Kontrol sistemi optimizasyonunda yunuslama ekseni eniyileştirmesi35
Şekil 23. Döner kanatlı hibrit İHA VTOL modundayken sistem cevabı37
Şekil 24. Döner kanatlı hibrit İHA FW modundayken sistem cevabı38
Şekil 25. İtki sistemi kombinasyonlarına göre faydali yük taşıma kapasitesi40
Şekil 26. İtki sistemi kombinasyonlarına göre ankık güç ihtiyacı41
Şekil 27. İtki sistemi kombinasyonlarına göre itki komutu yüzdesi41
Şekil 28. İtki sistemi kombinasyonlarına göre pervanelerin açısal dönüş hızları42
Şekil 29. İtki sistemi kombinasyonlarına göre havada kalma süresi42
Şekil 30. Minimum güç ve maksimum uçuş süresi optimizasyon sonuçları ..43
Şekil 31. Maksimum faydalı yük optimizasyon sonuçları ..44
Şekil 32. Dönér kanatlı hibrid İHA'nın VTOL modunda uçuş simulasyonu ...45
Şekil 33. Dönér kanatlı hibrit İHA'nın FW modunda uçuş simulasyonu ...46
Şekil 34. Dönér kanatlı hibrid İHA'nın AUTO modunda uçuş simulasyonu ...47
Şekil 35. Dönér kanatlı hibrid İHA'nın uçuş testleri ...49
Şekil 36. Dönür kanatlı hibrit İHA'nın uçuş verileri ..50
TABLO LİSTESİ

Tablo 1. İHA platformlarının kabiliyetlerinin karşılaştırılması ... 1
Tablo 2. Döner kanatlı hibrit İHA platform örnekleri ... 12
Tablo 3. Döner kanatlı hibrit İHA platformlarının mod değiştirme yöntemleri 14
Tablo 4. Batarya tiplerinin karakteristikleri .. 19
Tablo 5. İtki sistemi optimizasyon parametreleri .. 28
Tablo 6. Testlerde kullanılan etki elemanları dizin listesi ... 39
Tablo 7. Döner kanatlı hibrit İHA uçuş simülasyonlarının performans karşılaştırması 48
ÖZET

Bu projenin amacı, döner kanat İHA platformlarının senaryo bazlı olarak göreve yönelik tasarım kabiliyetinin elde edilerek, uygulama gösterimi ile kabiliyetlerinin doğrulanması ve bu çerçevede çeşitli alanlarda etkin kullanılabileceğini ortaya koymaktır.

İHA sistemleri görev ihtiyaçlarına, kullanım senaryolarına, taşıması hedeflenen faydali yüklerin özelliklerine farklı tip ve konfigürasyonlarda tasarlanmaktadır. Bir İHA sisteminden uzun uçuş zamanı beklenirken sabit kanatlı uçak tipindeki platformlar, havada asılı kalma ve dikine iniş çıkış kabiliyeti beklendiğinde döner kanat (helikopter, multirotor) platformlar, hem uzun uçuş zamanı hem havada asılı kalma hem de dikine kalkış ve iniş kabiliyeti aynı anda beklendiğinde ise sabit kanat kabiliyetine sahip döner kanat (döner rotor, dönen kanat, kuyruk üzerine oturan) platformlar öne çıkmaktadır. Faydalı yük taşıma kapasitesinin yüksek olması ise, her tipteki İHA sistemi için önemli bir gereksinimdir. Mevcut ve halen geliştirilmekte olan İHA sistemlerinin özellikleri ve kabiliyetleri incelendiğinde, benzer görevler için tasarlanan aynı kategorideki İHA sistemlerinin kabiliyetleri arasında farklılıklar olduğu gözle çarpılmaktadır. Bu çalışmada, görev başarmında en iyinin elde edilmesi maksadiyla havada kalma süresi, faydalı yük kapasitesi ve senaryo dahilinde taşınan faydalı yük ile görev başarımı kriterleri genel optimizasyon hedefleri olarak ele alınmıştır.

Proje kapsamında ele alınan döner kanatlı hibrit ve döner kanatlı X5 İHA platformlarının tasarım parametreleri belirlenmiş, görevde yüksek başarımın elde edilmesi maksadiyla optimizasyon yöntemleri kullanılarak parametrelerin eniyileşirilmesi yapılmıştır. Bu maksatla sistem alt bileşenlerinin karakterizasyonunun elde edilmesi maksadiyla test sistemleri oluşturulmuştur.

Sonuç olarak, elde edilen parametreler çerçevesinde seçilen alt malzemelerden oluşturulan hava araçları inşa edilerek uçtu testleri gerçekleştirilmiştir. Gerçekleştirilen uçtu testleri, eniyileştirilen tasarım parametrelerinin sistemin görev amacı başarımı arttığı ortaya konulmuştur. Görev maksatlı tasarım gerçekleştirilen döner kanat İHA platformlarının; arama-
kurtarma görevlerinde, küçük kargo teslimatında, havadan görüntü elde etmede ve ulaşılması zor alanların gözlemlenmesinde etkin olarak kullanılabileceği değerlendirilmektedir.

Anahtar Kelimeler: İHA, Döner Kanat, Dikine Kalkış ve İnış, Tasarım Optimizasyonu.
ABSTRACT

The purpose of this research is to develop mission-oriented design capability for rotary wing UAVs. Also, physical implementation of the designs will be performed for verification, demonstrating various application areas for rotary wing UAVs.

UAV systems are designed in different configurations according to mission requirements, usage scenarios and payload features. When endurance is expected from a UAV fixed wing UAVs come as the first choice. When hovering and vertical takeoff and landing is the primary concern, then rotary wing platforms such as helicopters and multirotors are preferred. On the other hand, when endurance, hovering and vertical takeoff and landing capabilities are desired, different rotary wing platforms such as tiltrotors, tiltwings and tailsitters take precedence over others. High payload capacity is always a prime feature that all UAVs should possess. Examining available and in-development designs reveals differences in performance capabilities of UAVs of the same category. In this research maximum endurance, maximum payload capacity and mission success within scenario will be considered as the main optimization criteria, in order to obtain the best performance from a UAV platform.

Within the scope of the project, design parameters of rotary wing hybrid and rotary wing X5 UAV platforms are determined and optimized in order to achieve maximum mission success. In that regard, subsystems are characterized by dedicated test setups.

As a result, flight tests are performed on the aerial vehicles which are constructed by choosing subsystems according to optimized parameters. Flight tests results shows that platforms with optimized parameters demonstrate increased mission success. The finalized mission based designs of rotary wing platforms can be effectively utilized in search and rescue operation, small cargo deliveries airborne photography/video capturing and reconnaissance in tight spaces.
Keywords: UAV, Rotary Wing, Vertical Takeoff and Landing, Design Optimization.
BÖLÜMLER
1. GİRİŞ

İHA sistemleri görev ihtiyaçlarına, kullanım senaryolarına, taşıması hedeflenen faydalı yüklerin özelliklerine göre farklı tip ve konfigürasyonlarda tasarlanmaktadır. Mevcut ve halen geliştirilmekte olan İHA sistemlerinin özellikleri incelendiğinde; benzer görevler için tasarlanan aynı kategorideki İHA sistemlerinin kabiliyetleri arasında farklılıklar olduğu göze çarpmaktadır. Bu farklılıklar aynı kategorideki İHA sistemleri arasında bazılarının öne çıkarak görev maksatlı kullanımda tercih nedeni olmasına sağlamaktadır. Bu çerçevede, aynı kategorideki sistemler arasında optimizasyonu yapılmış ve en iyi performans değerlerine sahip İHA sistemlerinin tasarlanması, görev başarımında avantaj sağlanması maksadıyla önem arz etmektedir.

Bir İHA sisteminden uzun uçuş zamanı beklenirse sabit kanatlı uçak tipindeki platformlar, havada asılı kalma kabiliyeti beklenirse helikopter ve çok-rotorlu gibi dönör katmanlı platformlar, hem uzun uçuş zamanı hem de havada asılı kalma kabiliyeti aynı anda beklenirse dönör-rotorlu ve kuyruk üzerine oturan gibi dönör kanat hibrit platformlar öne çıkmaktadır (Tablo 1). Faydalı yük taşıma kapasitesinin yüksek olması ise, her tipteki İHA sistemi için önemli bir isterdir.

Tablo 1. İHA platformlarının kabiliyetlerinin karşılaştırılması

<table>
<thead>
<tr>
<th>Kabiliyet</th>
<th>İHA Platform Tipi</th>
</tr>
</thead>
<tbody>
<tr>
<td>(+:iyi, o:nötr, -:kötü)</td>
<td>Çok-rotorlu</td>
</tr>
<tr>
<td>VTOL</td>
<td>+</td>
</tr>
<tr>
<td>Havada asılı kalma</td>
<td>+</td>
</tr>
<tr>
<td>Düz uçuş</td>
<td>-</td>
</tr>
<tr>
<td>Mod değiştirme</td>
<td>-</td>
</tr>
<tr>
<td>Havada kalma süresi</td>
<td>-</td>
</tr>
<tr>
<td>Uçuş mesafesi</td>
<td>-</td>
</tr>
<tr>
<td>Faydalı yük kapasitesi</td>
<td>-</td>
</tr>
</tbody>
</table>
Sabit kanatlı İHA sistemleri ileri hıza sahip olmadan uçamadıkları için havada asılı kalamamaktadır. Dikey iniş kalkış kavramına sahip olmadıklarından piste ihtiyaç duyuyorlandı. Ancak yüksek faydali yük kapasitesi ve uzun süre havada kalabilirlikleri nedeniyle genellikle tercih edilen platformlar arasında gelmektedirler. Sabit kanatlı bir İHA'nın döner kanatlı benzer kategorideki bir İHA'ya göre en az iki kat daha fazla süre havada kalabilitéğini göstermektedir.

Döner kanatlı İHA sistemleri olan helikopter ve multirotor tipindeki İHA'ların en önemli avantajı havada asılı kalma kabiliyetleridir. Ancak bu kabiliyet yüksek ileri hıza ulaşarak uzak mesafelerde ulaşımı olumsuz olarak etkilemektedir. Helikopterlerin sahip olduğu karmaşık yapı mekanik problemlerin oluşması ihtimalini arttırmaktadır. Çok-rotorlular ise düşük faydali yük kapasitesi kullanım alanlarını azaltmaktadır.

Dikine iniş kalkış ve düz uçuş kavramına sahip döner kanatlı platformlar hem havada asılı kalma hem de sabit kanatlı platformlar gibi yüksek ileri hıza ulaşabilmeleriyle diğer platformlar arasında bir kavram sağlamaktadır. Kullanım hedeflerine göre sistemin daha çok helikopter gibi mi, yoksa sabit kanatlı gibi mi davranması gerektiğini bir optimizasyon problemi olarak karşımıza çıkmaktadır.

1.1 Performans Karşılaştırılması

İHA'ların sınıflandırılması sırasında kullanılan en önemli kriter kalkış ağırlığıdır. Tipleri farklı olrsa da aynı kalkış ağırlığına sahip platformlardan birbirine yakın fayda elde etmek genel bir bakış açısından da öne çıkartıcıdır. Bu incelemede dünyada mevcut veya geliştirme çalışmalarına devam edilen döner kanatlı ve sabit kanatlı toplam 466 adet İHA platformunun özellikleri incelenmiştir.

1.1.1 Havada Kalma Süresi

İHA platformlarının havada kalış süresi, görev başarımını etkileyen en önemli özelliklerden olmakla birlikte, mevcut enerjiyi verimli kullanabilmenin bir göstergesidir. Aynı kalkış ağırlığına sahip İHA'lardan daha fazla havada kalabilen platformlar görevlerini yerine getirme konusunda, kullanıcılarımıza imkan ve avantaj sağlamaktadır.
Havada kalış süresi döner kanatlı ve sabit kanatlı İHA platformlarına göre incelemiş olduğumuz sabit kanatlı İHA platformlarının daha fazla havada kalabildiği görülmektedir (Şekil 1). Bunun temel nedeni sabit kanatlı platformların kaldırma kuvvetini kanatlardan sağlaması ve mevcut enerjinin ileri hızın sağlanması maksadıyla sürtünme kuvvetini yenmek için kullanılmaktadır. Döner kanatlı platformlarda enerjinin büyük çoğunluğu kaldırmayı sağlamak için kullanıldığından havada kalma süreleri az olmaktadır. Havada kalma süresi platform tipi içinde farklılıklar gösterdikten aynı kalkış ağırlığındaki platformlardan daha fazla havada kalabilen platformların görev başarımı daha yüksektir. Bu nedenle havada kalma süresinin en yüksek seviyeye ulaştırılması maksadıyla platformın optimizasyonunun yapılması ihtiyacı bulunmaktadır.

Şekil 1. İHA'ların kalkış ağırlığına göre havada kalış süreleri
1.1.2 Faydalı Yük Kapasitesi

Faydalı yük kapasitesinin yüksek olması, o platformla bir görevin daha iyi veya çoklu görevlerin yapılabilmesi maksadıyla daha kabiliyetli ve fazla sayıda faydalı yüklerin taşınmasına olanak sağlamaktadır. Sabit kanatlı platformlar ile döner kanatlı platformlar karşılaştırıldığında, aynı kalkış ağırlığına sahip sistemlerin birbirine yakın faydalı yük taşıyabildiği gözlenmektedir (Şekil 2).

![Diagram](image.png)

Şekil 2. İHA’ların kalkış ağırlığına göre faydalı yük taşıma kapasiteleri

Faydalı yük kapasitesinin havada kalma süresi ile birlikte ele alınması gerekmektedir. Bir hava araci ne kadar fazla faydalı yük taşırsa, buna bağlı olarak havada kalma süresi de azalacaktır. Bu nedenle, görev ihtiyaçlarına göre havada kalma süresiyle faydalı yük taşıma kapasitesi arasında optimizasyon yapılmasına ihtiyaç vardır.
1.1.3 Maksimum Hız

Maksimum hız bir İHA sisteminin görev bölgesine en kısa zamanda ulaşabilmesini sağlamaktadır. Kalkış ağırlığına göre İHA platformlarının ulaşabileceği en yüksek hız incelendiğinde sabit kanatlı İHA platformları ile döner kanatlı İHA sistemlerine göre daha yüksek hizlara ulaşlabildiği görülmektedir (Şekil 3).

![Şekil 3. İHA'ların kalkış ağırlığına göre ulaşabileceği maksimum ileri hız değerleri](image)

Döner kanatlı platformların yüksek hızlara ulaşamaması, kaldırma için kullanılan döner yüzeylerde ileri hızın etkisiyle oluşan kaldırma kaybıdır. Bu nedenle döner kanatlı platformların sabit kanatlı platformlara göre yüksek hızlara ulaşması aerodinamik olarak mümkün değildir. Ancak aynı platform tipinde bile farklılık gösteren maksimum ileri hızın, optimizasyonun yapılması faydalı ve gereklidir.
1.1.4 Maksimum Mesafe

Bir İHA platformu ile ulaşılabilecek en yüksek mesafe, görev limitlerinin belirlenmesinde önemli bir parametredir. Sabit kanatlı İHA platformları ile döner kanatlı İHA’lara göre daha uzak mesafelere ulaşılabilmektedir (Şekil 4). Maksimum mesafe havada kalma süresi, taşınan faydali yük ve hava aracının hızının bir fonksiyonudur. Bu nedenle diğer değişkenlerin de hesaba katılarak ulaşılabilecek maksimum mesafenin elde edilmesi maksadıyla optimizasyon yapılmasıerekmedir.

![Şekil 4. İHA’ların kalkış ağırlığına göre ulaşabilecekleri maksimum mesafeler](image_url)

1.2 Optimizasyon Hedefleri

En yüksek görev başarımının elde edilmesi maksadıyla; ihtiyaçlara, faydali yük özelliklerine ve platform değişkenlerine göre optimizasyon yapılmasına ihtiyaç vardır. Görev optimizasyonu yapılmış bir platformun tasarım aşamasında platform, kontrol ve güdüm sisteminin görev...
2. LİTERATÜR ÖZETİ

İHA sistemlerinin tasarımına, kontrolüne ve güdümüne yönelik literatürde çeşitli çalışmalar bulunmaktadır. Bu çalışmaların genelinde itki sistemi, kontrolcü gibi alt sistemler ele alınmış olup, genel bir yaklaşım olarak görev başarımının arttırmasına yönelik bir çözüm önerisi bulunmamaktadır.

Yakın geçmişte, döner kanatlı hibrit İHA alanı bilimsel ve endüstriyel olarak aktif bir araştırma sahası olarak karşımıza çıkmaktadır. Bu çerçevede birçok akademik araştırma, ticari ürün ve deneme çalışmaları bulunmaktadır (Tablo 2). Bu platformlar döner kanatlı ve sabit kanatlı kontrol elemanlarının birleştirilmesinde kullanılan yöntemle göre farklılık arz etmektedir. Her konfigürasyonun kendine göre avantajları ve dezavantajları bulunmasına rağmen, bazı platformlar ön plana çıkmaktadır.

Mevcut literatürde çok-rotorlu platformlara yönelik optimizasyon çalışmalarını bulunmasına rağmen, bütünMLE göre görev amaçlı tasarım optimizasyonunu kapsayan bir çalışma bulunmamaktadır. Ayrıca, döner kanatlı İHA platformlarına sabit kanatlı İHA platformu özelliği eklenmesi görev yelpazesine ilave kabilyetler eklenmesi bakımından önem arz etmektedir. Bu çerçevede, bu projede mevcut sabit kanatlı ve döner kanatlı İHA platformlarının arzu edilen özelliklerinin birleştirildiği döner kanatlı hibrit platform tasarımı yapılarak sabit kanatlı ve döner kanatlı kabilyetleri arasında öneme verilmesi ve yeni bir platform elde edilemesi hedeflenmektedir.

<table>
<thead>
<tr>
<th>S.Nu.</th>
<th>Adı</th>
<th>Fotoğrafı</th>
<th>Konfigürasyonu</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VTOL UAV (SkyTech Corp. 2012)</td>
<td></td>
<td>Kanardlı tek pervaneli kuyruk üzerine oturan.</td>
</tr>
<tr>
<td>2</td>
<td>Skate (Aurora Flight Sciences 2016)</td>
<td></td>
<td>Döner-rotorlu hibrit uçan kanat.</td>
</tr>
<tr>
<td>3</td>
<td>Tiltwing UAV (Andrew 2011)</td>
<td></td>
<td>Kanat üzerinde çift pervaneli dönen-kanat.</td>
</tr>
<tr>
<td>4</td>
<td>Aerovertical (Aerovertical 2007)</td>
<td></td>
<td>Kanat üzerinde çift pervaneli dönen-kanat.</td>
</tr>
<tr>
<td>5</td>
<td>Flexrotor (Aerovel Corp. 2016)</td>
<td></td>
<td>VTOL için büyük pervane, FW uçuş için kanat uçlarında küçük pervaneler</td>
</tr>
<tr>
<td>6</td>
<td>Tricopter (Auger 2013)</td>
<td></td>
<td>Üç-rotorlu sabit kanatlı hibrit.</td>
</tr>
<tr>
<td>7</td>
<td>Panther UAV (Israel Aerospace Industries 2016)</td>
<td></td>
<td>Döner-uç-roterlulu sabit kanatlı hibrit.</td>
</tr>
<tr>
<td>8</td>
<td>Fire Fly 6 (Bird's Eye View Robotics 2016)</td>
<td></td>
<td>Y6 tipinde çok-roterlu, döner-rotorlu ve uçan kanat hibrit.</td>
</tr>
<tr>
<td>9</td>
<td>Verti-KUL (Hochstenbach ve Notteboom 2014)</td>
<td></td>
<td>Çok-roterlu, kuyruk üzerine oturan ve uçan kanat hibrit.</td>
</tr>
<tr>
<td>10</td>
<td>Quad Shot (Transition Robotics Inc. 2016)</td>
<td></td>
<td>Çok-roterlu, kuyruk üzerine oturan ve uçan kanat hibrit.</td>
</tr>
<tr>
<td>11</td>
<td>Jump (Arcturus UAV 2016)</td>
<td></td>
<td>Çok-roterlu, sabit kanatlı, uçan kanat ve çeken pervaneli hibrit.</td>
</tr>
<tr>
<td>12</td>
<td>Hybrid Quadrotor (Latitude Engineering 2016)</td>
<td></td>
<td>Çok-roterlu, sabit kanatlı, uçan kanat ve iten pervaneli hibrit.</td>
</tr>
<tr>
<td>13</td>
<td>VTL One (Siniger Corp. 2016)</td>
<td></td>
<td>Çok-roterlu ve sabit kanatlı hibrit.</td>
</tr>
<tr>
<td>14</td>
<td>Quad Tiltrotor (Radhakrishnan 2006)</td>
<td></td>
<td>Döner-roterlu, çok-roterlu ve sabit kanatlı hibrit.</td>
</tr>
</tbody>
</table>

artırıldığından kanatlar yüksek hızı ulaşıncaya kadar stall durumunda kalmaktadır. Söz konusu İHA platformlarının genel zayıflığı ana kanatların stall olması ve özellikle geçiş manevrası sırasında kontrolsüz veya kontrolü zor bir duruma geçmesidir. Hava aracı platformunun tasarımında döner kanatlı hibrit platformında gerçekleştirildiği şekilde ana kanatların stall durumuna getirilmeden geçiş manevrasının gerçekleştirilmesinin yumuşak geçişler elde edilmesinde fayda sağlayacağı değerlendirilmektedir.

Tablo 3. Döner kanatlı hibrit İHA platformlarının mod değişim yöntemi

<table>
<thead>
<tr>
<th>Fotoğraf</th>
<th>Tip</th>
<th>Mod Değiştirme Yöntemi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kuyruk Üzerine Oturan</td>
<td>Gövde kontrol yüzeyleri ile yere paralel hale gelene kadar döndürülmekte ve hava aracı stall olmaktadır.</td>
<td></td>
</tr>
<tr>
<td>Döner Rotorlu</td>
<td>Rotorların döndürülmesi ile gövde döndürülmekte ve kanatlar stall olmaktadır.</td>
<td></td>
</tr>
<tr>
<td>Dönen-Kanatlı</td>
<td>Gövde yere paralel kalmasına rağmen kanatlar döndürülmekte ve yüksek hizlar ulaşılanada kadar kanatlar stall durumunda kalmaktadır.</td>
<td></td>
</tr>
<tr>
<td>Döner Kanatlı Hibrit</td>
<td>Mod geçiş manevrasında aktif kontrol yüzeyleri değiştirilmekte ve hava aracı stall olmamaktadır.</td>
<td></td>
</tr>
</tbody>
</table>

En yüksek görev başarımının elde edilmesi maksadıyla, ihtiyaçlara, faydali yük özelliklerine ve platform değişkenlerine göre optimizasyon yapılmasına ihtiyaç vardır. Görev optimizasyonu yapılmış bir platformun tasarım aşamasında platform, kontrol ve seyrüsefer sisteminin görev ihtiyaçlarına ele alınması gerekmektedir. Bu çerçevede İHA platformunun elde edeceği başarım, taşıdığı faydali yükün özelliklerine göre belirlenmektedir. Mevcut faydali yükler genel olarak gözlem maksatlı olduğundan, en yüksek faydali yük daha kısa kapasitesine sahip platform, en az sarsıntı ile uçuş yapabilen, görev bölgesine en kısa ve hızlı şekilde gidebilen bir sistem arzu edilmiştir. Bu nedenle platform tasarımının, kontrol sistemi tasarımını ve seyrüsefer sistemi yapılandırılanın, mevcut faydali yüke göre optimizasyon yapılması gerekmektedir (Şekil 5).
Her aşamada optimize edilmiş bir sistemin görev başarımının da orantılı olarak yükseleceği değerlendirilmektedir.

Şekil 5. İHA optimizasyonu akış şeması
3. GEREÇ VE YÖNTEM

3.1 İHA Sistemi

İnsansız Hava Aracı Sistemleri (İHAS) çoğunlukla askeri alanda istihbarat amaçlı gözetleme, sinyal dinleme ve taarruz maksatlı kullanılmaktadır. İnsansız Hava Araçları (İHA) üzerinde pilot bulunmamasından dolayı insanlı hava araçlarına göre daha küçük ve hafif olarak üretilbilmekte ve taşdıkları faydali yükler sayesinde görev çeşitliliği sağlamaktadır. İHAS’lar, daha çok insanlı hava araçlarının kullanımının tercih edildiği sıkıcı, tehlikeli ve kirli görevlerde kullanılmaktadır. Sıkıcı görevler bir insansının tahammül edemeyeceği kadar uzun gözetleme, tehlikeli görevler hayatı risk taşıyan ve silahlı angajman içeren saldırı, kirli görevler ise pilotun sağlığını tehdit edebilecek kimyasal, biyolojik, radyolojik ve nükleer (KBRN) saldırı sonrası ortamlarındaki görevleri içermektedir.

İHAS’ların insanlı uçaklara göre temel avantajları şunlardır:

• Düşük idame ve işletme maliyeti,
• Daha uzun uçuş süresi, uçuş ekibi kaynaklı uçuş süresi limiti olması,
• Havada dinamik yeniden görevlendirme imkânı,
• İnsan kaynaklı hata riskinin asgari olması, sıkıcı ortamlarda etkin görev yapabilme kabiliyeti,
• Tehlikeli ve kirli ortamlarda, uçuş ekibi kaybı riski olmadan görev yapabilme imkânı,
• Kaza-kırım durumunda uçuş ekibi kaybı riskinin olmaması.

Günümüzde İHAS’ların kullanım alanı üretim, haberleşme, hesaplama gücü ve algılayıcı alanlarındaki teknolojik gelişmelerle birlikte artış göstererek hava fotoğrafçılığı, video çekimi, arama/kurtarma, yangınla mücadele, afet değerlendirimesi, haritacılık, 3 boyutlu modelleme, tarım, kargo taşıma ve denetim (yollar, enerji hatları, boru hatları, rüzgar tüpleri, yapılış, şehir planlaması, güneş enerji sistemleri vb.) gibi sivil alanlarda kullanılmaya başlanmıştır.
Bu projede, uçuş testlerinin otonom olarak yapılabilmesi, uçuş verilerin otomatik olarak kaydedilmesi ve yerden gerçek zamanlı izlenebilmesi maksadıyla, temel olarak İHA platformu, Faydalı Yük (FY), Veri Link Sistemi (VLS) ve Yer Kontrol İstasyonundan (YKI) oluşan bir sistem (Şekil 6) oluşturulmuştur.

Şekil 6. İHA sistem yapısı

İHA platformu faydalı yük, uçuş karakteristikleri gibi temel kabiliyetleri barındırdığından, görev başarımına etkilenen temel etkenleri ihtiva etmektedir. Bu çerçevede İHA platformunun kırmızı ağaç (Şekil 7) göz önünde bulundurularak optimize edilmesi gerekmektedir. Öncelikle platformun alt sistemlerinin modellemesi yapılacak ve itki ile uçuş kontrol sistemi optimize edilecektir.
3.2 Modelleme

İHA platformunun görev maksatlı optimizasyonla tasarım parametrelerinin belirlenmesi maksadıyla oluşturulan algoritmalar veri sağlanabilmesi için alt sistemler müteakip maddelerde belirtildiği şekilde modellenmiştir.

3.2.1 Batarya

Bataryalar elektrik enerjisini kimyasal enerji olarak saklar ve kullanıldığı durumlarda bu işlemin tam tersini gerçekleştirecek elektrik enerjisi kaynağı olarak kullanırlar. Ni-Cd, Ni-MH, Li-lon gibi farklı tiplerde bataryalar (Şekil 8) bulunmasına karşın, Tablo 1’de belirtilen özelliklere göre İHA’larda hem yüksek kapasiteli akım değerleri ve yüksek enerji yoğunluğu nedeniyle tercih edilen Li-Po bataryalar yaygın olarak kullanılmaktadır.
Şekil 8. Batarya tiplerine göre enerji yoğunluğu

Tablo 4. Batarya tiplerinin karakteristikleri

<table>
<thead>
<tr>
<th>Tipi</th>
<th>Hücre Gerilimi (V)</th>
<th>Enerji Kapasitesi [MJ/kg]</th>
<th>Ömür Devri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lithium ion</td>
<td>3.6</td>
<td>0.40 – 0.58</td>
<td>500 – 1000</td>
</tr>
<tr>
<td>Lithium polymer</td>
<td>3.7</td>
<td>0.36 – 0.47</td>
<td>300 – 500</td>
</tr>
<tr>
<td>NiMH</td>
<td>1.2</td>
<td>0.22 - 0.43</td>
<td>300 – 500</td>
</tr>
<tr>
<td>NiCd</td>
<td>1.2</td>
<td>0.16 – 0.29</td>
<td>1500</td>
</tr>
<tr>
<td>Lead–acid</td>
<td>2.1</td>
<td>0.11 – 0.18</td>
<td>200 – 300</td>
</tr>
</tbody>
</table>

Lipo bataryalar hücre yapısıyla çalışmaktadır, kapasiteleri ve voltaj değerleri bu hücrelerin paralel ve seri bağlanmasıyla arttırılabilir ve azaltılabilir. Farklı sayıdaki hücrelere sahip olarak üretilbilmelerine karşı Li-Po bataryaların genel boşalma karakteristiği ve matematiksel modellemesinde kullanılan kritik noktalar Şekil 9’da gösterilmiştir.
Şekil 9. Li-Po bataryaların tipik boşalma karakteristiği

Tipik boşalma karakteristiğine göre Li-Po bataryalar, aşağıda sunulduğu şekilde modellenmektedir (Tremblay ve Dessaint 2007).

\[
V_{\text{out}} = V_{\text{nom}} - K \frac{Q_{\text{nom}}}{Q_{\text{nom}} - Q_d} (Q_d + i) + A \exp(-BQ_d) - R_{\text{int}} i , \\
V_{\text{out}}(V) = \text{Batarya çıkış voltajı}
\]
Batarya modellerinin elde edilmesi maksadiyla Şekil 10’da gösterilen test düzeneği hazırlanmıştır. Bu test düzeneğinde, batarya lambalardan oluşan değişken nitelikte yükler bağlanarak, gerilim ve voltaj ölçümüyle boşalma karakteristikleri oluşturulmaktadır. Daha sonra, elde edilen boşalma karakteristiğinden batarya modellerinin parametreler hesaplanmaktadır.
Batarya test düzeneği ile elde edilen boşalma karakteristikleri (Şekil 11), yukarıda belirtilen modelleme parametreleri göz önünde bulundurularak analiz edilmiş (Melentjev ve Lebedev 2013) ve model parametreleri elde edilmiştir.

Şekil 11. Li-Po batarya boşalma test grafiği

3.2.2 Motor

Elektrikli İHA sistemlerinde çoğunlukla 3 fazlı fırçasız motorlar kullanılmaktadır. Fırçasız motorlar temel olarak stator ve rotordan (Şekil 12) oluşmakta ve elektrik enerjisini mekanik enerjiye çevirmektedir.

Şekil 12. Fırçasız elektrik motorları

\[V_a = R_i + L \frac{di_a}{dt} + e_a \]
\[V_b = R_i + L \frac{di_b}{dt} + e_b \]
\[V_c = R_i + L \frac{di_c}{dt} + e_c \]

L (H) : Sargı endüktansı,
R (Ω) : Sargı direnci,
\(V_a, V_b, V_c \) (V) : Terminal voltajı,
\(i_a, i_b, i_c \) (A) : Motor girdi akımı,
\(e_a, e_b, e_c \) (V) : Motor geri elektromotif kuvveti.

\[e_a = K_e \omega = K_T \omega = N/K_V \]

\(K_e \) : Geri elektromotif kuvvet sabiti.
\(K_T \) : Tork Sabiti
\(K_V \) : Motor Sabiti
\(N \): RPM

\[K_e = K_T = \frac{30}{\pi} \frac{1}{K_V} \]

\[M = K_T i_t \]

\(M \): Toplam Tork
\(i_t \): Motor Akım girdisi

\[M_{mot} = K_T (i_t - i_o) \]

\(M_{mot} \): Şaft Torku
\(i_o \): Yüksüz Çekilen Akım
Motorların modelleri yüksüz akımın ölçülmesi ve motor sabitine göre tork sabitinin hesaplanmasıyla oluşturulmuştur.

3.2.3 Pervane

\[
V : \text{İleri Rüzgar hızı} \\
2\pi rn, (V_r) : \text{Pervane dönüşünden kaynaklı rüzgar hızı (Çap ile orantılı)} \\
V_R , (V_p) : \text{2 Rüzgar vektörünün kombinasyonu} \\
\alpha : \text{Atak Açıısı(}=\beta-\phi) \\
\beta : \text{Pervane Kanat Açıısı} \\
\phi : \text{Rüzgar vektörlerinin oluşturduğu açı}
\]

![Şekil 13. Pervane geometrisi ve değişkenleri](image)

Pervaneler itki sisteminin hem en önemli parçalarıdır. İlgili katsayılarının hesapları dışında matematiksel modellerinde karmaşık bir eleman bulunmamaktadır. Bu katsayılar bazı pervane üreticilerinden temin edilebilmektedir. Ancak pek çok pervane üreticisi bu bilgileri

\[C_T = \frac{T}{\rho n^2 D^4} \]
\[C_P = \frac{P}{\rho n^3 D^5} \]
\[C_Q = \frac{Q}{\rho n^2 D^5} \]

T (N) : İtki kuvveti
P (W): Güç
Q (Nm) : Tork
D (m) : Pervane Çapı
n (RPM) : Dönü sayısı
\(\rho \) (kg/m\(^3\)): Hava yoğunluğu
\(C_T \): İtki Katsayısı
\(C_P \): Güç Katsayısı
\(C_Q \): Tork Katsayısı

Sonuç olarak pervanelerin karakteristiklerini oluşturan parametreler \(C_T, C_P, C_Q \) deneySEL olarak itki test sistemi ile ölçülmüştür.

3.2.4 Döner Kanatlı Hibrit İHA Platformu

Görev maksatlı tasarım optimizasyonun gerçekleştirilmesi maksadıyla örnek platform olarak döner kanatlı hibrit İHA platformu, çok-rotorlu ve sabit kanatlı bir platformun kontrol yüzeylerine sahip olacak şekilde (Şekil 14) tasarlanmıştır (Çakıcı, Control and Guidance of a MultiMode Unmanned Aerial Vehicle for Increased Versatility 2016). Bu platform ile çok-rotorlu platformlar gibi havada asılı kalma, dikey kalkış-iniş ve düşük hızlarda uçuş kabiliyetleri ile verimli sabit kanatlı uçuş kabiliyetinin birleşirilmesi hedeflenmiştir.
Şekil 14. Döner kanatlı hibrit İHA platformu bileşenleri

Söz konusu platformun aerodinamik tasarımını, gövdenin, kanatların, kontrol yüzeylerinin ve pervanelerin tasarımına, modellenmesine, simülasyonuna ve analizine yönelik detaylar EK-1'de sunulmuştur.

3.2.5 Döner Kanatlı X5 İHA Platformu

Söz konusu platformun aerodinamik tasarımı, gövdenin, kanatların, kontrol yüzeylerinin ve pervanelerinin tasarımına, modellenmesine, simülasyonuna ve analizine yönelik detaylar EK-2’de sunulmuştur.

3.3 Optimizasyon

3.3.1 İtki Sistemi

Döner kanatlı İHA platformları için görev amaçlı tasarım optimizasyonunu yapabilmek için görev amaçları aşağıdaki gibi tanımlanmaktadır.

- Maksimum uçuş süresi,
- Maksimum faydalı yük kapasitesi,
- Minimum güç harcama.

Bu başlıklar arasından hazırlanan senaryolara göre tek amaçlı bir optimizasyon veya çok amaçlı optimizasyon yapılacak olan tasarımın ihtiyacına göre belirlenmektedir. İtki sisteminde yer alan elemanların değişkenleri yukarıda yer alan hedef fonksiyonlarından en ideal çözümü
elde etmek amacıyla kullanılmaktadır. Kullanıcı tanımladığı göreve göre buradan seçeceği hedef fonksiyonlarının kombinasyonunun sonucuna göre optimizasyon sonucunu elde edecektdir. Kullanılan bu değişkenler aşağıdaki yer alan tabloda (Tablo 5) yer almaktadır.

Tablo 5. İtki sistemi optimizasyon parametreleri

<table>
<thead>
<tr>
<th>Motor</th>
<th>Kütle</th>
<th>Motor Kütlesi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tork</td>
<td>Ürettiği Tork</td>
</tr>
<tr>
<td></td>
<td>Maks. Güç</td>
<td>Maksimum Güç</td>
</tr>
<tr>
<td></td>
<td>Max. RPM</td>
<td>Maksimum RPM</td>
</tr>
<tr>
<td></td>
<td>Max. Akım</td>
<td>Maksimum Çekebileceği Akım</td>
</tr>
<tr>
<td></td>
<td>Max. Voltaj</td>
<td>Maksimum Uygulanabilecek Voltaj</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Batarya</th>
<th>Kütle</th>
<th>Batarya Kütle</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Seri Hücre Sayısı</td>
<td>Li-Po Batarya Seri Hücre Sayısı</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nominal Voltaj</td>
<td>Batarya Nominal Voltaj Değeri</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nominal Akım</td>
<td>Batarya Nominal Akım Değeri</td>
<td></td>
</tr>
<tr>
<td></td>
<td>İç Direnç</td>
<td>Batarya İç Direnci</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pervane</th>
<th>Kütle</th>
<th>Pervane Kütle</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Çap</td>
<td>Pervane Çapı</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cp</td>
<td>Pervane Güç Katsayısı</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ct</td>
<td>Pervane İtki Katsayısı</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cq</td>
<td>Pervane Tork Katsayısı</td>
<td></td>
</tr>
</tbody>
</table>

| ESC | R | ESC Direnci |

Tasarım optimizasyonu hedef fonksiyonunu, tasarım limitlerini aşmadan, tasarım değişkenlerini değiştirek minimize etmeyi amaçlar. Bu işlem esnasında pek çok değişken ve hedef fonksiyonu aynı anda dikkate alınmalıdır. Örnek olarak ele almak gerekirse bir çok-rotorlu için hem faydalı yük kapasitesini hem de havada kalma süresini en iyilemek amacıyla minimize etmeyi amaçlarak siddet optimizasyon metodlarıyla sonuç elde edilemez. Şekil 16'te görüldüğü üzere farklı obyetif fonksiyonları için farklı optimum noktalar ortaya çıkmaktadır. Çok amaçlı optimizasyon her 2 obyetif fonksiyonunda aynı anda değerlendirilecek bir sonuç ortaya koymaktadır. Çok amaçlı optimizasyon problemlerinin farklı yöntemlerle çözümleri bulunmaktadır.
Şekil 16. Farklı hedef fonksiyonları için 2 değişkenli bir fonksiyon optimizasyon grafiği

Bu çözümler arasında en kolay yaklaşımı sahip olan ve en çok kullanılan ağırlıklı toplam metodu optimizasyon algoritması olarak kullanılmaktadır. Bu metod objektif fonksiyonları kümesini sayısallaştırmak, kullanıcı tarafından ağırlıklandırılan bu fonksiyonların toplamından tek bir objektif fonksiyonu ortaya çıkarmakta ve sonucu ulaşmaktadır. Çok basit bir yaklaşım olarak görülese de bu metod için kullanılan ağırlıklandırılması, karmaşık fonksiyonların çözümü için büyük problem teşkil etmektedir.

Ağırlıklı toplam metodu formülasyonu (Alfaris 2016) aşağıdaki gibidir.

\[
\begin{align*}
\min f(x) &= \sum_{m=1}^{M} w_m f_m(x) \\
\text{subject to } G(x) &= \left[g_1(x), g_2(x), \ldots, g_f(x) \right] \geq 0 \\
H(x) &= \left[h_1(x), h_2(x), \ldots, h_l(x) \right] = 0 \\
x_L \leq x_t \leq x_U \\
w_m \in [0,1] \\
\sum_{m=1}^{M} w_m &= 1
\end{align*}
\]

f(x) objektif fonksiyon seti,
w: ağırlık katsayları,
G: eşitsizlik fonksiyonları,
H: eşitlik fonksiyonları,
X_L, X_U : değişken limitleri.
Şekil 16’te yer alan fonksiyonların ağırlıklı toplam yöntemle (Narzisi 2008) tek bir objektif fonksiyonu hale getirilmesinin ardından oluşan optimizasyon grafiği (Şekil 17) aşağıdaki gibidir.

\[J_{\text{tot}} = \lambda J_1 + (1-\lambda) J_2 \text{ where } \lambda \in [0,1] \]

Şekil 17. Ağırlıklı toplam metoduyla çok amaçlı optimizasyon problemi

Algoritma girdilerini oluşturmak için kullanılan alt parçaların verilerinin doğrulanması, test örnek noktalarının arttırılması ve verileri bulunmayalar için veri oluşturulmak maksadıyla bir itki sistemi (Şekil 19) hazırlanmıştır. Bu düzenek ile seçilen pervane, motor ve batarya elemanlarından oluşan itki konfigürasyonu test edilmektedir. Test sisteminde itkinin ölçüldüğü bir ağırlık ölçer, RPM ölçümü için optik takometre, güç ölçümü için akım ve voltaj ölçer ve dönüyük kontrol etmek için kullanılan bilgisayar bağlantısına sahip bir veri toplama arayüz kartı bulunmaktadır. Bu sistem ile bilgisayar aracılığıyla verilen komutlar ile motorun dönüş hızı kontrol edilebilmekte,
pervane dönüş hızı, anlık itki kuvveti, anlık gerilim ve akım değerleri otomatik olarak kaydedilerek test edilen sistemlerin modelleri oluşturulmaktadır.

Şekil 19. İtki test sistemi ve bileşenleri

Optimizasyon algoritması için farklı marka ve modellerdeki itki elemanlarının değişken değerleri için veritabanı oluşturulur, bunlar arasında ideal konfigürasyonu oluşturmaya beklenmektedir. Farklı görev tanımları için oluşturulan konfigürasyonlar aşağıdaki objektif fonksiyonlarının ağırlıklı toplamına göre elde edilen senaryolardan elde edilmektedir. Sırasıyla, itki ihtiyacı tanımlandıktan sonra konfigürasyonuna göre tek bir itki sisteminin ne kadar itki üretmesi gerektiğini ve bunu yapabilmek için ilgili pervanenin ne kadar hızlı dönüşmesi gerektiğini bulunur. Bu işlem için bir arama algoritması (Şekil 21) kullanılarak dakikalık dönüş hızı bulunur.
Şekil 21. İtki ihtiyacı belirleme algoritması akış şeması

Bu algoritmanın bir çıktıı olan hata değeri hedef fonksiyonlarından biridir; çünkü mevcut pervaneyle yeterli tikinın sağlanıp sağlanamadığı bilgisi bu hata değerinin küçüklüğüne göre belirlenmektedir. Şekil 18'de yer alan akıdan pervanenin o hız için ne kadar güç harcayacağı, ne kadar torka ihtiyaç olduğu hesaplanır. Bunun yanında pervane limit dönüş hızı da belirlenerek hangi seviyede dönerken bu itkiyi üretbildiği de hesaplanır. Buradan motorun o hızda dönübileceği ve gerekli torku üretbileceği motor tercihleri için birer limitleyicilerdir. Ardından seçilen motorun pervaneyi hesaplanan hızda döndürmesi için ihtiyaç olan güç, bu gücün motora iletilmesi için ESC üzerinde ve batarya iç direncinde harcanan güç hesaplanır. Bu güç harcanırken pilin sağlayabileceği enerji kapasitesi zamana bağlı olarak ele alınarak uçuş süresi hesaplanır. Son olarak mevcut itki elemanlarının, gövde bileşenlerinin ve avyoniklerin ağırlıkları hesaba katılarak aracın ne kadar yük daha kaldırmabileceği hesaplanır. Yukanda hesaplanan itki hatası, harcanan güç, dönüş hızı seviyesi, uçuş süresi, tork ve faydali yük kapasitesi görev amaçlı optimizasyonu gerçekleştirebilmek için kullanılan hedef
fonksiyonlardır. Bu fonksiyonların göreve göre ağırlıklı toplam katsayıları değiştirilerek seçilen görevə en uygun konfigürasyon elde edilmektedir.

3.3.2 Kontrol Sistemi

Kontrol sistemi optimizasyonunda, hava aracının optimize edilecek değişkeni ile ilgili durum değişkenleri serbest bırakılarak (Şekil 22), farklı modların birbirini etkilememesi için geriye kalan durum değişkenleri sabit tutulmuştur.

Şekil 22. Kontrol sistemi optimizasyonunda yunuslama eksenı eniyileştirmesi
Kapalı döngüdeki bir sistemin performansı anlık (yükselme zamanı, takip etme zamanı, vb.) ve uzun zamanda (kararlı hata) görülen karakteristiklere göre belirlenmektedir. Bu çerçevede bütün karakteristiklerin iyileştirilmesi göz önünde bulundurularak kontrol sisteminin parametrelerinin eniyileştirilmesi maksadıyla bir optimizasyon problemi tanımlanmıştır.

\[
\min_{k_p, k_i, k_d} \int_{t_0}^{t_f} t |e_i(t)| \, dt
\]

\[\dot{x} = f(x, u), \text{ fonksiyonuna göre } e_i = x_{id} - x_i,\]

\[x_{id} = x_{i,trim} + h(t),\]

\[h(t) = \begin{cases} 1, & t \geq t_0, \\ 0, & t < t_0. \end{cases}\]

\[u = [u_{roi}, u_{pit}, u_{ya}, w_{thr}],\]

\[x = [u, v, w, p, q, r, \phi, \theta, \psi, x_e, y_e, z_e],\]

\[i = \{4, 5, 6, 7, 8, 9, 1, 2, 3\},\]

\[f(x, u) \text{ hareket denklemleri olmak üzere}.\]

Optimizasyonda serbest bırakılan kanala birim basamak girdisi uygulanmış ve sistemin bu komutu takip ederken oluşturduğu cevap elde edilmiştir. Söz konusu cevap eğrisi biriken hatanın integrali şeklinde hesaplanarak hedef fonksiyonunun değeri elde edilmiştir. Optimizasyon iterasyonlarında ise hedef fonksiyon değerinin azaltılması maksadıyla kontrolcü parametreleri otomatik olarak değiştirilerek en iyi cevabin (Şekil 23 ve Şekil 24) elde edildiği parametreler bulunmaktadır.
Şekil 23. Döner kanat hibrit İHA VTOL modundayken sistem cevabı
Şekil 24. Döner kanat hibrit İHA FW modundayken sistem cevabı

\[V_{hd} = 14 + 0.5 \sin(2\pi ft) \text{ m/s, } f = 0.5 \text{ Hz} \]

\[V_{hd} = 14 + 0.5 \text{ sgn} (\sin(2\pi ft)) \text{ m/s, } f = 0.5 \text{ Hz} \]
4. BULGULAR VE TARTIŞMA

4.1 Testler

İtki test sistemi kullanılarak gerçekleştirilen testler ile piyasada bulunan farklı tip motor, pil ve pervanelerin model verileri elde edilerek bir veritabanı oluşturulmuştur. İtki sistemi elemanlarının değişkenleri algoritmada seçilen bu elemanların sahip olduğu değerlere göre değişkenlik göstermektedir. Mevcut sistem bileşenleri (Tablo 6) ile yapılan testler sonucunda, sonuçları görselleştirirken oluşan 3 boyutlu dizi bu elemanların dizin değerleri ve sahip oldukları sonuçların renk skalası üzerinden gösteriminde kullanılmaktadır.

Tablo 6. Testlerde kullanılan itki elemanları dizin listesi

<table>
<thead>
<tr>
<th>Dizin</th>
<th>Pervane Modelleri</th>
<th>Motor Modelleri</th>
<th>Batarya Modelleri</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>APC_10x45</td>
<td>Emax_MT2213</td>
<td>BAT1</td>
</tr>
<tr>
<td>2</td>
<td>APC_11x45</td>
<td>VTOLFW_2213</td>
<td>THK_3S_2AH5_25C</td>
</tr>
<tr>
<td>3</td>
<td>APC_12x45</td>
<td>VTOLFW_2815</td>
<td>GENS_3S_3AH3_25C</td>
</tr>
<tr>
<td>4</td>
<td>APC_5X3E</td>
<td>Tmotor_MS2820-7</td>
<td>THK_3S_3AH05_25C</td>
</tr>
<tr>
<td>5</td>
<td>APC_5X45E</td>
<td>Emax_MT4114</td>
<td>KYP_4S2P10AH</td>
</tr>
<tr>
<td>6</td>
<td>APC_6X4E</td>
<td>MTR1</td>
<td>GENS_3S_5AH_35C</td>
</tr>
<tr>
<td>7</td>
<td>APC_7X4E</td>
<td></td>
<td>GENS_4S_3AH8_25C</td>
</tr>
<tr>
<td>8</td>
<td>APC_7X4SF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>APC_7X5E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>APC_8X38SF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>APC_8X45MR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>APC_8X47SF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>APC_9X45MR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

İtki sistemi optimizasyon algoritması ile kullanıcı tercihine göre belirlenen toplam ağırlığa göre kullanılabilir faydalı yük miktarını veya verilen faydalı yük miktarı değerine göre toplam hava aracı ağırlığını hesaplanabilmektedir. Örnek olarak oluşturulan 6 kg’lık çok-rotorlu İHA platformunun tüm kombinasyonlar için kaldırabileceği faydalı yük dağılım grafiği (Şekil 25) itki sistemi optimizasyon algoritması ile elde edilmiştir. Eksen tanımları içinde yer alan rakamlar, Tablo 6’e göre bileşenin dizin numarasını belirtmektedir. Motor dizininde sıralama ağırlık
dikkate alınarak yapıldığı için, dizin arttıkça 6 kg’a sınırlandırılmış toplam ağırlık nedeniyle faydalı yük değerinin azaldığı görülmektedir.

Örnek platform hedeflerinde toplama 6 kg’lık bir kalkış ağırlığı göz önüne alınarak, bileşen endekslere göre oluşturulan itki sistemi kombinasyonlarında, sistemin ihtiyacı olan toplam anlık güç miktarı (Şekil 26), % itki komutu (Şekil 27), pervanelerin dönüş hızları (Şekil 28) ve havada asılı kalma süreleri (Şekil 29) hesaplanmıştır.
Şekil 26. İtki sistemi kombinasyonlarına göre anlık güç ihtiyacı

Şekil 27. İtki sistemi kombinasyonlarına göre itki komutu yüzdesi
Şekil 28. İtki sistemi kombinasyonlarına göre pervanelerin açısal dönüş hızları

Şekil 29. İtki sistemi kombinasyonlarına göre havada kalma süresi
Elde edilen sonuçlardan görüldüğü gibi her konfigürasyonun belirli hedef fonksiyonuna göre farklı değerleri bulunmaktadır. Bu değerleri aynı anda değerlendirerek için ağırlıklı toplam metoduna göre belirlenen katsayılara göre belirlenen senaryolara göre itki sistem kombinasyonlarının performansları değerlendirilmiştir.

Minimum güç harcama ve uzun süre havada görev senaryosuna göre, hava aracının en az enerjyle en uzun süre havada kalmaması beklenmektedir. Bu değerler göre belirlenen ağırlık katsayılarına göre en ideal konfigürasyon (313; Pervane: APC_12x45, Motor: Emax_MT2213, Batarya: GENS_3S_3AH3_25C) dizininde yer alan konfigürasyon olduğu (Şekil 30) tespit edilmiştir. Diğer konfigürasyonlarda aynı pervane kullanıldığında uçuş süresi ve güç harcaması eşit 3 farklı kombinasyon güzel çarpmaktadır, ancak faydali yük katsayısı nedeniyle en ideal konfigürasyon (313) olarak hesaplanmıştır.

Şekil 30. Minimum güç ve maksimum uçuş süresi optimizasyon sonuçları
Hedef fonksiyonu en yüksek faydalı yük taşıma görevine uygun ağırlıklar verilerek ayarlandığında ise (414; Pervane: APC_5X3E, Motor: Emax_MT2213, Batarya: THK_3S_3AH05_25C) nolu dizinin en ideal itki sistemi konfigürasyonunu (Şekil 31) oluşturduğu görülmektedir.

Şekil 31. Maksimum faydalı yük optimizasyon sonuçları

4.2 Simülasyonlar

Görev çeşitliliğinin artırılması maksadıyla, itki sistemi optimizasyonu ile tasarlanan ve kontrol sisteminin parametreleri eniyileştirilen döner kanatlı hibrit İHA sistemi VTOL, FW ve AUTO modlarında uçuş simülasyonları gerçekleştirilmiştir. Sistem asimetrik olarak yerleştirilen uçuş kontrol noktaları arasında VTOL (Şekil 32) ve FW (Şekil 33) modlarında uçsun yaparken mod değiştirilmemiş, AUTO (Şekil 34) modunda ise otomatik olarak mod geçişi sağlanmıştır.
Şekil 32. Döner kanatlı hibrid İHA'nın VTOL modunda uçuş simulasyonu
Şekil 33. Döner kanatlı hibrit İHA’nın FW modunda uçuş simulasyonu
Şekil 34. Döner kanatlı hibrid İHA'nın AUTO modunda uçuş simulasyonu
Döner kanatlı İHA platformunun aynı uçuş kontrol noktaları için farklı modlarda gerçekleştirilen uçuş simülasyonlarından elde edilen sonuçları (Tablo 7) maksimum irtifa değişimini, maksimum güç ihtiyacı ve tüketilen toplam enerjiye göre analiz edilmiştir. Bu çerçevede görev ihtiyaçlarına göre sabit kanatlı uçuş rejimi tercih edildiğinden irtifa değişiminin, maksimum güç ihtiyacının ve tüketilen toplam enerjinin en az seviyede olduğu gözlemlenmiştir. Görevin dikine kalkış iniş manevrası gerektiği durumlarda VTOL ve AUTO modları kullanılabilmiştir. İrtifa değişiminin ve maksimum güç ihtiyacının düşük olması beklenen görevler için VTOL modunun, tüketilen toplam enerjinin düşük olmasını gerektiren görevlerde ise AUTO modu ile otomatik mod değişimlerinin sağlanmasını en yüksek görev başarısını sağlayacağı değerlendirilmiştir.

Tablo 7. Döner kanatlı hibrit İHA uçuş simülasyonlarının performans karşılaştırması

<table>
<thead>
<tr>
<th>Hava Aracı</th>
<th>Mod</th>
<th>Maksimum İrtifa Değişimi (m)</th>
<th>Maksimum Güç İhtiyacı (W)</th>
<th>Tüketilen Toplam Enerji (Wh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Döner Kanatlı Hibrit İHA</td>
<td>VTOL</td>
<td>0.5</td>
<td>440</td>
<td>1.87</td>
</tr>
<tr>
<td></td>
<td>FW</td>
<td>0.2</td>
<td>88</td>
<td>0.49</td>
</tr>
<tr>
<td></td>
<td>AUTO</td>
<td>2.0</td>
<td>740</td>
<td>0.72</td>
</tr>
</tbody>
</table>

4.3 Uçuşlar

Görev maksatlı tasarlanan döner kanatlı hibrit İHA sisteminin gerçek dünyadaki performansının ve uçuş karakteristiklerinin test edilmesi maksadıyla uçuş testleri gerçekleştirilmiştir. Bu çerçevede gerçekleştirilen iki örnek uçuş testinin ilkinde yalnızca VTOL modunda, ikincisinde ise FW moduna geçiş maksatlı itki yardımcı VTOL modunda uçuşlar gerçekleştirilerek (Şekil 35) kaydedilen uçuş verileri incelenmiştir.
Uçuş verileri incelendiğinde (Şekil 36) itki yardımlı VTOL modunda, yalnızca VTOL moduna göre daha fazla güç ihtiyacı ortaya çıktığı, ancak daha kısa sürede yüksek hızlara ulaşılabiläge gözlemİlİmektedir. Bu çerçevede, görev ihtiyaçlarına göre kısa sürede yüksek hızlara ulaşılması gerekiyorsa, görevdeki görev ihtiyaçlarını artırmak için ATUO modları da kullanılarak, görevin daha hizla gerçekleştirilmesi sağlanabilir.
Şekil 36. Döner kanatlı hibrit İHA’nın uçuş verileri
5. SONUÇ

Bu projenin amacı, döner kanat İHA platformlarının senaryo bazlı olarak görevye yönelik tasarım kâbiliyetinin elde edilerek, uygulama gösterimi ile kâbiliyetlerinin doğrulanmasının sağlanması ve bu çerçevede çeşitli alanlarda etkin kullanılabilebilirliğini ortaya koymaktır.

Proje kapsamında örnek platform olarak döner kanatlı hibrit İHA platformunun ve döner kanatlı X5 İHA platformunun görev amaçlı tasarımını gerçekleştirerek eniyileştirilerek yapılmıştır. Yapılan simülasyonlar ve uçuş testleri (videolar çoklu ortam dosyalarında sunulmuştur), optimizasyon yaklaşımnın sistemin görev başarısında olumlu etki sağladığı gözlemlenmiştir. Döner kanatlı hibrit İHA platformunun havada asılı kalma, dikey kalkış-inış ve verimli düz uçuş gerektiren görevlerde etkin olarak kullanılabileceği değerlendirilmiştir. Kısa bir alanda havalanarak görev kapsamında uzak mesafelere uçuş gerektiren arama-kurtarma, enerji (elektrik/yakıt) hatlarının netlenmesi görevlerinin etkin olarak yerine getirebileceği kıymetlendirilmiştir. Diğer taraftan döner kanatlı X5 İHA platformunun yüksek faydalı yük kaldırarak havada uzun süre kalınmasını gerektiren görevlerde fayda sağlayacağı
değerlendirilmektedir. SÖZ konusu platformun harp gemilerine ve kara araçlarına monte edilerek kullanılabileceği ve üzerine takılabilecek kamera faydalı yüküyle kesintisiz görüntü sağlayabileceğini ayrıca geçici baz istasyonu ve RF röle sistemi olarak değerlendirebileceği kiymetlendirilmektedir.

Sonuç olarak, bu projede döner kanatlı İHA platformlarının görev amaçlı tasarımının ve optimizasyonunun yapılmasıyla kullanım alanlarının genişletilebileceği ve farklı alanlarda uygulama alanı bulabileceği değerlendirilmektedir.

5.1 Gelecek Çalışmalar

Hava aracının tasarımının en iyileştirilmesi, çok değişkenli ve karmaşık bir problem olarak karşımıza çıkmaktadır. Bu projede döner kanatlı İHA platformlarının itki sistemleri için gerçekleştirdiğim eniyileştirmenin, hava araçlarının geometrik parametrelerini de kapsayacak şekilde genişletilmesi hedeflenmektedir.

Proje kapsamında örnek platform olarak görev amaçlı tasarımını gerçekleştirdikler eniyileştirilmiş yapılan döner kanatlı hibrit İHA platformunun ve döner kanatlı X5 İHA uzun süreli uçuş testleriyle olgunluk seviyesinin artırılması ve pratik olarak kullanılabılır sistemler haline getirilmesi planlanmaktadır.

Döner kanatlı hibrit İHA platformuyla ilgili tecrübenin arttırılmasıyla detaylı uygulama kriterlerinin ortaya konulması, optimum uçuş manevralarının belirlenmesi, çok-rotorlu ve sabit kanatlı kontrol yüzeylerinin uçuş durumuna göre birbirini desteleyecek ve yedeklilik sağlayacak şekilde kullanılabileceği, bu yaklaşımın farket ve kaçın manevralarında, arıza toleranslı kontrol uygulamalarında yar bulabileceği öngörülmektedir. Ayrıca hibrit platformun etkinliğinin artırılması kapsamında akıllı mod değişimini planlamaya yönelik araştırma yapılması hedeflenmektedir.

Döner kanatlı X5 İHA platformunun üzerine faydalı yük entegrasyonu ve slip-ring ile havada uzun süre kalabilme kabiliyetinin kazandırılması planlanmaktadır. Platform yere bağlı olarak kullanılduğunda ırtıfasının kontroll edilebilmesi maksadıyla bir makara sisteminin tasarlanması hedeflenmektedir.
5.2 Yayınlar

Proje kapsamında bir doktora (Çakıcı, Control and Guidance of a MultiMode Unmanned Aerial Vehicle for Increased Versatility 2016) ve bir yüksek lisans tezi (Noudeh 2015) tamamlanmıştır. Halen bir yüksek lisans tez çalışmasına devam edilmektedir.

Uluslararası konferanslar Hong Kong’da düzenlenen ICRMM 2016 (Çakıcı ve Leblebicioğlu, Analysis of a UAV that can Hover and Fly Level 2016) konferansında ve İstanbul’da düzenlenen IFAC CTS 2016 konferansında (Çakıcı ve Leblebicioğlu, Control System Design of a Vertical Takeoff and Landing Fixed Wing UAV 2016) sunum yapılmıştır.

Mevcut durumda 2 adet uluslararası hakemli dergi, TOK 2016 ve SAVTEK 2016 kongreleri için makale hazırlama çalışmalarına devam edilmektedir.
KAYNAKLAR

Bolandi, Hossein, Mohammad Rezaei, Reza Mohsenipour, Hossein Nemati, ve Seed Majid Smailzadeh. 2013. «Attitude Control of a Quadrotor with Optimized PID Controller.» Intelligent Control and Automation, 335-342.

Çakıcı, Ferit, ve M. Kemal Leblebicioğlu. 2016. «Analysis of a UAV that can Hover and Fly Level.» *2016 International Conference on Robotics, Mechanics and Mechatronics.* Hong Kong: International Association of Computer Science and Information Technology.

Ta, Duc Ann, ve Isabelle Fantoni. 2011. «Modeling and Control of a Convertible Mini UAV.» *Proceedings of 18th IFAC World Congress.* Milano, Italy.

W.B., Graner. 2009. «Model Airplane Propellers.»

American Helicopter Society Specialists Meeting on Unmanned Rotorcraft and Network Centric Operation. Phoenix, USA.

Proje Yürütücüsü: Prof. Dr. MEHMET KEMAL LEBLEBİCİOĞLU
Proje No: 114E149
Proje Başlığı: Görev Amaçlı Döner Kanat İHA Tasarımı
Proje Türü: 1005 - Yeni Fikirler ve Ürünler
Proje Süresi: 18
Araştırmacılar: İLKAY YAVRUCUK
Danışmanlar: ORTA DOĞU TEKNİK Ü. MÜHENDİSLİK F. ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ B.
Projenin Yürütüldüğü Kuruluş ve Adresi: 01/10/2014 - 01/04/2016
Onaylanan Bütçe: 180669.0
Harcanan Bütçe: 163845.97
Öz:
Bu projenin amacı, döner kanat İHA platformlarının senaryo bazlı olarak görevye yönelik tasarım kabiliyetinin elde edilerek, uygulama gösterimi ile kabiliyetlerinin doğrulanmasının sağlanması ve bu çerçevede çeşitli alanlarda etkin kullanılabilirliğini ortaya koymaktır.

İHA sistemleri görev ihtiyaçlarına, kullanım senaryolarına, taşıması hedeflenen faydalı yüklerin özelliklerine farklı tip ve konfigürasyonlarda tasarlanmaktadır. Bir İHA sisteminden uzun uçuş zamanı beklenirken sabit kanatlı uçak tipindeki platformlar, havada asılı kalma ve dikine iniş kalkış kabiliyeti beklendiğinde döner kanat (helikopter, multirotor) platformlar, hem uzun uçma zamanı hem havada asılı hem de dikine kalkış ve iniş kabiliyeti aynı anda beklenirken ise sabit kanat kalkışlı döner kanat (döner rotor, dönen kanat, kuyruk üzerine oturan) platformlar öne çıkmaktadır. Fiyatlı yük taşıma kapasitesinin yüksek olması ise, her tipteki İHA sistemi için önemli bir gereksinimdir. Mevcut ve halen geliştirilmekte olan İHA sistemlerinin özellikleri ve kabiliyetleri incelendiğinde, benzer görevler için tasarlanan aynı kategorideki İHA sistemlerinin kabiliyetleri arasında farklılıklar olduğu göz çarpmaktadır.

Bu çalışmada, görev başarımında en iyinin elde edilmesi maksadı hava kalma süresi, faydalı yük kapasitesi ve senaryo dahilinde taşınan faydalı yük ile görev başarımı kriterleri genel optimizasyon hedefleri olarak ele alınmıştır.

Proje kapsamında ele alınan döner kanatlı hibrit ve döner kanatlı X5 İHA platformlarının tasarım parametreleri belirlenmiş, görevde yüksek başarının elde edilmesi maksadıyla optimizasyon yöntemleri kullanarak parametrelerin eniyileştirilmesi yapılmıştır. Bu maksatla sistem alt bileşenlerinin karakterizasyonunun elde edilmesi maksadıyla test sistemleri oluşturulmuştur.

Anahtar Kelimeler: İHA, Döner Kanat, Dikine Kalkış ve İnış, Tasarım Optimizasyonu

Fikri Ürün Bildirim Formu SunulduMu?: Evet
Projeden Yapılan Yayınlar:
1. Coordinated guidance for multiple UAVs (Makale - İndeskli Makale),
2. Control System Design of a Vertical Take-off and Landing Fixed-Wing UAV (Bildiri - Uluslararası Bildiri - Sözlü Sunum),
3. Analysis of a UAV that can Hover and Fly Level (Bildiri - Uluslararası Bildiri - Sözlü Sunum),