Ni-Bazlı Çift Metalli Katalizörlerde Metanın Karbondioksit Riformlaması

Proje no: 112M561

Proje Yürütücüsü: Prof. Dr. Deniz ÜNER Yardımcı Araştırmacı: Hale AY

> ŞUBAT 2014 ANKARA

ÖNSÖZ

Bu proje Ni-bazlı katalizörlerin farklı yöntemlerle sentezlenerek, karakterize edilip metanın karbondioksit riformlama tepkimesi için test edilmesini kapsamaktadır. Bu proje TÜBİTAK'ın Mühendislik Araştırma Grubu tarafından desteklenmiştir.

İÇİNDEKİLER

ÖZ	1
ABSTRACT	2
1. GİRİŞ	3
 2. DENEYSEL 2.1. Katalizör Hazırlama Metodları 2.2. Reaksiyon Testleri 2.3. Karakterizasyon Çalışmaları 	4 4 5
 SONUÇLAR VE DEĞERLENDİRİLMESİ Islaklık Başlangıcı Emdirme Metodu ile Hazırlanan Katalizörlere ait Sonuçlar Poliol Metodu ile Hazırlanan Katalizörlere ait Sonuçlar 	7 7 18
4. REFERANSLAR	24

ŞEKİL LİSTESİ

Şekil 1.	700°C sıcakta kalsine edilmiş saf Al ₂ O ₃ , Ni/Al ₂ O ₃ ve Ni-Co/Al ₂ O ₃ 'ün X-ışını kırınım desenlerinin kalsine edilmeyen saf Al ₂ O ₃ ile karşılaştırılması	7
Şekil 2.	900°C sıcakta kalsine edilmiş saf Al ₂ O ₃ , Ni/Al ₂ O ₃ ve Ni-Co/Al ₂ O ₃ 'ün X-ışını kırınım desenlerinin kalsine edilmeyen saf Al ₂ O ₃ ile karşılaştırılması	8
Şekil 3.	700°C ve 900°C'de kalsine edilen katalizörlerin TPR profilleri	9
Şekil 4.	Ni/Al_2O_3 (900) katalizöründe 700°C'de gerçekleştirilen metanın karbondioksit riformlaması için CH_4 ve CO_2 dönüşümü	10
Şekil 5.	Ni-Co/Al ₂ O ₃ (900) katalizöründe 700°C'de gerçekleştirilen metanın karbondioksit riformlaması için CH ₄ ve CO ₂ dönüşümü	11
Şekil 6.	700°C'de gerçekleştirilen metanın karbondioksit riformlaması sonucunda oluşan H ₂ /CO oranı a) Ni/Al ₂ O ₃ (900), b) Ni-Co/Al ₂ O ₃ (900)	11
Şekil 7.	Ni/Al_2O_3 (700) katalizöründe 700°C'de gerçekleştirilen metanın karbondioksit riformlaması için CH_4 ve CO_2 dönüşümü	12
Şekil 8.	Metanın kuru riformlama tepkimesi sonrasında Ni/Al ₂ O ₃ (900) ve Ni-Co/Al ₂ O ₃ (900) katalizöründeki kok birikmesini gösteren TGA eğrileri	12
Şekil 9.	Metanın kuru riform tepkimesi sonrasında Ni/Al ₂ O ₃ (700) katalizöründeki kok birikmesini gösteren TGA eğrisi	13
Şekil 10	. Ni/Al ₂ O ₃ (700) katalizöründe izotoplu reaktant kullanılarak gerçekleştirilen reaksiyon sırasında biriken kokun ¹³ C NMR spektrası	14
Şekil 11	. 600°C'deki metanın kuru riformlaması sonrasındaki katalizörlerin TEM görüntüleri a-b) Ni/Al ₂ O ₃ (900), c-d) Ni-Co/Al ₂ O ₃	15
Şekil 12	. CO ₂ 'in 323 K'de diferensiyel adsorpsiyon 15151	16
Şekil 13	. CO ₂ adsorplanmasının DRIFT spekturumu a) Ni/Al ₂ O ₃ (900) b) Ni-Co/ Ni/Al ₂ O ₃ (900)	17
Şekil 14	. Kalsine edilmeyen saf Al ₂ O ₃ ve poliol yöntemi ile hazırlanan katalizörlerin X-ışını kırınım desenleri	18
Şekil 15	. Saf EG, saf PVP ve poliol yöntemi ile hazırlanan katalizörlerin TGA eğrileri	19

		sayfa
Şekil 16.	Kalsine edilmeyen saf Al ₂ O ₃ ve poliol yöntemi ile hazırlanan katalizörlerin 77K'deki azot adsorpsiyon/desorpsiyon izotermleri	19
Şekil 17.	Poliol metoduyla hazırlanan Ni/Al ₂ O ₃ katalizörlerinde 700°C'de gerçekleştirilen metanın karbondioksit riformlaması için CH_4 ve CO_2 dönüşümü	20
Şekil 18.	Poliol metoduyla hazırlanan Ni/Al $_2O_3$ katalizörlerinde 700°C'de gerçekleştirilen metanın karbondioksit riformlaması sonucunda oluşan H $_2$ /CO oranı	21
Şekil 19.	Metanın kuru riform tepkimesi sonrasında poliol metodu ile hazırlanan Ni/Al ₂ O ₃ katalizöründeki kok birikmesini gösteren TGA eğrileri	21
Şekil 20.	Poliol metodu ile hazırlanan Ni/Al ₂ O ₃ katalizörlerinin TEM görüntüleri a-b) Ni/Al ₂ O ₃ –PVPsiz, c-d) Ni/Al ₂ O ₃ -PVP/Ni=2.5, e-f) Ni/Al ₂ O ₃ -PVP/Ni=5.0	22
Şekil 21.	600°C'deki reaksiyon sonrasındaki katalizörlerin TEM görüntüleri a-b) Ni/Al ₂ O ₃ –PVPsiz, c-d) Ni/Al ₂ O ₃ PVP/Ni=2.5	23

TABLO LÍSTESÍ

		sayfa
Tablo 1.	Kalsine edilmeyen saf Al ₂ O ₃ , kalsine edilen saf Al ₂ O ₃ (900°C), Ni/Al ₂ O ₃ (900°C) ve Ni-Co/Al ₂ O ₃ (900°C)'ün yapısal özellikleri	9
Tablo 2.	600° C'de 30 sccm CO ₂ + 30 sccm CH ₄ ile gerçekleştirilen 10 dakikalık reaksiyon sonucunda meydana gelen kütle artışı değerleri	13
Tablo 3.	600°C'de Ni/Al ₂ O ₃ (700) katalizörü üzerinde değişen CH ₄ /CO ₂ oranı ile gerçekleştirilen 10 dakikalık reaksiyon sonucunda meydana gelen kütle artışı değerleri	13
Tablo 4.	Kalsine edilmeyen saf Al ₂ O ₃ ve poliol yöntemiyle hazırlanan katalizörlerin yapısa Özellikleri	.1 20

Bu çalışma iki farklı sentez metodu kullanılarak hazırlanan Ni-bazlı katalizörlerin metanın karbondioksit riformlama tepkimesi için test edilmesini kapsamaktadır.

Birinci kısımda katalizörler ıslaklık başlangıcı emdirme metodu ile sentezlenmistir. Bu metotla hazırlanan katalizörlerdeki faz oluşumunda kalşinaşyon şıcaklığının büyük öneme şahip olduğu anlasılmıştır. Yüksek kalsinasyon sıcaklığı spinel fazlarının oluşumuna sebep olmuştur. XRD desenleri çoklu oksit fazlarının (NiAl₂O₄, NiCo₂O₄ ve CoAl₂O₄) varlığını ortaya çıkarmıştır. Parçacık boyutunun artan kalsinasyon sıcaklığıyla büyüdüğü gözlenmiştir. 700°C'de ve 900°C'de kalsine edilen Ni/Alumina katalizörleri karşılaştırıldığında bu katalizörün indirgenme sıcaklığının kalsinasyon sıcaklığı ile arttığı gözlenmektedir. 700°C'de kalsine edilen Co/Alumina katalizörünü indirgeyebilmek için 850°C sıcaklığın dahi yeterli olmadığı görülmüştür. Nikel bazlı katalizöre kobalt eklenmesi kalsinasyon 700°C'de yapıldığında nikelin indirgenme sıcaklığının artmasına sebep olurken, kalsinasyon 900°C'de yapıldığında önemli bir etki varatmamıştır. 900°C'de kalsine edilen katalizörde spinel fazına ait tek bir indirgenme sıcaklığı görülürken, 700°C'de kalsine edilen Ni/Al₂O₃ ve Ni-Co/Al₂O₃ katalizörlerinin oksit fazına ait olabileceği düşünülen daha düşük sıcaklıktaki bir indirgenme pikine daha sahip olduğu gözlenmiştir. 900°C'de kalsine edilen katalizörler reaksiyonda daha iyi katalitik aktivite sergilemiştir. 700°C'de kalsine edilen katalizörlerde tepkime sonucunda önemli oranda fazla kok birikmiştir. Metanın kuru reformasyonunda reaksiyon şartları altında oluşarak katalizörü deaktive eden kok birikmesinde CO2'nin mi yoksa CH4'ün mü daha etkin olduğunu açığa çıkarmak için Ni/Al₂O₃ katalizörleri üzerinde ¹³C etiketli CO₂ gazı ve ¹²C içeren CH₄ ile reaksiyon deneyleri yapılmıştır. TGA sonuclarının CH4 miktarı arttıkca oluşan karbon miktarının da arttığını göstermesine karşın izotoplu karbon dioksit ile gerçekleştirilen tepkime sonrasında katalizör yüzeyinde biriken kokun ¹³C NMR karakterizasyon sonuçları kok olusumunun karbon dioksitten de kaynaklandığını ortaya koymuştur. TEM çalışmaları katalizör yüzeyinde biriken kokun çok duvarlı karbon nanotüp olabileceğini göstermiştir. DRIFTS çalışmaları CO2'in katalizör yüzeylerinde bikarbonatlar şeklinde adsorplandığını göstermiştir.

İkinci kısımda poliol yöntemi ile sentez esnasında metalik Ni elde edilerek tepkime öncesinde indirgenme işlemine duyulan ihtiyaç ortadan kaldırılmıştır. PVP/Ni oranı arttıkça Ni parçacık boyutu küçüldüğü ve bunun sonucunda dönüşüm değerlerinin arttığı gözlenmiştir. Diğer taraftan PVP/Ni oranı en yüksek olan katalizörün en hızlı deaktivasyona uğradığı saptanmıştır. TEM sonuçları PVP miktarının parçacık boyutu ve şekli üzerindeki önemini açığa çıkarmıştır. PVP içermeyen katalizör küresel yapıya sahipken, PVP miktarı arttıkça parçacıkların şeklinin değişerek küp-oktahedra biçimini aldığı gözlenmiştir. Görüntüler PVP miktarı en fazla olan katalizörün parçacık boyutunun en küçük olduğunu ortaya koymuştur.

Anahtar kelimeler: metanın karbondioksit riformlaması, Ni-bazlı katalizör, kok, ¹³C NMR, poliol, PVP

ABSTRACT

This study comprises the testing of Ni-based catalysts prepared by two different synthesis methods in dry reforming of methane reaction.

In the first part of the study, the catalysts were prepared by incipient wetness impregnation method. It was understood that calcination temperature had a significant effect on phase formation. High calcination temperature caused the formation of spinel phases. XRD pattern of the catalysts revealed the existence of multiple oxide phases (NiAl₂O₄, NiCo₂O₄ CoAl₂O₄). It was observed that particle size increased with calcination temperature. When Ni/Alumina catalyst calcined at 700°C was compared with the one calcined at 900°C, it was seen that the reduction temperature of this catalyst increased with calcination temperature. It was observed that even 850°C was not enough to reduce Co/Alumina calcined at 700°C. While the addition of cobalt to the nickel based catalyst increased the reduction temperature at 700°C calcination temperature, it did not have a significant effect at 900°C calcination temperature. There was only one peak belonging to spinel phase when the calcination was carried out at 900° C. On the other hand, Ni/Al₂O₃ and Ni-Co/Al₂O₃ catalysts reduced at 700°C had one more reduction peak at lower temperatures, which were attributed to the oxide phase. The catalysts calcined at 900°C showed better catalytic activity in the reaction. It deposited quite high amount of coke on the catalyst calcined at 700°C. In order to determine whether CO₂ or CH₄ was more dominant in coke depositon formed during reaction conditions, experiments were carried out on Ni/Al₂O₃ catalysts with ¹³C labelled CO₂ and CH₄ having ¹²C. Although the results of TGA showed the increase of coke weight with increasing CH₄ amount, the ¹³C NMR characterization results of the coke deposited on the catalyst surface during the reaction carried out with isotope labeled CO₂, revealed that coke formation had also resulted from CO2. TEM results showed that the deposited carbon on the catalyst could be multi walled carbon naotubes. DRIFTS studies demonstrated that CO₂ adsorbed on catalyst surface as bicarbonates.

In the second part of the study, metallic Ni was obtained during the synthesis which stopped the necessity for reduction before reaction. As PVP/Ni ratio increased the Ni particle size decreased and as a result of this the conversion values increased. On the other hand, it was detected that the catalyst having the highest PVP/Ni ratio deactivated fastest. TEM results revealed the importance of PVP amount on the size and shape of the particles. While the catalyst synthesized without PVP had spherical structure, the shape of the particles changed with increasing PVP amount and they started to become cube octahedra. The images showed that the catalyst having the highest PVP/Ni ratio had smallest particle size.

Keywords: Carbon dioxide reforming of methane, Ni-based catalyst, coke, ¹³C NMR, poliol, PVP

1. GİRİŞ

Metanın kuru riformlama reaksiyonu ile ilgili literatür başlıca dört konu üzerinde yoğunlaşmıştır: metalik fazın aktivitesi, karbon birikmesine karşı olan direnç, katalizörün verimliliğini geliştirecek destek türü ve reaksiyon mekanizması. Reaksiyonun termodinamiği iyi anlaşılmış olmasına rağmen, tepkime mekanizması ve kinetiği hakkındaki bilgi hala fazlasıyla tartışmalıdır. Metanın kuru riformlaması oldukça karmaşık bir reaksiyon ağına sahiptir.

$CH_4 + CO_2 \leftrightarrow 2CO + 2H_2$	(1)
$CO_2 + H_2 \leftrightarrow CO + H_2O$	(2)
$CO_2 + 4H_2 \leftrightarrow CH_4 + 2H_2O$	(3)
$CH_4 + H_2O \leftrightarrow CO + 3H_2$	(4)
$CH_4 \leftrightarrow C + 2H_2$	(5)
$2CO \leftrightarrow C + CO_2$	(6)

Termodinamik açıdan, karbon oluşumu potansiyelini engellemek için reaksiyonun yüksek sıcaklıkta ve girişteki CO_2/CH_4 oranın birden oldukça büyük bir oranda gerçekleşmesi gerekmektedir. Fakat endüstriyel açıdan reaksiyonun daha düşük sıcaklıklarda ve bire yakın CO_2/CH_4 oranında gerçekleşmesi istenebilmektedir. Soy metallerin kok birikiminine karşı daha etkin olduğunun kanıtlanmasına rağmen Ni bazlı katalizörler düşük maliyetleri nedeniyle metanın kuru riformlama reaksiyonunda halen daha çok tercih edilmektedirler. Ni bazlı katalizörlerde karbon oluşumunu azaltmak için birçok metot önerilmiştir. Bu metodlardan biri katalizöre ikinci bir metal eklenmesi yani çift metalli katalizör oluşturulmasıdır. Bu çalışmada tek metalli Ni katalizörleri ile çift metalli Co-Ni katalizörlerin CH_4 'ün kuru riformlamasında aktivite ve kararlılıkları test edilmiştir.

Literatürde karbon kaynağı (CH₄, CO₂ ya da CO ayrışması) konusunda anlaşmazlıklar bulunmaktadır. Rostrup Nielsen ve Bak Hansen (1993) MgO destekli Ni, Ru, Rh, Pd, Ir ve Pt katalizörlerinde biriken karbonun metandan kaynaklandığını göstermiştir. Bu çalışma Stagg ve arkadaşlarının (1998) Pt/SiO₂ ve Pt/ZrO₂ üzerindeki çalışmaları tarafından doğrulanmıştır. Richardson ve Paripatyadar (1990) Rh/γ-Al₂O₃ katalizörü üzerinde biriken karbon kaynağının CO olduğunu öne sürerken Tsipourirari ve arkadaşları (1994) kok oluşumunun karbon dioksitten kaynaklandığını iddia etmiştir. Son derece güncel bir problem olan bu alandaki en yeni sonuçlar McFarlane ve arkadaşları (2013) tarafından Glasgow Üniversitesi, Rutherford Appleton Laboratuvarları ve Keele Üniversitelerinde yürüttükleri çalışmada açıklanmıştır. Bu grup Alumina destekli nikel katalizörler üzerinde yürüttükleri çalışmada metanın kuru riformlaması tepkimesinde hem CO₂'nin, hem de CH₄'ün kok oluşumunda rolü olduğunu ortaya koymuştur.

Bu çalışmada katalizörü deaktive eden kok birikmesinde CO₂'nin mi yoksa CH₄'ün mü daha etkin olduğunu açığa çıkarmak için Ni/Al₂O₃ katalizörleri üzerinde ¹³C etiketli CO₂ gazı ve ¹²C içeren CH₄ ile reaksiyon deneyleri yapılmıştır. Biriken kok ¹³C NMR ile karakterize edilmiştir.

Poliolun hem çözücü hem de indirgeme maddesi olarak kullanıldığı ve parçacık boyutu ile şeklinin kontrol edilebildiği bir metod olan poliol prosesi ile Ni-bazlı katalizör sentezlenerek karbondioksit riformlama tepkimesinde test edilmiştir.

2. DENEYSEL

2.1. Katalizör Hazırlama Metodları

2.1.1. Islaklık Başlangıcı Emdirme Metodu

Al₂O₃ destekli kütlece %8 Ni içeren tek metalli katalizörle, % 8-4 Ni-Co içeren çift metalli katalizörler ıslaklık başlangıcı emdirme yöntemi ile sentezlenmiştir. Alfa Aesar firmasından tedarik edilen ticari γ -Al₂O₃ destek malzemesi olarak kullanılırken, Merck firmasından tedarik edilen Ni(NO₃)₂.6H₂O ve Co(C₂H₃O₂)₂.4H₂O tuzları metal kaynağı olarak kullanılmıştır. 2 g destek malzemesi için gerekli olan tuz miktarı 1-2 ml deiyonize su içerisinde çözünmüştür. Daha sonra bu karışıma γ -Al₂O₃ destek malzemesi olarak eklenmiştir. Karışım ıslaklık başlangıcı noktasına gelinceye kadar deiyonize su eklenerek karıştırılmaya devam edilmiştir. Elde edilen karışım bir gece boyunca oda sıcaklığında bekletildikten sonra 700°C ve 900°C'de 5 saat kalsine edilmiştir.

2.1.2. Poliol Metodu

Al₂O₃ destekli Ni katalizörleri teorik Ni yükleme oranı % 10 olacak şekilde poliol yöntemi kullanılarak sentezlenmiştir. Alfa Aesar firmasından tedarik edilen ticari y-Al₂O₃ destek malzemesi, Merck firmasından tedarik edilen Ni(NO₃)₂.6H₂O tuzu metal kaynağı, Merck firmasından tedarik edilen etilen glikol çözücü ve yine Merck firmasından tedarik edilen PVP metal koruyucu madde olarak kullanılmıştır. Ni(NO₃)₂6H₂O tuzu derisimi 0.05 M olan metal cözeltisi elde etmek için 100 mL etilen glikolde çözdürülmüştür. Moleküler ağırlığı 40000 g/mol olan PVP, metal koruyucu madde olarak bu çözeltiye eklenmiştir ve berrak bir çözelti elde edinceye karar manyetik karıştırıcıda karıştırılmıştır. Cözeltideki Ni/PVP oranı 0, 2.5 ve 5 olarak avarlanmıştır. Gerekli miktarda Al₂O₃ cözeltiye eklenerek karıştırma işlemine devam edilmiştir. Cözeltinin pH'i 10-11'e avarlanmıştır. Hazırlanan bu karışım oda sıcaklığında 20 saat boyunca karıştırılmıştır. Bu karıştırma sürecinin sonunda reflüks kondansatör altında 185-190°C've kadar ısıtılan karısım Ni²⁺'nin metalik Ni'e indirgenmesi sağlanana kadar bu sıcaklıkta bırakılmıştır. Isıtma başlangıcında yeşil olan çözelti rengi indirgemenin başlamasıyla griye, indirgemenin ilerlemesiyle ise koyu griye dönüşmüştür. İndirgeme sonrasında çözelti buz banyosunda hızlı bir sekilde soğutulmuştur. Soğutulan çözeltinin santrifüjlenmesiyle elde edilen katalizör organik fazı uzaklaştırmak için etanol ile yıkanarak tekrar santrifüj işlemine tabi tutulmuştur. Katalizörler 80°C'de 24 saat kurutulmustur.

2.2. Reaksiyon Testleri

Katalitik aktivite ölçümleri reaksiyonun sabit sıcaklıkta gerçekleşmesini sağlayan sıcaklık kontrollü tüp firin içersine yerleştirilen dolgulu yatak reaktörde yapılmıştır. Metanın kuru reform reaksiyon çalışmaları, 600°C-700°C'de ve CH₄:CO₂:Ar 1/1/3 gaz karışımıyla, 50 sccm toplam akış hızında gerçekleştirilmiştir. Reaksiyon ürünleri ısıl iletkenlik dedektörü ve Carboxen 1010 Plot kolonu içeren gaz kromatografi ile analiz edilmiştir.

Islaklık Başlangıcı Emdirme Metodu ile sentezlenen katalizörler katalitik reaksiyon öncesinde 700°C'de 1 saat boyunca 20 sccm H_2 ve 30 sccm Argon ortamında indirgenirken, poliol metodu ile hazırlanan katalizörlerde reaksiyon öncesinde indirgeme işlemi yapılmamıştır.

Metanın kuru reformasyonunda reaksiyon şartları altında oluşarak katalizörü deaktive eden kok birikmesinde CO₂'nin mi yoksa CH₄'ün mü daha etkin olduğunu açığa çıkarmak için Ni/Al₂O₃ katalizörleri üzerinde ¹³C etiketli CO₂ gazı ve ¹²C içeren CH₄ ile reaksiyon deneyleri yapılmıştır. ¹³C etiketli CO₂ gazının kısıtlı miktarda olması nedeniyle, önce ¹²C içeren CH₄ ve CO₂ ile kısa sürede karbon oluşuma sebebiyet verecek olan reaksiyon koşulları oluşturulmuştur. Bu çalışmalar sonucunda 700°C'de kalsine edilen Ni/Al₂O₃ katalizörlerinin karbon biriktirme deneylerinde kullanılmasına karar verilmiştir. Bu katalizörler reaksiyon öncesinde 700°C'de 1 saat boyunca 20 sccm H₂ ve 30 sccm Argon ortamında indirgendikten sonra sıcaklık Argon gazı altında 600°C'ye indirilmiştir ve 10 dakika boyunca 30 sccm ¹³C etiketli CO₂ gazı ve 30 sccm ¹²C içeren CH₄ gazı gönderilmiştir.

2.3. Karakterizasyon Çalışmaları:

2.3.1. X-Işını Kırınımı (X-Ray Diffraction, XRD): X-ışını kırınım desenleri, malzemenin yapı tayininde kullanılmaktadır. X-ışını kırınım desenleri, Ni filtreli Cu K α radyasyonu (dalga boyu (λ =0.154056 nm) ile 30kV and 15 mA'de Rigaku Miniflex cihazında çekilmiştir. Kırınım açıları 5-100 derece arasında 0,01 adım aralığında taranarak belirlenmiştir.

2.3.2. BET (Brunauer, Emmett, Teller) Yüzey Alanı: Malzemelerin yüzey alanının ve gözenek boyutunun belirlenmesi amacıyla Brunauer, Emmett ve Tellerin geliştirdiği BET izotermi metodu kullanılmıştır. Numunelerin N₂ adsorplama izotermi Micromeritics markasının Gemini III 2375 model cihazı kullanılarak belirlenmiştir. Örneklerin çoklu nokta BET analizi 77K'deki N₂ moleküllerinin katalizör yüzeyine adsorplanması sonucunda tayin edilmiştir. Ölçümler öncesinde nemi ve yüzeye adsorplanmış olabilecek diğer gazları uzaklaştırmak için numuneler 150°C'de 3 saat boyunca degas edilmiştir. Gözenek boyutu dağılımı adsorpsiyon izoterminin desorpsiyon kısmı kullanılarak Barrett–Joyner–Halenda (BJH) methoduyla belirlenmiştir.

2.3.3. Sıcaklık Programlı İndirgeme (TPR): Sentezlenen katalizörlerin indirgenme özellikleri proje bütçesinden alınan Teledyne 2000 XTC model ısıl iletkenlik dedektörü ile kurulan sıcaklık programlı indirgeme ünitesinde yapılan çalışmalarla belirlenmiştir. Bu çalışmalarda 100 mg katalizör sıcaklık kontrollü tüp fırın içersine yerleştirilerek, sıcaklık 40 mL/min H₂:Ar (3:97) gaz akışı altında 5°C/dakika ısıtma hızında 850°C'ye çıkartılmıştır.

2.3.4. Mikrokalorimetre: CO₂'in Al₂O₃, Ni/Al₂O₃, and Ni-Co/Al₂O₃ katalizörleri üzerindeki yüzey bağlanma enerjilerini belirlemek için mikrokalorimetre ölçümleri yapılmıştır. Bu ölçümler Tian-Calvet tipi akış kalorimetresinde (Seteram C-80) gerçekleştirilmiştir. Katalizörler ilk olarak kalorimetre reaksiyon hücresinde bir gün buyunca vakum ortamında bekletilmiştir. İkinci gün 523 K'de hidrojen gazı ile indirgenme gerçekleştirilmiştir. Üçüncü gün 323 K'de CO₂ gazı

yaklaşık 0.01 torr değerinden başlayarak katalizör yüzeyi doyuncaya kadar kademeli olarak reaksiyon hücresine gönderilmiştir. Her doz için açığa çıkan ısı değeri zamana bağlı olarak kaydedilmiştir. Gönderilen her doz gaz için dengeye ulaşıldıktan sonra integral alınarak açığa çıkan ısı değeri hesaplanmıştır. Isıl dengeye ulaşıldığı andaki basınç değerleri kaydedilerek adsorplanan gazın miktarı mikromol olarak hesaplanmıştır.

2.3.5. DRIFTS: Adsorplanan maddeleri belirlemek ve bu maddelerin yüzeye ne şekilde bağlandığını tayin etmek için DRIFTS kullanılmıştır. DRIFTS ölçümleri sıvı azotla soğutulan MCT dedektörüyle donatılmış Perkin Elmer FTIR (Spectrum 100 series) cihazıyla gerçekleştirilmiştir. Bütün spektrumlar 4 cm⁻¹ ayırıcılığında 1000-4000 cm⁻¹ dalga sayısı aralığında toplanmıştır. Katalizörler CO₂ adsorplanması öncesinde 673 K'de H₂ gazı ortamında indirgenmiştir. CO₂ gazı kademeli olarak 100, 300 ve 500 torr basınç değerlerinde reaksiyon hücresine gönderilmiştir. İlk ölçüm oda sıcaklığında kaydedilmiştir. Daha sonra sıcaklık değeri kademeli olarak 373, 473, 573 ve 673 K değerlerine çıkarılmıştır.

2.3.6. Termogravimetrik Analiz (TGA): Reaksiyon sonrasında katalizörlerde biriken karbon miktarını tayin etmek için Termogravimetrik Analiz yöntemi kullanılmıştır. Analizler Shimadzu marka DTG 60-H cihazıyla gerçekleştirilmiştir. Örnekler oksijen/nitrojen akışı altında 10°C/dakika hızla 25°C'den 1000°C'ye ısıtılmıştır.

2.3.7. Transmisyon Elektron Mikroskobu

2.3.7.1. Yüksek Çözünürlüklü Transmisyon Elektron Mikroskobu (HRTEM): Islaklık başlangıcı emdirme metodu ile sentezlenen saf katalizörler Orius SC1000 Model 832 11 Megapiksel CCD kamera ile donatılmış Jeol 2100F HRTEM cihazı ile görüntülenmiştir.

2.3.7.2. Yüksek Kontrastlı Transmisyon Elektron Mikroskobu (CTEM): Poliol metodu ile hazırlanan saf numuneler ve reaksiyon sonrasında biriken kokun türünü belirlemek amacıyla seçilen bazı katalizörler FEI Tecnai G² Spirit Bio (TWIN) CTEM ile karakterize edimiştir.

2.3.8. Katı Nükleer Manyetik Rezonans Spektrometresi (KNMR): İzotoplu gazlarla gerçekleştirilen reaksiyon sonucunda yüzeyde biriken ¹³C etiketli kokun katı hal NMR ile karakterizasyonu UC Berkeley Kimya Mühendisliği Bölümünü'nde Prof. Jeffrey A. Reimer'in laboratuvarlarında gerçekleştirilmiştir.

3. SONUÇLAR ve DEĞERLENDİRİLMESİ

3.1. Islaklık Başlangıcı Emdirme Metodu ile Hazırlanan Katalizörlere ait Sonuçlar

Katalizörlerin yığın fazlarını belirlemek için yapılan XRD ölçümleri faz oluşumunda kalsinasyon sıcaklığının büyük öneme sahip olduğunu göstermiştir.

Kalsine edilmeyen Al_2O_3 'da boehmite, γ - Al_2O_3 ve δ - Al_2O_3 fazları gözlenirken, 700°C'de ve 900°C'de 5 saat boyunca yapılan kalsinasyon işlemi sonrasında boehmite fazının kaybolduğu, δ - Al_2O_3 fazının belirginleştiği görülmüştür (Şekil 1-2).

Şekil 1. 700°C sıcakta kalsine edilmiş saf Al₂O₃, Ni/Al₂O₃ ve Ni-Co/Al₂O₃'ün X-ışını kırınım desenlerinin kalsine edilmeyen saf Al₂O₃ ile karşılaştırılması

Şekil 2. 900°C sıcakta kalsine edilmiş saf Al₂O₃, Ni/Al₂O₃ ve Ni-Co/Al₂O₃'ün X-ışını kırınım desenlerinin kalsine edilmeyen saf Al₂O₃ ile karşılaştırılması

Kalsinasyon esnasında nitratların ayrışması sonucunda aşağıdaki oksit fazları oluşabilir.

$$\begin{split} \text{Ni}(\text{NO}_3)_2 &\rightarrow \text{NiO} + \text{N}_2\text{O}_5\\ \text{NiO} + \text{Al}_2\text{O}_3 &\rightarrow \text{NiAl}_2\text{O}_4\\ \text{CoO} + \text{Al}_2\text{O}_3 &\rightarrow \text{CoAl}_2\text{O}_4\\ \text{NiO} + 2\text{CoO} + 0.5\text{O}_2 &\rightarrow \text{NiCo}_2\text{O}_4 \end{split}$$

XRD desenleri çoklu oksit fazlarının (NiAl₂O₄, NiCo₂O₄ ve CoAl₂O₄) varlığını ortaya çıkarmıştır. Yüksek kalsinasyon sıcaklığı spinel fazlarının oluşumuna sebep olmuştur. Benzer morfolojileri ve karakteristik piklerinden ötürü XRD desenlerinde tek metalli ve çift metalli katalizörleri birbirinden ayırt etmek güçtür. Şekil 1 ve şekil 2 karşılaştırıldığında spinel faza ait

olan piklerin yoğunluğunun kalsinasyon sıcaklığıyla arttığı görülmektedir. Bu da parçacık boyutunun artan kalsinasyon sıcaklığıyla büyüdüğünü ortaya koymakatadır.

Kalsine edilmeyen saf Alumina ile 900°Cde kalsine edilen saf Alumina, Ni/Alumina ve Ni-Co/Alumina'nın yapısal özellikleri Çizelge 1'de verilmiştir. Ni ve Co eklenmesi Al₂O₃'ün yüzey alanında küçük bir düşüşe sebebiyet verirken, gözenek hacmini ve gözenek çapını artırmıştır.

		· · · ·	
Katalizör	BET Yüzey Toplam gözenek		Ortalama gözenek
	alani (m /g)	nacim (cm /g) BJH	yariçapi (nm) BJH
Kalsine edilmeyen Al ₂ O ₃	70.64	0.2894	15.3500
Kalsine edilen Al ₂ O ₃	49.14	0.1315	9.6230
% 8 Ni/Al ₂ O ₃	43.88	0.1714	14.2479
% 8-4 Ni-Co/ Al ₂ O ₃	41.83	0.1328	11.6038

Tablo 1. Kalsine edilmeyen saf Al₂O₃, kalsine edilen saf Al₂O₃ (900°C), Ni/Al₂O₃ (900°C) ve Ni-Co/Al₂O₃ (900°C)'ün yapısal özellikleri

700°C ve 900°C'de kalsine edilen Ni/Al₂O₃ ve Ni-Co/Al₂O₃ katalizörlerinin indirgenme özellikleri TPR ile belirlenmeye çalışıldı.

Şekil 3. 700°C ve 900°C'de kalsine edilen katalizörlerin TPR profilleri

700°C'de ve 900°C'de kalsine edilen Ni/Alumina katalizörleri karşılaştırıldığında bu katalizörün indirgenme sıcaklığının kalsinasyon sıcaklığı ile arttığı gözlenmektedir. 700°C'de kalsine edilen Co/Alumina katalizörünü indirgeyebilmek için 850°C sıcaklığın dahi yeterli olmadığı görülmektedir. Nikel bazlı katalizöre kobalt eklenmesi kalsinasyon 700°C'de yapıldığında nikelin indirgenme sıcaklığının artmasına sebep olurken, kalsinasyon 900°C'de yapıldığında önemli bir etki yaratmamıştır. 900°C'de kalsine edilen katalizörde spinel fazına ait tek bir indirgenme sıcaklığı görülürken, 700°C'de kalsine edilen Ni/Al₂O₃ ve Ni-Co/Al₂O₃ katalizörlerinin oksit fazına ait olabileceği düşünülen daha düşük sıcaklıktaki bir indirgenme pikine daha sahip olduğu görülmektedir.

Metanın kuru reform reaksiyonu dolgulu yatak reaktörde atmosferik basınçta ve 600-700°C'de yürütülmüştür. Islaklık başlangıcı emdirme metodu ile hazırlanan katalizörler reaksiyon öncesinde 1 saat boyunca 700° C'de H₂+Ar ortamında indirgenmiştir.

Metanın kuru reform reaksiyonunda metan ve karbondioksit için dönüşüm tanımlaması tüketilen tepkenin başlangıçtaki miktarına oranı olarak ifade edilmiştir.

CH4 dönüşümü =
$$\frac{CH4giren - CH4çıkan}{CH4giren}$$
CO2 dönüşümü =
$$\frac{CO2giren - CO2çıkan}{CO2giren}$$

Şekil 4 ve Şekil 5'te 700°C'de gerçekleştirilen metanın karbondioksit riformlaması için CH_4 ve CO_2 dönüşümü sırasıyla Ni/Al₂O₃ (900) ve Ni-Co/Al₂O₃ (900) katalizörleri için verilmektedir. Her iki katalizörün de beş saatlik reaksiyon süresince aktivite kaybına uğramadığı görülmektedir.

Şekil 4. Ni/Al₂O₃ (900) katalizöründe 700°C'de gerçekleştirilen metanın karbondioksit riformlaması için CH₄ ve CO₂ dönüşümü

Şekil 5. Ni-Co/Al₂O₃ (900) katalizöründe 700°C'de gerçekleştirilen metanın karbondioksit riformlaması için CH₄ ve CO₂ dönüşümü

 700° C'de gerçekleştirilen reaksiyonlar sonucunda oluşan H₂/CO oranın ters su gazı reaksiyonu sebebiyle birden küçük olduğu saptanmıştır (Şekil 6).

Şekil 6. 700°C'de gerçekleştirilen metanın karbondioksit riformlaması sonucunda oluşan H₂/CO oranı a) Ni/Al₂O₃ (900), b) Ni-Co/Al₂O₃ (900)

Kalsinasyon sıcaklığının katalitik aktivite üzerine olan etkisini incelemek amacıyla metanın karbondioksit riformlaması 700°C'de kalsine edilen Ni/Al₂O₃ katalizörüyle gerçekleştirilmiştir (Şekil 7). Şekil 5 ve Şekil 7 karşılaştırıldığında kalsinasyon sıcaklığı artışının CH₄ ve CO₂ dönüşümününde küçük bir artışa sebep olduğu sonucu çıkarılmaktadır.

Şekil 7. Ni/Al₂O₃ (700) katalizöründe 700°C'de gerçekleştirilen metanın karbondioksit riformlaması için CH₄ ve CO₂ dönüşümü

Reaksiyon sonrasında oluşan kok miktarını tayin etmek için yapılan TGA analizleri Ni/Al₂O₃ (900) ve Ni-Co/Al₂O₃ (900) katalizörleri için Şekil 8'de gösterilmektedir.

Şekil 8. Metanın kuru riform tepkimesi sonrasında Ni/Al₂O₃ (900) ve Ni-Co/Al₂O₃ (900) katalizöründeki kok birikmesini gösteren TGA eğrileri

Ni/Al₂O₃ (900) ve Ni-Co/Al₂O₃ (900) katalizörleriyle 700°C'de 5 saat boyunca gerçekleştirlen reaksiyon sonrasında birken kok miktarı % 5'in altında iken, Ni/Al₂O₃ (700) katalizörüyle gerçekleştirilen reaksiyon sonrasında biriken kok miktarının % 17 civarında olduğu görülmektedir (Şekil 9). 700 °C'de kalsine edilen Ni/Al₂O₃ reaksiyon süresince aktivite kaybına uğramazken diğer yandan yüksek miktarda kok birikmesine sebep olmuştur.

Şekil 9. Metanın kuru riform tepkimesi sonrasında Ni/Al₂O₃ (700) katalizöründeki kok birikmesini gösteren TGA eğrisi

Metanın kuru reformasyonunda reaksiyon şartları altında oluşarak katalizörü deaktive eden kok birikmesinde CO_2 'nin mi yoksa CH_4 'ün mü daha etkin olduğunu açığa çıkarmak için Ni/Al₂O₃ katalizörleri üzerinde ¹³C etiketli CO_2 gazı ve ¹²C içeren CH_4 ile reaksiyon deneyleri yapılmıştır. ¹³C etiketli CO_2 gazının kısıtlı miktarda olması nedeniyle, önce ¹²C içeren CH_4 ve CO_2 ile kısa sürede karbon oluşuma sebebiyet verecek olan reaksiyon koşulları oluşturulmuştur. Tabo 2'de 600°C'de, 0.1 g katalizör ile seyreltici gaz olmadan 30 sccm $CO_2 + 30$ sccm CH_4 ortamında 10 dakikalık reaksiyon sonucundaki kütle artış değerleri görülmektedir. Sonuçlar dikkate alınarak karbon kaynağı belirleme çalışmalarında 700°C'de kalsine edilen katalizörlerle ilerlemeye karar verilmiştir. Kok birikmesinde CO_2 'nin mi yoksa CH_4 'ün mü daha etkin olduğunu açığa çıkarmak için 700°C'de kalsine edilen Ni/Al₂O₃ katalizörleri üzerinde değişen CH_4/CO_2 oranlarıyla reaksiyon testleri yapılmıştır (Tablo 3).

]	Tablo 2.	600°C'	de 30 s	ccm CO	$_{2} + 30 \text{ scci}$	n CH ₄	ile ge	rçekle	știrile	n
10	dakika	lık reaks	siyon so	onucunda	a meydana	gelen	kütle	artışı	değer	leri

Katalizör	Kütle artışı (%)
8 Ni/Al ₂ O ₃ calc. at 900° C	3.6
8-4Ni-Co/Al ₂ O ₃ calc. at 900°C	1.1
$8Ni/Al_2O_3$ calc. at $700^{\circ}C$	11.7
8-4Ni-Co/Al ₂ O ₃ calc. at 700°C	8.4

Tablo 3. 600°C'de Ni/Al₂O₃ (700) katalizörü üzerinde değişen CH₄/CO₂ oranı ile gerçekleştirilen 10 dakikalık reaksiyon sonucunda meydana gelen kütle artışı değerleri

CH ₄ miktarı (sccm)	CO2 miktarı (sccm)	Kütle artışı (%)
10	50	2.2
20	40	3.1
30	30	11.7
40	20	17.9
50	10	26.4

Tablo 3'te görüleceği üzere CH₄ miktarı arttıkça olusan karbon miktarı da artmaktadır. Bu da metanın kuru reform reaksiyonundaki başlıca kok kaynağının CH₄ olabileceğini işaret etmektedir. Literatürde karbon kaynağı (CH₄, CO₂ ya da CO ayrışması) konusunda anlaşmazlıklar bulunmaktadır. Metan parçalanması ve karbon monoksitin elementel karbona ve karbon monoksite dönüşümü olası kok birikmesi reaksiyonlarıdır.

 $CH_4 \rightarrow C + 2H_2$

 $2\mathrm{CO} \rightarrow \mathrm{C+} \, \mathrm{CO}_2$

Rostrup Nielsen ve Bak Hansen (1993) MgO destekli Ni, Ru, Rh, Pd, Ir ve Pt katalizörlerinde biriken karbonun metandan kaynaklandığını göstermiştir. Bu çalışma Stagg ve arkadaşlarının (1998) Pt/SiO₂ ve Pt/ZrO₂ üzerindeki çalışmaları tarafından doğrulanmıştır. Richardson ve Paripatyadar (1990) Rh/ γ -Al₂O₃ katalizörü üzerinde biriken karbon kaynağının CO olduğunu öne sürerken Tsipourirari ve arkadaşları (1994) kok oluşumunun karbon dioksitten kaynaklandığını iddia etmiştir. Son derece güncel bir problem olan bu alandaki en yeni sonuçlar McFarlane ve arkadaşları (2013) tarafından Glasgow Üniversitesi, Rutherford Appleton Laboratuvarları ve Keele Üniversitelerinde yürütülen ortak çalışmada açıklanmıştır. Bu grup Alumina destekli nikel katalizörler üzerinde yürüttükleri çalışmada metanun kuru riformlaması tepkimesinde hem CO₂'nin, hem de CH₄'ün kok oluşumunda rolü olduğunu ortaya koymuştur.

Tablo 3'ün CH₄ miktarı arttıkça olusan karbon miktarının da arttığını göstermesine karşın CO₂'nun da kok oluşumuna sebep olabileceği düşüncesiyle Ni/Al₂O₃ (700) katalizörü üzerinde ¹³C etiketli CO₂ gazı ve ¹²C içeren CH₄ ile gerçekleştirilen reaksiyon sonrasında yüzeyde biriken kok Kaliforniya Üniversitesi Berkeley Kampüsü Kimya Mühendisliği Bölümü'nde katı hal NMR ile incelenmiştir. Şekil 10 katalizör yüzeyindeki kok oluşumunun karbon dioksitten de kaynaklandığını ortaya koymakatdır.

Şekil 10. Ni/Al₂O₃ (700) katalizöründe izotoplu reaktant kullanılarak gerçekleştirilen reaksiyon sırasında biriken kokun ¹³C NMR spektrası

Karbon birikimi çalışmalarını derinleştirmek amacıyla seçilen bazı katalizörler reaksiyon sonrasında TEM yöntemiyle karakterize edilerek biriken kokun türü belirlenmeye çalışılmıştır. Şekil 11 metanın 600°C'deki kuru riformlaması esnasında Ni/Al₂O₃ (900) katalizörü üzerinde biriken karbonun filament şeklinde olduğunu göstermektedir. Morfolojilerine göre lif karbonların çok duvarlı karbon nanotüp (MWCNT) şeklinde olduğu düşünülmektedir. Fakat kesin yargıya varabilmek adına Raman spektroskopisi çalışmalarının yapılması planlanmaktadır.

Şekil 11. 600°C'deki metanın kuru riformlaması sonrasındaki katalizörlerin TEM görüntüleri a-b) Ni/Al₂O₃ (900), c-d) Ni-Co/Al₂O₃ (900)

Kalorimetri ölçümleri CO_2 'in bütün katalizör yüzeyleri üzerinde güçlü bir şekilde adsorplandığını göstermektedir (Şekil 12). Adsorplanma karakteristiğinin metalin çeşidine gore değişmiyor olması CO_2 'in esasen alumina üzerinde adsorplandığını işaret etmektedir.

Şekil 12. CO2'in 323 K'de diferensiyel adsorpsiyon 15151

Katalizörlerin yüzeyine CO₂ gönderilmesiyle yapılan DRIFTS çalışmaları 1229, 1444, and 1655 cm⁻¹ dalga sayılarındaki bant oluşumlarıyla sonuçlanmıştır (Şekil 13). Bu bantlar CO₂'in katalizör yüzeylerinde bikarbonatlar (HCO₃⁻) şeklinde adsorplandığını göstermiştir. Kızılötesi tayfta bikarbonatın γ -alumina üzerindeki asimetrik germe (v_2 (OCO)^{*a*}), simetrik germe (v_3 (OCO)^{*s*}), ve bükülme (δ_4 (COH)) titreşim modları gözlenmiştir. Bikarbonat oluşumları alumina yüzeyindeki hidroksil guruplarının CO₂'in adsoplanmasında önemli rol oynadığını ortaya koymaktadır. 2350 dalga sayısında görülen bant fiziksel olarak adsorplanan CO₂ titreşimlerinden kaynaklanmaktadır.

Şekil 13. CO₂ adsorplanmasının DRIFT spekturumu a) Ni/Al₂O₃ (900) b) Ni-Co/ Ni/Al₂O₃ (900)

3.2. Poliol Metodu ile Hazırlanan Katalizörlere ait Sonuçlar

Poliol prosesi ile hazırlanan katalizörlerin XRD desenleri fcc Ni metalinin (111), (200) ve (220) kırınım piklerini göstermektedir. Sentezlenen katalizörlerin hiçbirinde Nikel oksit pikine rastlanmamıştır. Bazik olmayan ortamda gerçekleştirilen sentez sonucunda metalik Ni elde edilememiştir. Şekil 14'ten anlaşılacağı üzere PVP/Ni oranı arttıkça Ni parçacık boyutu azalmaktadır.

Şekil 14. Kalsine edilmeyen saf Al₂O₃ ve poliol yöntemi ile hazırlanan katalizörlerin X-ışını kırınım desenleri

Poliol yöntemi ile hazırlanan katalizörlerin hava ortamında gerçekleştirilen TGA eğrilerindeki kütle kaybı (Şekil 15) etilen glikol ve PVP'nin yanmasından kaynaklanmaktadır. Beklenildiği üzere PVP miktarı arttıkça kütle kaybı da artmaktadır.

Azot adsorpsiyon-desorpsiyon izotermleri (Şekil 16) hem saf aluminanın hem de poliol yöntemiyle hazırlanan katalizörlerin IV. tip izoterme ve 3. tip histerisize sahip olduğunu göstermektedir.

Poliol metoduyla Ni eklenmesi aluminanın yüzey alanında azalmaya yol açmaktadır (Tablo 4).

Şekil 15. Saf EG, saf PVP ve poliol yöntemi ile hazırlanan katalizörlerin TGA eğrileri

Şekil 16. Kalsine edilmeyen saf Al₂O₃ ve poliol yöntemi ile hazırlanan katalizörlerin 77K'deki azot adsorpsiyon/desorpsiyon izotermleri

Katalizör	BET Yüzey Alanı (m ² /g)	Toplam gözenek Hacmi (cm ³ /g) (BJH)	Ortalama gözenek yarıçapı (nm) BJH
pure Al ₂ O ₃	73.19	0.3665	19.6869
Ni/Al ₂ O ₃ without PVP	46.51	0.3478	28.2117
Ni/Al ₂ O ₃ mPVP/mNi=2.5	54.30	0.3958	27.4826
Ni/Al ₂ O ₃ mPVP/mNi=5.0	50.69	0.2774	19.5214

Tablo 4. Kalsine edilmeyen saf Al₂O₃ ve poliol yöntemiyle hazırlanan katalizörlerin yapısal özellikleri

700°C'de indirgeme yapılmaksızın gerçekleştirilen reaksiyon sonucundaki CH₄ ve CO₂ dönüşümleri Şekil 17'de gösterilmektedir. PVP/Ni oranı arttıkça dönüşüm değerinin de arttığı görülmektedir. X-ışını kırınım desenlerinden hatırlanacağı üzere PVP/Ni oranı arttıkça Ni parçacık boyutu da azalmaktadır. Bu da parçacık boyutu küçüldükçe dönüşüm değerlerinin arttığı sonucunu ortaya koymaktadır. Diğer taraftan PVP/Ni oranı en yüksek olan katalizörün en hızlı deaktivasyona uğradığı görülmektedir.

Şekil 17. Poliol metoduyla hazırlanan Ni/Al₂O₃ katalizörlerinde 700°C'de gerçekleştirilen metanın karbondioksit riformlaması için CH₄ ve CO₂ dönüşümü ◆ Ni/Al₂O₃ –PVPsiz, ■ Ni/Al₂O₃-PVP/Ni=2.5, ▲ Ni/Al₂O₃-PVP/Ni=5.0

 700° C'de gerçekleştirilen reaksiyonlar sonucunda oluşan H₂/CO oranın ters su gazı reaksiyonu sebebiyle birden küçük olduğu saptanmıştır (Şekil 18).

Şekil 18. Poliol metoduyla hazırlanan Ni/Al₂O₃ katalizörlerinde 700°C'de gerçekleştirilen metanın karbondioksit riformlaması sonucunda oluşan H₂/CO oranı

Şekil 19. Metanın kuru riform tepkimesi sonrasında poliol metodu ile hazırlanan Ni/Al₂O₃ katalizöründeki kok birikmesini gösteren TGA eğrileri

Sentezlenen katalizörlerin görüntüleri transmisyon elektron mikroskobu ile karakterize edilmiştir (Şekil 20). PVP içermeyen katalizör küresel yapıya sahipken, PVP miktarı arttıkça parçacıkların şeklinin de değişmeye başladığı ve küp-oktahedra biçimini aldığı görülmektedir. PVP miktarı en fazla olan katalizörün parçacık boyutunun en küçük olduğu açıkça görülmektedir.

Şekil 20. Poliol metodu ile hazırlanan Ni/Al₂O₃ katalizörlerinin TEM görüntüleri a-b) Ni/Al₂O₃ –PVPsiz, c-d) Ni/Al₂O₃-PVP/Ni=2.5, e-f) Ni/Al₂O₃-PVP/Ni=5.0

600°C'deki reaksiyon sonrasındaki katalizörlerin TEM görüntüleri Şekil 21'de verilmektedir. Metanın kuru riformlaması sonucunda katalizörler üzerinde biriken kokun grafit ve çok duvarlı karbon nanotüp şeklinde olduğu görülmektedir. Kok çeşidinin Raman çalışmaları ile de tayin edilmesi planlanmaktadır.

Şekil 21. 600°C'deki reaksiyon sonrasındaki katalizörlerin TEM görüntüleri a-b) Ni/Al₂O₃-PVPsiz, c-d) Ni/Al₂O₃ PVP/Ni=2.5

4. REFERANSLAR

McFarlane, A.R., Silverwood, I.P., Warringham, R., Norris, E.L., Ormerod, R.M., Frost, C.D., Parker, S.F., and Lennon, D., Royal Society of Chemistry Advances, The application of inelastic neutron scattering to investigate the 'dry' reforming of methane over an alumina-supported nickel catalyst operating under conditions where filamentous carbon formation is prevalent, 3, 16577-16589, 2013

Richardson, J.T. and Paripatyadar, S.A., Applied Catalysis, Carbon dioxide reforming of methane with supported rhodium, 61 (1), 293-309, 1990

Rostrup-Nielsen, J.R., and Bak Hansen, J.H., Journal of Catalysis, CO₂-Reforming of Methane over Transition Metals, 144 (1) 38-49, 1993

Stagg, S.M., Romeo, E., Padro, C. and Resasco, D.E., Journal of Catalysis, Effect of Promotion with Sn on Supported Pt Catalysts for CO_2 Reforming of CH_4 , 178 (1), 137-145, 1998

Tsipouriari, V..A., Efstathiou, A.M., Zhang, Z.L. and Verykios, X.E., Catalysis Today, 21, 579-587, 1994

TÜBİTAK

PROJE ÖZET BİLGİ FORMU

Proje No: 112M561

Proje Başlığı: Ni-Bazlı Çift Metalli Katalizörlerde Metanın Karbondioksit Riformlaması

Proje Yürütücüsü ve Araştırmacılar: Prof. Dr. Deniz Üner

Hale Ay

Projenin Yürütüldüğü Kuruluş ve Adresi: ODTÜ Kimya Mühendisliği Bölümü 06800 Çankaya Ankara

Destekleyen Kuruluş(ların) Adı ve Adresi: TÜBİTAK Mühendislik Araştırma Destek Grubu Tunus Cad. No:80 06100 Kavaklıdere Ankara

Projenin Başlangıç ve Bitiş Tarihleri: 15/10/2012-15/10/2013

Öz (en çok 70 kelime) Bu çalışma iki farklı sentez metodu kullanılarak hazırlanan Nibazlı katalizörlerin CH₄ ün CO₂ riformlaması için test edilmesini kapsamaktadır. Islaklık başlangıcı emdirme metodu ile sentezlenen Ni/Al₂O₃ ün yüzeyinde biriken kokun ¹³C NMR sonuçları kok olusumunun CO₂ dan da kaynaklandığını ortaya koymuştur. TEM çalışmaları biriken kokun çok duvarlı karbon nanotüp olabileceğini göstermiştir. Poliol yöntemi ile sentez esnasında metalik Ni elde edilerek tepkime öncesinde indirgenme işlemine duyulan ihtiyaç ortadan kaldırılmıştır. PVP miktarının parçacık boyutu ve şekliyle katalitik aktivite üzerindeki etkisi gözlenmiştir.

Anahtar Kelimeler: metanın karbondioksit riformlaması, Ni-bazlı katalizör, kok, ¹³C NMR, poliol, PVP

<u>Fikri Ürün Bildirim Formu</u> Sunuldu mu? Evet 🗌 Gerekli Değil 🗌

Fikri Ürün Bildirim Formu'nun tesliminden sonra 3 ay içerisinde patent başvurusu yapılmalıdır.

Projeden Yapılan Yayınlar: Projenin Sonuç ve Değerlendirme bölümünde de belirtildiği gibi bu konu üzerinde çalışmalar devam etmektedir. Şu ana kadar yapılan çalışmalarla ilgili olarak iki makale yazım aşamasındadır. Eylül 2013'te Fransa'nın Lyon şehrinde yapılan EuropaCat XI Kongresi'nde çalışmaların bir kısmı 'Creating Metallic Sites for Methane Adsorption by Polyol Process in Dry Reforming of Methane' başlığı altında poster olarak sunulmuştur

Ekte Bulunan "ARDEB Başarı Öyküsü Formu", "Kazanımlar" Bölümünde Belirtilen Kriterlere Göre Proje Çıktılarınızın Başarı Öyküsü Niteliği Taşıdığını Düşünüyorsanız "ARDEB Başarı Öyküsü Formu"nu doldurunuz.

Proje Adı	Proje Yürütücüsü
	Proje No
	Destek Miktarı (TL)
	Proje Başlama-Bitiş Tarihi
(PROJE ŞEKiL/GRAFiK/ FOTOĞRAF)	Yürütücü Kuruluş
(En fazla 4 tane – jpg formatında, 35 x 35 cm (300 dpi)):	
İsimleriyle ve şekil altı açıklamalarıyla birlikte sıralanmış olarak formda belirtilmesi ve 300 dpi çözünürlükte ayrı jpeg dosyaları halinde formun ekleri olarak gönderilmesi gerekmektedir.	(PROJE YÜRÜTÜCÜSÜ FOTOĞRAF) 300 dpi çözünürlükte ayrı jpeg dosyası olarak forma eklenmelidir.
Projenin Amacı ve Önemi (En fazla 150 kelime) (Maddeler hal	inde sıralayınız)
Proje ile Elde Edilen veya Beklenen Bilimsel, Teknolojik, Ek 200 kelime)	onomik ve Sosyal Kazanımlar (En fazla
 Projeden uluslararası, etki faktörü yüksek dergilerde yap Proje kapsamında elde edilen ürün, buluş, çıktı vb. gerçekleştirilmiş/gerçekleştirilecek teknolojik/ticari uygu Proje kapsamında alınan ödüller/ödül adaylıkları Projenin ülkenin bilimsel ve teknolojik araştırma güc yetenekler kazanılmasına sağladığı katkılar 	ulan yayın(lar)-(etki faktörünü de veriniz) için alınacak/alınmış patentler ve/veya ulama(lar) cüne, bilim insanı yetiştirilmesi ve yeni

Proje için TÜBİTAK Desteğinin Önemi (En fazla 150 kelime)

ARDEB BAŞARI ÖYKÜSÜ

1. <u>Proje yürütücüsü iletişim bilgileri:</u>

		-							
Adı –	So	yac	11	:	D	e	niz	Ü	Iner

- Unvanı : Prof. Dr.
- Telefon : 312-210-43-83

E-posta adresi : uner@metu.edu.tr