{997 - (32

=
TURKIYE BILIMSEL VE
o« TEKNIK ARASTIRMA KURUMU
THE SCIENTIFIC AND TECHNICAL
RESEARCH COUNCIL OF TURKEY

Elektrik, Elektronik ve Enformatik Arastirma Grubu

Electric, Electronics and Informatics Research
Grant Committee




NESNESEL VERiI TABANI YONETIM SISTEMI
PROTOTIPI

PROJE NO: YAZILIM 1

17/ E6/3

PROF. DR. ASUMAN DOGAC
CETIN OZKAN
CEM EVRENDILEK
MEHMET ALTINEL
BUDAK ARPINAR

EYLUL 1993
ANKARA




TUBITAK YAZILIM ARASTIRMA ve GELISTIRME UNITESI
YAZILIM 1 PROJESI SONUC RAPORU
Onsoy,

Yazihim 1 projesi kapsamimda geligtirilen MOOD (METU Object-Oriented DBMS: ODTU Nesneye-Y onelik
Veritabani Yonetim Sistemi), 1991 Yili Ekim ayinda baglamigur. Bu proje TUBITAK tarafindan ODTU Bilgisayar
Miihendisligi bolimiinde kurulan Yazilm Aragtirma ve Geligtirme Unitesinde gergeklestirilmistir. Nesne-yonelimi
teknolojisinin veri tabani teknolojisine uyarlanmasi sonucu, miihendislik uygulamalarinin gerektirdigi grafik igeren
karmagik veri yaptlarii modellemek ve bunlara etkin ulagim saflayacak veri tabam sistemini gelistirmek mumkin
olmustur.

icindekiler

L Ozt et ettt ettt ea ettt e r e e s et e e I
2. Proje Ana Metni

3. Projenin Tiirkiye'deki yazilim aragtirma ve gelistirme ¢alismalaring Katktari.......ocoveee oo oo 3
4. Projede gergeklestirilen yayInIarin HSIEST ....c..vvverrioeeieieiteis ettt sae e s e eeseees e ee s
5. Yaymlanmak tizere gonderilen teknik rapOrlar. ..ottt 6
6. Proje kapsaminda tamamlaninig Olan 1C7ZIET .ottt 6
7. Proje kapsammda tamamlanmak Gzer¢ 0an (EZIE0 oot e 7
8. MOOD projesinin birlikie demo edildiBl difer SISIEMIET .......ovoviveviiet it ee s e 7
D BKIET sttt a4 s bR s et oSt en ettt ebees ettt et et tetre et etareees e 9

Ekl. MOOD User Manual

Ek2. METU Object-Oricnted DBMS Kernel

Ek3. A Heuristic Approach for Optimization of Object-Oriented Query Languages
Ek4.Nesne-yonelimli veri tabanlart konusunda diinyada yapilan ¢ahgmalanin bir 6zeti

Oz

Nesne-yonelimi yaklasimi kullanan MOOD sisteminin sagladigi baslica teknik olanaklar soyledir:

1) Grafik, fotogral, ses gibi ¢oklu ortam verisi de igerebilen karmagik veri yapilarimm temsil ve etkin bir sekilde
islenme olana

2) Bu verilere grafik ortamda erigimi saglayan ve Motl yazihmi kullamlarak geligtirilmis bir grafik kullamic
arabirimi (Graphical User Interface), MoodView

3) Yine veri erisimi ve giinleme amactyla kullantlan bir nesne yénelimli SQL dili, MoodSQL

4) C++ dili ile tammlanmig olan fonksiyonlanin, SQL dili igerisinden dinamik olarak ¢aginiimasint saglayan bir
dinamik fonksiyon baglayicisi (Dynamic Function Linker)

5) SQL sorgularinin sistemde kullandit kaynaklari en aza indirmek amaciyla geligtirilmis bir SQL sorgu en
iyileyicisi (Query Optimizer). Bu sistem Colarado Universitesinde geligtirilmig bulunan Volcano Query Optimizer
Generator yazilimi kullanilarak geligtirilmistir.

6) Sistem kataloglarit yoneten birim, MOOD Catalog Manager

7) Veri erigim komutlarm disk yonetim sistemi komutlarina doniigtiren MOOD Algebra

8) Cok boyutlu verilere etkin erigimi saglamak amaciyla, R ve R* tree ve ikonik indeksleme yontemleri

Biitiin bu sistemler Wisconsin-Madison Universitesinde geligtirilmis bulunan Exodus Storage Manager isimli disk

1




yonetimi yapan sistem izerine geligtirilmigtir. Projenin ilk safhalarmda ayrica Borland C++ "persistent” hale
getirilmigtir

Proje Ana Metni
Projeyi olugturan belli bagh sistemlerin 6zet olarak fonksiyonlan soyledir:
1. MOOD sistemi i¢in Motif yazilimi iizerinde, kullamcilanin sisteme grafik ortamda ingilizce veya Almanca

ulagmalarint saglayacak bir grafik kullamict arabirimi geligtirilmigtir. MOODView ile ilgili olarak yapilan
¢aligmalarin detaylan agagida belirtilen Yiiksek Lisans tezinde ve makalede verilmistir:

Tez:

- Arpmar, B., " An Advanced Graphical User Interface for Object- Oriented DBMSs: MoodView", Yiiksek Lisans
Tezi, Bilgisayar Miihendisligi Boliimii, ODTU, Eyliil 1993,

Makale:

- Arpmar, B., Dogag, A., Evrendilek, C., "MoodView: An Advanced Graphical User Interface for OODBMSs". in
ACM SIGMOD Record, Vol.22, No.4, December 1994,

2. MOOD projesinin nesne yonelimli veri erigim dili olan MOODSQL tasarlanmig, gergeklestirilmig ve bu dilin en
iyilenmesini saglayan iki yazilim, biri proje kapsamunda geligtirilen yontemlerle, digeri Colorado Universitesinin
iiriinii olan Volcano Query Optimizer kullamlarak gergeklegtirilmigtir. Bu konuda yapilan ¢aligmalarin detaylan
asaguda belirtilen Yiiksck Lisans tezleri ile tebliglerde verilmigtir.

Tezler:

- Tlker Durusoy, MOOD Query Optimizer, Yiiksek Lisans Tezi, Bilgisayar Miihendisligi Bélimii, ODTU, Subat
1994. o

- Cetin Ertan, Design and Implementation of an Object-Oriented Query Language, MOODSQL, and its Optimizer,
Yiiksek Lisans Tezi, Bilgisayar Miihendisligi Bolimii, ODTU, Eyliil 1993. Bu tez 1993 yihi Mustafa Parlar Vakf
tez odiliinit almigtir,

- Pmar Koksal, Query Optimization Through Optimization Regions, Yiiksek Lisans Tezi, Bilgisayar Miihendisligi
Boliimii, ODTU, bu tez ¢aligmast yazma asamasindadir.

Tebligler:

- C. Ozkan, A. Dogag, C. Evrendilek, T. Gesli, "Efficient Ordering of Path Traversals in Object-Oriented Query
Optimization”, in Proc. of Eight Intl. Symposium on Computer and Information Sciences, Istanbul, November, 1993,

-C. Ozkan, A. Dogag. Y. Saygin, "A Heuristic Approach for Optimization of Path Expressions in Object-Oricnted
Query Languages”, submitted for publication.




3. Nesne yonelimli bir veri tabani ¢ekirdek sistemi (Object- Oriented Database Kernel): Bu sistem Exodus Storage
Manager iizerinde ¢aligmakta ve Exodus Storage Manager’in sagladigs fonksiyonlara ilave olarak su fonksiyonlarn
gergeklestirimini  icermektedir:

i. SQL komutlarninmn interpret edilmesi
it. Metodlarmn dinamik olarak sisteme baglanmas
iti. Katalog yonetimi

Bu konuda yapilan ¢aligmalarin detaylart agagida belirtilen tezler ve tebligler icerisinde verilmigtir:
Tezler:

- Okay, T., "Design and Implementation of an Object-Oriented  Database Management System Kernel",  Yiiksek
Lisans Tezi, Bilgisayar Miihendisligi Boliimii, ODTU, Eyliil 1993,

- Altnel, M., "MOOD Algebra and Dynamic Function Linking in MOOD", Yiiksck Lisans Tezi, Bilgisayar
Miihendisligi Bolimii, ODTU, Eylil 1994,

Teblisler:

- Evrendilek, C.. Toroslu, H.,"Inheritance and Object Algebra in  an Object-Oriented Data Model”, 6th Intl.
Conference on Computing and Information, Peterborough Canada, May 1994,

- A. Dogag, M. Altinel, 1. Durusoy, C. Ozkan, "METU Object-Oriented DBMS Kernel”, submitted for publication.

4. Nesne yonelimli veri tabant yonetim sistemlerinin etkin ¢aligmasinin saglanabilmesi, birlikte erisilen verilerin disk
tizerinde fiziksel olarak yakimn depo edilmesini gerektirmektedir. Bu konuda yapilan ¢alismalanin detayr asagida
belirtilen yaymlar igerisinde verilmigtir:

Tez:
- Kadir Kog, "Comparison of Clustering Algorithms in a Single User Environment”, Yiiksck Lisans Tezi, Bilgisayar
Miihendisligi Boliimii, ODTU, Haziran 1993.

Tebligler:

- Koc, K., Evrendilek, C., Dogac. A.."Comparison of Clustering Algorithms in a Single User Environment through
Sun Benchmark”, in Proc. of European Joint Conference on Engineering Systems Design and  Analysis, London,
July 1994.

- Koc, K., Dogac, A., Evrendilek, C., "Comparison of Clustering Algorithms in a Single User Environment through
OO7 Benchmark”, in Proc. of East-West Database Workshop, Klagenfurt, September 1994,

5. MOOD projesinde ¢ok boyutlu verilerin etkin bir gekilde iglenmesine olanak saglamak iizere "spatial indexing”
teknikleri olarak bilinen R ve R* tree veri yapilan ile "iconic indexing" teknigi EXODUS sistemi iizerinde
gergeklegtirilmigtir. Bu ¢alismalarin detayr agsagida belirtilen yaynlarda verilmistir:




Tezler:
- Yiriten, F." Indexing Methods for Spatial Data Objects and their Implementation on the Exodus Storage
Manager”, Yiiksek Lisans Tezi, Bilgisayar Miihendisligi Boliimii, ODTU, Haziran 1993,

- Ulu, C., "Iconic Indexing on Exodus Storage Manager”, Yiiksck Lisans Tezi, Bilgisayar Miihendishigi Bolimii,
ODTU, Eyliil 1994.

MOOD sistemi ile goriintii crigimini kolaylagtrmak amaciyla geligtirien destek yazilimlarnun detayr agagida
belirtilen Yiiksel Lisans tezinde verilmigtir:

Tez:

- Tolga Gesli, Image Data Management in MOODS: METU Object- Oriented Database Management System,
Yiiksek Lisans Tezi, Bilgisayar Miihendisligi Bolimi, ODTU, Eyliil 1992.

6. Nesnesel veri tabanlar igin veri tabam tasarimi yapan bir yazihm geligtirilmigtir. Bu konuda yapiian ¢aligmalarin
detayr agagda belirtilen tezde verilmigtir:

Tez: ’

- Gokmenler, S., "MOOD Database Design Tool", TUBITAK Software Research and Development Center, Yiiksek

Lisans Tezi, Bilgisayar Miihendisligi Boliimii, ODTU, bu tez ¢alismast yazma agamasindadir,

7. Projenin ilk safhasinda nesnc-yonelimli veri tabam gelistirmege difer bir yaklagim olan C++ dili nesnclerine
kalicihik ("persistency”) kazandirmak yaklagimi denenmig ve bu amacla Borland C++ "persistent” hale getirilmigtir.
Bu konuda yapilan ¢alismalarin detaylar agagida belirtilen Yiiksck Lisans tezleri ile tebliglerde verilmigtir.

Tezler:

- Cem Evrendilek, Persistent C++ in DOS Environment, Yiksek Lisans Tezi, Bilgisayar Miihendisligi Bolimii,
ODTU, Eyliil 1992, Bu tez 1992 yili Mustafa Parlar Vakh tez oditlinii almstir,

- Yiiksel Saygm, MOODS Storage System, Yiiksek Lisans Tezi, Bilgisayar Miihendisligi Boliimii, ODTU, Agustos
1992.

Teblig:

- C. Evrendilek, A. Dogag, 1. Durusoy, C. Ozkan, Y. Saygin, and M. Altinel, " Persistent C++ in DOS Environment
%, in Proc. of Seventh Intl. Symposium on Computer and Information Sciences. Antalya, November, 1992, .

7. Biitiin bu sistemlerin entegrasyonu ile MOOD sisteminin bir prototipi elde edilmigtir. Sistemin tamamimnm
anlatildi@r yaymlar goyledir:

chliglerf

- Dogag., A., Ozsu, T., Biliris, A., Sellis, T., (Edtrs.) Object-Oriented Database Systems, Springer-Verlag, 1994,




- Dogag, A., Evrendilek, C., Okay, T., Ozkan, C., "METU Object- Oriented DBMS", in Object-Oriented Database
Systems, edited by Dogag, A., Ozsu, T., Biliris, A., Sellis, T., pp.172-198.

- Dogag, A., Arpmar, B. Evrendilek, C., Ozkan, C.Altntas, 1., Durusoy, 1., Altinel, M., Okay, T., Saygm, Y.,
"METU Object- Oriented Database System", Demo description, in Proc. of ACM  SIGMOD Intl. Conf. on
Management of Data, Minneapolis, May 1994,

- Dogag, A., "The MOOD User Manual”, Mayis 1994,
Projenin Tirkiye'deki yazilim aragtirma ve gelistirme ¢ahgmalarmma katkilar:

Yaklagtk 90.000 satr kod igeren bu biiyiik ¢apli projenin Tiirkiye’deki yazilim aragtirma ve geligtirme caligmalarina
katkilart 6zet olarak soyledir:

1. ileri teknoloji alaninda kapsaml1 bir aragtirma prototipi biitiin fonksiyonlan ile cahsir halde tamamlanmigtir. Bu
proje 1994 Tiibitak Hiisamettin Tufag Aragtrma odiiliini almugtur.

2. Ik defa iilkemizde gelitirilen bir yazilim, yurt disinda demo edilmigtir. MOOD yazilimi 23-26 Mayis tarihleri
arasinda ABD’nin Minneapolis kentinde yapilan "ACM SIGMOD International Conference on Management of Data"
konferansmna demo edilmek iizere gonderilen 30 sistemden kabul edilen 15°i arasina girmigtir. Bu konferansta
triinleri demo edilen sirketler arasinda IBM, AT&T ve Texas Instruments gibi biiyiik sirketler ve Avrupa’da
yiiriimekte olan ESPRIT projesi iiriinleri bulunuyordu.

3. Bu projede yapilan calismalar sonucunda 1 makale, 9 teblig yaymlanmig, ve yine projedeki gelismeleri uluslararasi
diizeyde tanitmak tzere 6-15 Agustos 1993 tarihleri arasinda, proje grubu tarafindan diizenlenen "Object-Oriented
Database Systems” konulu NATO Yaz Okulunun sonucunda MOOD projesinin de yer aldift kitap 1994 yilinda
Springer Verlag tarafindan basima girmigtir. Ayrica proje ile ilgili tamamlanmig aragtirmalarin yayin calismalar:
devam etmektedir.

4. Bu proje kapsaminda 11 Yiiksck Lisans tezi tamamlanmug, tezlerden iki tanesi 1992, ve 1993 yillars Mustafa Parlar
Vakfi tez odiillerini almiglardir. Ayrica 2 Yiiksek Lisans tezide tamamlanma asamasindadir.

Proje’nin "souce code"u da dahil olmak iizere biitiin makale ve tebligler ile
bazi tezlerin kopyalarma WWW’deki URL:http://www.srdc.metu.edu.tr/
adresinden ulagilabilmektedir.




Projede gerceklestirilen yaymlarin listesi

obuL

- Proje 1994 Tiibitak Hiisamettin Tugag Aragtirma odiiliind almistr,

KiTAP

- Dogag, A., Ozsu, T., Biliris, A., Sellis, T., Object-Oriented Database Systems, Springer-Verlag, 1994,
MAKALE

- Arpinar, B., Dofag, A., Evrendilek, C., "MoodView: An Advanced Graphical User Interface for OODBMSs", in
ACM SIGMOD Record, Vol.22, No.4, December 1994,

TEBLIGLER

1- Dogag, A., Arpmar, B. Evrendilek, C., Ozkan, C.Altntas, 1., Durusoy, 1., Altinel, M., Okay, T., Saygmn, Y..
"METU Object- Oriented Database System”, Demo description, in Proc. of ACM  SIGMOD Intl. Conf. on
Management of Data. Minneapolis, May 1994,

" 2- Dogag. A.. Eviendilek, C.. Okay, T., Ozkan, C., "METU Object- Oriented DBMS”. in Object-Oriented Database
Systems, edited by Dogag, A., Ozsu, T., Biliris, A., Sellis, T., pp.172-198,1994. ‘

3- Koc, K., Evrendilek, C., Dogac, A.."Comparison of Clustering Algorithms in a Single User Environment through
Sun Benchmark”, in Proc. of European Joint Conference on Engineering Systems Design and Analysis, London,
July 1994,

4- Koc, K., Dogac. A., Evrendilek, C., "Comparison of Clustering Algorithms in a Single User Environment
through OO7 Benchmark", in Proc. of East-West Database Workshop, Klagenfurt, September 1994,

5- Evrendilek, C., Toroslu, H.,"Inheritance and Object Algebra in  an Object-Oriented Data Model”. 6th Intl.
Conference on Computing and Information, Peterborough Canada, May 1994.

6- C. Ozkan, A. Doga¢. C. Evrendilek, T. Gegli,"Efficient Ordering of Path Traversals in Object-Oriented Query
Optimization”, in Proc. of Eight Intl. Symposium on Computer and Information Sciences, Istanbul, November, 1993,

7- C. Evrendilek, A. Dogag, 1. Durusoy, C. Ozkan, Y. Saygn, and M. Altmnel, " Persistent C++ in DOS
Environment ", in Proc. of Seventh Intl. Symposium on Computer and Information Sciences, Antalya, November,
1992.

8- Dogag. A.. "The MOOD User Manual”, Mayis 1994,

9. Aytekin, H., Dogac, A., "A distributed Parallel Object manager for Smalltalk”, in Proc. of nincth Intl. Symposium
on Computer and Information Sciences, Antalya, November, 1994,

6




Yaymlanmak iizere gonderilen teknik raporlar:
1. A. Dogag, M.Altinel, I. Durusoy, C.Ozkan, "METU Object-Oriented DBMS Kemel”, submitied for publication.

2. C. Ozkan, A. Dogag, Y. Saygm, "A Heuristic Approach for Optimization of Path Expressions in Object-Oriented
Query Languages”, submitted for publication.

Proje kapsaminda tamamlanmis olan tezler:
1. Tlker Durusoy, MOOD Query Optimizer, M.S. Thesis, Dept. of Computer Eng.. February 1994.

2. Tansel Okay, Design and Implementation of an Object-Oriented Database Management System Kernel, M.S.
Thesis, Dept. of Computer Eng.. September 1993,

3. Budak Arpmar, An Advanced Graphical User Interface for Object-Oricnied DBMSs: MoodView. M.S. Thesis.
Dept. of Computer Eng., September 1993.

4. Cetin Ertan, Design and Implementation of an Object-Oriented Query Language, MOODSQL., and its Optimizer,
M.S. Thesis, Dept. of Computer Eng., September 1993. Bu tez 1993 yilh Mustafa Parlar Vakfi tez odiilini
almgtir.

5. Fusun Yuruten, Indexing Methods for Spatial Data Objects and their Implementation on the Exodus Storage
Manager, M.S. Thesis. Dept. of Computer Eng., June 1993.

6. Kadir Kog, Comparison of Clustering Algorithms in a Single User Environment, M.S. Thesis. Dept. of Computer
Eng. June 1993.

7. Cem Evrendilek, Persistent C++ in DOS Environment, M.S. Thesis, Dept. of Computer Eng.. September 1992,
Bu tez 1992 yih Mustafa Parlar Vakfi tez odiilinii almigtir.

8. Tolga Gesli, Image Data Management in MOODS: METU Object-Oriented Database Management System, M.S.
Thesis, Dept. of Computer Eng., September 1992.

9. Yiiksel Saygin, MOODS Storage System, M.S. Thesis, Dept. of Computer Eng., August 1992,

10. Altinel, M., "MOOD Algebra and Dynamic Function Linking in MOOD"M.S. Thesis. Dept. of Computer Eng..
September 1994,

1. Ulu, C., "Iconic Indexing on Exodus Storage Manager", M.S. Thesis, Dept. of Computer Eng., September 1994,
Proje kapsaminda tamamlanmak iizere olan tezler:

1. Gokmenler, S., "MOOD Database Design Tool", TUBITAK Software Rescarch and Development Center, M.S.
Thesis, Dept. of Computer Eng.. bu tez galigmast yazma asamasindadir.




2. Pmar Koksal, Query Optimization Through Optimization Regions, M.S. Thesis, Dept. of Computer Eng.. bu
tez ¢aligmast yazma agsamasindadir,

MOOD projesinin birlikte demo edildigi diger sistemler:
Ayrica MOOD, 23-26 Mayis tarihleri arasinda ABD’nin Minneapolis kentinde yapilmig bulunan "ACM SIGMOD
International  Conference on Management of Data” konferansina demo edilmigtir. Bu konferansta demo edilen

sistemlerden bazilan soyledir:

"METU Object-Oriented DBMS”. Asuman Dogac, Budak Arpinar, Cetin Ozkan, Cem Evrendilek. liker Altintas, lker
Durusoy, Mehmet Altinel, Tansel Okay and Yuksel Saygin ( Tubitak & Middle East Technical University)

"EOS: an Extensible Object Store”, Alexandros Biliris and Euthimios Panagos (AT&T Bell Laboratories)
"Quest: A Project on Database Mining", Rakesh Agrawal (IBM Almaden Research Center)

“"Relaxed Transaction Processing”, Munindar P. Singh, Christine Tomlinson and Darrell Woelk (Microelectronics
and Computer Technology Corporation)

"The MEDUSA Project: Autonomous Data Management in a Shared Nothing Parallel Database Machine”, George
M. Bryan, Wayne E. Moore, B. J. Curry, K. Lodge and J. Geyer (University of Western Sidney, Nepean)

"A Language Based Multidatabase System”, Wva Kuhn, Konrad Schwarz and Thomas ¢Tschernko (Technische
Universitaet Wien) :

"Ptool: A Scalable Persistent Object Store”, Robert L. Grossman (University of Illinois at Chicago)

"The ORES Temporal Database Management  System”, Babis Theodoulidis. Aziz  Ait-Braham. George
Andrianopoulos, Jayant Chaudhary, George Karvelis and Simon Sou (UMIST)

"The MYRIAD Federated Database Prototype”, S-Y. Hwang, E-P. Lim, H-R, Yang, K.Mediretta, M. Ganesh, D,
Clements, J. Stenoien and J. Srivastava (University of Minnesota)

"GENESYS: A System for Efficient Spatial Query Processing”, Thomas Brinkhoff. Hans-Peter Kriegel, Ralf
Schneider and Bernhard Sceger (University of Munich)




The MOOD User Manual
Edited by Asuman Dogac

Software Research and Development Center
Scientific and Technical Research Council of Turkiye
Middle East Technical University
06531, Ankara Turkiye

e-mail; asuman@vm.cc.metu.edu.tr
1. OVERVIEW

This document is the user manual for the MOOD (METU Object-Oricnted DBMS) under development at the
Software Research and Development Center of the Scientific and Technical Research Council of Turkiye which
is established at Middle East Technical University, Ankara, Turkiye. This project is led by Prol. Dr. Asuman
Dogac and the implementation team includes the following researchers: Cetin Ozkan, Budak Arpinar. Yuksel
Saygin. llker Durusoy, Mehmet Altinel, liker Altintas, Cem Evrendilek, Erhan Pasa, Gokhan Ozhan and Tansel
Okay.

This manual describes Version 1O of MOOD. MOOD runs on Sun workstations with SunOS 4.
2. ABSTRACT

MOOD (METU Object-Oriented DBMS) is developed on the Exodus Storage Manager (ESM) [ESM 92]. and
supports a SQL-like object-oriented query Tanguage (MOODSQL)Ozk 93, Dog 94] and a graphical user
interface. called MoodView [Arp 93], developed using Motif. MoodView supports both English and Gernman,
The system is coded in C++ on Sun Spare 2 workstations and has a type system derived from C+. climinating
the impedance mismatch between MOOD and C4++.

ESM provides the MOOD the following kernel functions :
- storage management

- coneurrency control

- backup and recovery of data,

Additionally, the MOOD kernel provides the [ollowing functions :

- catalog management

- optimization and interpretation of  SQL statements. During this interpretation, functions (which have been
previously compiled with C++) within SQL statements, are dynamically linked and executed. The advantage of
this approach is that by eliminating the interpretation of the functions the overall efficiency of the system is
improved.

Each ohject is given a unique Object Identifier (O1D) at object creation time by the ESM which is the disk start
address of the object returned by the ESM. The object encapsulation properties are supported through the public
and private declarations of C++. Objects are grouped in the abstraction level of a class, in other words, classes
have extensions. Class inheritance mechanism of the MOOD is multiple inheritance. The name resolution is
handled as in standard C++.  Aggregate definitions are handled in the MOOD system by introducing type
constructors (Set, List, Rel and Tuple). Aggregate classes can be constructed by recursive use of these type
constructors,

The MOOD Catalog Manager uses three classes (o store data definitions. These are MoodsTypes,
MoodsAtiributes and MoodsFunctions classes. The MoodsTypes class instances keep definitions of classes.
indices and data types of the database. Basic data types (integer, Moat, string, etc.) and type constructors (i.e.,
set. list, el tuple) defined by the system, are instances of MoodsTypes class. Instances of MoodsTypes class may
have pointers 0 MoodsAttribuies class instances which stores the information about the attributes. The
MoodsFunctions class instances keep track of the member function definitions of classes (o support dynamic
definition and linking ol functions.




The query optimizer of the MOOD [Dur 93] is generated by using the Volcano Query Optimizer Generator. The
Voleano Query Optimizer Generator [McK 93] provides for very fast and casy development of a query optimizer.
The MOOD Optimizer uses database statistics obtained from the MOOD catalog in computing the selectivities
and the costs for each optimization step. The set transformation and implementation rules is given in [Dur 93]
and the set of MOOD Algebra operators is given in [Dog 94].

A graphical user interface, namely MoodView is implemented. MoodView provides the database progrmmer
with tools and functionalities for every phase of OODBMS application development. Current version of
MoodView allows a database user to design, browse, and modily database schema interactively. Furthermore,
a database administration tool, a full screen text-editor, a SQL based query manager, and a graphical indexing
tool for the spatial data, i.e., R Trees are also implemented.

References

[Dog 94] Dogac, A., Ozkan, C., Arpinar, B., Okay, T., Evrendilek, C., "METU Object-Oriented DBMS”, in
Advances in Object-Oriented Database Systems, Dogac, A, Ozsu, T., Biliris, A., Scllis, T.. cdus.. Springer-
Verlag 1994,

[Arp 93] Arpinar, L. B., Dogac, A.. Evrendilek, C., "MoodView: An Advanced Graphical User Interfuce for
O0ODBMSs", SIGMOD Record, Vol. 22, No. 4, December 1993,

{0zk 93] Ozkan, C., Dogac, A.. Evrendilek, C., Gesli, T., "Efficicnt Ordering of Path Traversals in Object-
Oriented Query Optimization”, in Proc. of the Intl, Symp. on Computer and Information Sciences, Istanbul,

November 1993,

|Dur 91] Durusoy, L, Dogac, A., "Query Optimization in MOOD Using Volé:mo Extensible Query Optimizer
Generator”, TUBITAK Software R&D Center Tech. Rep. No. 18, June 1993,

[ESM.92] Using the Exodus Storage Manager V2.1.1, June 1992,

IMcK 93] McKenna, W. J., "Efficient Search in Extensible Database Query Optimization: The Volcano
Optimizer Generator”, PhD thesis, Department of Computer Science, University of Colorado, 1993,

3. MOOD Gaphical User Interface, Mood View

3.1 Introduction to MoodView

MoodView provides the database programmer with tools and Tunctionalitics for every phase of object oriented
database application development. Current version of MoodView allows a database user to design, browse, and
maodily database schema interactively and to display class inheritance hierarchy as a directed acyclic graph,
MoodView can automatically generate graphical displays for complex and multimedia database ohjects which
can he updated through the object browser. Furthermore, a database administration tool, a full screen text-editor,
a SQL based query manager, and a graphical indexing tool for the spatial data, ie., R Trees are also
implemented.

3.2, MoodView Environment

In this section we present a typical MoodView session with the help of MoodView screens’ snapshots.

3.2.1. Initial Window

Upon entering the programming environment, an initial window that contains the icons for cach of the
MoodView tools is displayed as shown in Figure 1(a). ; :

Initial winduw contains a browser icon for both the class hierarchy browser and the object browser, a query icon
for the query formulation tooland also an R Tree icon for the graphical indexing tool.




3.2.2. Database Design and Schema Updates

A database schema in MOOD contains class types, their icthods and relationships between those classes. Their
_.inheritance relationships is represented as a dag and MoodView uses a dag placement algorithm that minimizes
“erossovers and makes drawings for graph nodes.

3.2.3. Data Definition

MoodView can display a class hicrarchy defined in MOODSQL Data Definition Language which is stored in
MOOD Catalog. MoodView uses the catadog information maintained by the MOOD kemel and displays class
hicrarchy graphically.

Upon clicking on the browser icon in the initial window, MoodView displays the class hierarchy representing
the database schema, All nodes representing the classes have standard menus activated by clicking on them,
MoudView supports the primitive actions on the class hicrarchy graph such as adding a ncw class, dropping an
existing class, changing the name of a class ete. Figure | shows the inheritance graph for a sample database,

Moodshoot

Voasatina

_rt
TaWrliPard
ShowPhaota
RatAge

LAttdbutest

Figure L. Initinl MoodView Window, Class Hicrarchy Browser, and Class Presentation




residence,

salary

hiredates

'.!include <database.h>
finclude “sm client.h"

extern "Cv |
int GetObject FG30IDPPcPi( OID , char *+,
int ShowGIF(unsigned char *, int);

J

ShowPhoto
e fvold Employee: :ShowFhoto()
{

unsigned char *Buf;
int Size;

[s33s] tpicOid;
picOid = { OID * } gphoto;

GetObject FGIOIDPPcPI( *picOid, (char **) sBuf,éSize);

= 3.2.4, Class Presentation

© Assume that database designer wants to extend his database to keep the information about every employee works
in his office.

The database designer designs the Employee class as follows:
- class Employee(

~ ssho integer,

~ name;string,

age ‘integer,

- residence string,

salary integer,

* hiredate Date,

drives list(Vehicle),

manager ref(Employee),




£

photo rel(Picture) }

Fignre 2 shows the attributes ol the Employee class. Note that the hiredate, drives and manager ficlds have
complex types. Photo is a reference to a system defined class Picture. The database designer can add this new
class to his database by selecting "Add subclass” item from the standard menu of Moodsroot node in class
hierarchy browser. This results in a pop-up template window which represeats the new class. Each MoodView
class presentation window contains a standard menu for schema updates, class type updates and class methods
updates. MoodView class presentation shows a windew that contains ficlds for the name of the class, its type
id given by MOOD. its type constructor, superclasses, subclasses, and public and private methods and also a field

that indicates if the class is a system or user delined class as shown in Figure 1.

select c.name, c.division.staff,
c.president . ShowPhoto()

from Company ¢

vhere (c.division.location.name~'Ankara’) and
(c.name = °TUBITAK!)

cdhasion.staff cprestdent. ShowPhotn()

_ SET(Employee) H

restdence

Aauman Dagae 2 Ankars
Certan Ozkan Ankare
Mehmer Altnel S Ankoare
Hker Altintss Ankara,

Budak Arpinnr Ankara

REF{Date)

LIST(Vehicle)

PEF(Employee)

REF{Date)

LIST{Vehice)

FEF(Employee) !

REF(Date)

LIST(Vehide)

PEF{(Emgloyee)

REF(Date)

LIST(V ehuele)

PEF (Employee)

REF{Date)

LIST(V ehicke)

REF(Employee)

Figure 3. Query Manager and Objects displayed as a result of the Specilic Query

3.2.5. Class Design

Class attributes can be updated by clicking on attributes button. This is an entry point for a tool for designing
object-oriented data types. One can add, drop attributes, change the name or the type of an attribute by using

this tool (Figure 2),




At any time during the database design process, user can cancel the operation using the Cancel button on the
presentation or commit the transaction and add the newly created class to database schema by clicking on Save
hutton in the menu. After saving, the new class appears immiediately on the class hicrarchy window,

3.3. Method Presentation and Class Methods Updates

Now suppose that the database designer wants to display the photograpit of cach cmployee in X/Windows
environment. He can write a private method attached to the new class Employee for the picture display. Each
class presentation of MoodView containg a menu for class methods” updates. Supported actions are adding anew
method. dropping an existing method, and changing the body a of a method. Class designer can call up  the
standard menu of the Employee class and sclect the "Add Method” item.

A method templade is used for the new method ereation as shown in Figure 2, Updates to existing method bodies
or creation of the new method bodies can be done through MoodView text editor,

3.4, Object Browsing

A user can access database objects through the query manager of MoodView., MoodView allows complex
operations against a set of objects. These include creation, deletion, update and automatic display of complex
and multimedia objects, and the invocation of methods. Projection, selection and complex query specification
can be done on the objects through the SQL based query manager. Updates to objects from query displays are
not allowed in MoodView.

3.4.1 Generic Object Presentations

Any complex type in MOOD can be created by using basic types and recursive application of the type
constructors (such as set, list or ref). Therefore MOOD objects constitute graphs connecting atoms and
constructors and these graphs can be cyclic and large. MoodView has a generic display algorithim for displaying
these object graphs and walking through the referenced objects. Referenced objects are represented as the drawn
huttons and items of set and list are displayed in a scrolled window, Multimedia data such as inages in different
formats and sound are defined through the system classes. As an example, the Company presentation shown in
Figure 3 contains references to a set of Employee objects.

3.4.2, Interactive Method Activation

Methods are attached 1o object presentations and can be activated interactively. For example, the user can display
photograph of an Employee by clicking on function button representing ShowPhoto method.

3.5. Query Formulation

In MOOD. we have a uniform SQL-based interface in accessing the database. Query manager provides i query
editor with facilities for accessing previous queries in a session. Through queries, objects with specific
characteristics (selection) or selected portions of the objects (projection) can be displayed graphically,

MOOD Kernel interprets SQL statements and provides all the functions needed by MoodView to manage schema
and instance levels as shown in Figure 4. During this interpretation, functions (which have been previously
compiled with C++) within SQL statements, are dynamically linked and executed.




Exodus Storage
Manager

MoodView

Figure 4. Overall MOOD Structure
4. MOOD Query Language, MOODSQL,
Our reserved words are case insensitive.
4.1 Data Definition Language of MOODSQL
The following commands are used for creating, opening, or droping a database ;

CREATE DATABASE database-name
USE DATABASE database-name
DROP DATABASE database-name.

In order to create a class hicrarchy for a database, BEGIN DECLARATION is needed to check the consistency

of the definition, since although there are no cycles in the class hicrarchy, there may be cycles in the class
composition hicrarchy. Therefore the common syntax Tor the declarations is as follows :

BEGIN DECLARATIONS {
type or class declarations;

type or class declarations;

}

In order to remove a class from the Teaf of class hicrarchy, the following command is used;

DROP CLASS class-name(s).

When a class is to be deleted all the classes that give reference 1o this class and all the classes that inheret from




this class must be deleted.

The indexing is handled by secondary B+-tree indices and hash indices supported through Exodus Storage
Manager, The syntax of the command for creating a sccondary B4+-tree index on a set of atomic attributes of
a class is as follows;

CREATE [UNIQUE] INDEX index-name
ON class_name
attribute JASCIDESCY, ..., attribute [ASCIDESC}

The syntax of the command for creating a hash index on @ set of atomic attributes of o class is as Tollows:

CREATE [UNIQUE] HASH INDEX index-name
ON class_name

INDEXES ARE NOT AVAILABLE IN V1.0.

In Figure 4.1 and 4.2 two example database schema definitions are provided which will be used in the example
queries.

Begin Declaration |

create type Date

tuple(

dd integer,

mm integer,

vy integer
)
Create Class Vehicle
Tuple(

id inteper,

. calor string] 12],

manufacturer  rel( Company )

Create Class Company

Tuple( ,

name String{201,
location  String[20],
president REF( Employee ),
division SET( Division )

)
Create Class Employee
Tuple(
S$NO Integer,
name String[32].
age Integer,
residence String[ 201,
- salary Integer,
¢ hiredate Date |
drives LIST( Vehicle ),
manager REF( Employee )
)

Create Class Division
Tuple(
functionality . String[201,




staff
location REF( City )
)
Create Class City
Tuple(
name String[20],
population  Integer
)

SET( Employce ),

Create Class DomesticCompany inherits from Company

Tuple(
ExportTax Integer

Create Class ForeignCompany inherits from Company

Tuple(
ImportTax Integer

Figure 4.1. Example Schema Definition |

Begin Declaration |

Create Class Course
Tuple(

name String{20],
number String[12],
sections LIST(Section),
has_prerey SET(Course),
is_prerey_for SET(Course)
)
Create Class Section
Tuple(
number String|20],
taught_by Ref(Prolessor)
)
Create Class Employee
Tuple(
id Integer,
name String[32],
age Integer,
salary Integer
)
Create Class Professor inherits {rom Employce
Tuple(
enum String|20],
rank String|20] .
teaches Set(Section)
)

Create Class Student
Tuple(




name String[20],
student_id String[ 10],
dorm_address  Dorn,
takes Set(Section)

)

Create Class TA inherits from Employee, Student
Tuple(
assigned_to  Ref(Professor)

)

Create Class Person
Tuple(
name  String[30],
age  Integer

)
Create Type Dorm
Tuple(
college String|30],
room_no String[20]
)
}:

Figure 4.2. Example Schema Definition 2 (An Example database from ODMG-93 Definition)
4.1.1 Populating a Class with Instances
For Example Schema Definition |

new CityCNew York™, 15000000);
new City(" Ankara” ,0000000);

new City('Istanbul’, 12000000);

new City("San Fransisco’, 10000000);
new City("London” 10000000);

new City('Los Angeles’, 10000000);

New Employee(1, Tansu Ciller’ 35, *new Date(1,191):

new Employee(2,” Asuman Dogac’ 28, *new Date(10.1.91);
new Employee(3, Certan Ozkan’.25, *new Date(1,1.91);

new Employce(d,"Mchmet Altinel’,25 *new Date(1,1,91));
New Employee(5.Hker Altintas’, 25, *new Date(1.19 1))

New Employee(6,"Budak Arpinar’.25,*new Date( 119 D);
New Employee(8, Suba Sevuk™ 45, *new Date(1,1.91));

New Employee(9," Tuncay Birand™ 45 *new Date(1,1.91));
New Employee(10,"Tosun Terzioglu™ 45, *new Date(1.1,91));
New Employee(1 1, Ersin Tulunay’, 45, *new Date(1,1,91));
New Employee(13. Robert Redford’.50, *new Date(1,1.91));
New Employee(14, Michacl Douglas®,25, *new Date(1,1,91));
New Employee(15,"Sharon Stone’ 25, *new Date(1.1.9D);
New Employee(16." Daniel Day Lewis’ 30, *new Date(4.3,93));
New Employee(17, Catherine Dencuve’ 35, *new Date(5,2,87));
New Employee(18, Harrison Ford' 25, *new Date(1.1.91));
New Employee(19,"'Kevin Costner’ 25, *new Date(1,1.91));
New Employee(20, John Wayne'.25, *new Date(1.1.91));

New Employee(21,"Marylin Monroe’ 25, *new Date(1.1.9D);
New Employee(22,°Al Pacing” 25, *new Date(1.101));

10




New Employee(23," Dustin Hollman',25, *new Date(1,1.91));
New Employee(24,"Paul Newman™ 25, *new Date(1. 1.9 D),
New Employee(25,"Cindy Crawtord™ .25, *new Date(1,1.91));

(97

New Division('top management’, {select ¢ {rom Employee e wher
essno=1},
select d from City d where doname="Ankara’);
New Division("Soltware R&D Center’,{ sclect e from Employee ¢
where (e.ssno>1) and (e.ssno<7) |},
select d from City d where doname="Ankara’);
New Division("'management’ {select ¢ from Employee ¢ where
e.ssno=41},
select d from City d where d.name="Ankara’);
New Division("development’, {sclect ¢ from Employee ¢ where
e.ssno=3},
select d from City d where d.name="Ankara’);
New Division(coding’, {select ¢ from Employee e where e.ssno=0},
select d from City d where d.name="Ankara’);
New Division('star’ {sclect e from Employee ¢ where e.ssno> 11,
select d from City d where d.naune="Los Angeles’);

[e7)

new Company(CTUBITAIC, Ankara’, select ¢ from Employee ¢ wher
e.ssno= (),

{select d from Division d where d.functionality="Soltware
R&D Center'});
new Company('METU’,” Ankara’ sclect ¢ from Employee ¢ where
e.ssno=§,

{select d from Division d} );
new Company("MGM'"Holywood ™ select ¢ from Employee ¢ where
e.ssno=17,

{select d from Division d where d.functionality="star’ }
).
new Company('GM’,"New York’ select e [rom Employce e wher
e.ssn0=24,

{select d from Division d where d.Jocation.name="Ankara’}

(¢

)

new DomesticCompany('TOFAS',Bursa’,select ¢ from Employee ¢
where e.ssno =9,

{select d from Division d where dfunctionality =
‘development” }, 10 );

new ForeignCompany(CNISSAN"."Tokyo' select ¢ from Employee ¢
where e.ssno = 25,

{select d trom Division d where d.functionality =
‘development’ }, S0 );

New Vehicle(1.blue” select ¢ from Company ¢ where c.name="GM);
New Vehicle(2, yellow select ¢ from Company ¢ where
c.name="GM");

New Vehicle(3. green” select ¢ [rom Company ¢ where c.name="GM’);
New Vehicle(d4, red sclect ¢ from Company ¢ where ¢.name="GM’);
New Vehicle(5, black " select ¢ from Company ¢ where c.name="GM");

Create Function For Class Employee

With Prototype "Employec( integer. string, integer, REF_Date)’
using "/Employee.c’;

11




Create Function For Class Vehicle
With Prototype "Vchicle( integer, string)’
using "./Vehicle.c';

Updating the database to include cyclic references

In MOOD VL0 it is not possible to create cyclic data through the new staternent, it is necessary o create
cyclic references through the Update command.

Update Employee ¢
set eananager = ( select ¢ from Employee ¢ where e.ssno
where e.ssno = 13

v

]
—
~—

Update Employee ¢
set emanager = ( select ¢ from Employee ¢ where cassno = 1)
where e.ssno = 2;

v

Update Employee ¢
set e.manager = ( select ¢ from Employee e where e.ssno
where (e.ssno > 2) and (e.ssno < K);

#

2)

Update Employee ¢
set e.manager = ( select ¢ from Employee ¢ where essno = 1)
where essno = ;

Update Employee ¢
set eananager = (select ¢ from Employee ¢ where essno = 8)
where essno = 9;

Update Employee ¢
set emanager = ( select ¢ from Employee ¢ where e.ssno
where essno = ()

13

i
o

Update. Employee ¢
set e.manager = ( select € from Employee € where c.ssno = 10)
where e.ssno = 1

Update Employee ¢
set e.manager = ( select e from Employee ¢ where e.ssno
where (essno > 1),

i

7)

Update Employee ¢
set eadrives = [ select v from Vehicle v where (viid < 3) ]
where e.ssno < 12;

Update Employee ¢

set edrives = [ select v from Vehicle v where (v.id > 2) ]

where essno > 123

4.2. Data Manipulation Language of MOODSQL
General syntax of the query language is as follows;
SELECT projection-list
FROM class-name ry,

class-name 1y,

class-name r,

12




[ WHERE scarch-expression |

Operators used in MOODSQL are classified as;
L. Arithmetic Operators (+, *, -, /).
2. Boolean Operators (AND, OR, NOT) .
3. Comparison Operators (=, >, <, <>, >=, <=)

OR/NOT operators are not available in V1.0

4.3 Example Queries in MOODSQL
The following examples use the example schema in Figure 4,1,

MoodSQL>select c.naune, c.division.staff.name

>from Company ¢, Company o, Employce ¢

>where (c.divisionstadlname=o.division.stall.name) and
>(o.name="METU") and (o.division.staff.name=¢.name) and
>(e.age=45);

QUERY RESULTS

METU Dustin Hoffinan
MGM Dastin Holtfman

2 Obhjects are listed |
MoodSQL>select e.name, s.divisionJocation.name
>from Company s, Employee ¢

?wlterﬂv (s.name = "MGMY) and (sipresident = ¢) and (c.age > 20);

QUERY RESULTS

ra ¥ PSR ; B [ERN
Catherine Deneuve Los Angeles

[ Ohje

cts are listed !
MoeodSQL>select c.president.name
>from Company ¢

>where. c.president.drives.manufacturer=c;

QUERY RESULTS

Yaul Newman
Paul Newman
Paul Newman

3 Objects are listed !

MoodSQL>select vamanulacturer. division.staff nane

>{rom. Vehicle v

>where (v.color = "yellow') and (vananufacturer.name = 'GM’) and

> (v.manulacturer.division stalT.age = 28);

QUERY RESULTS

Asuman Dogac

13




I Objects are listed !

MoodSQL>select ¢.name, c.division.Jocation.name, o.name,
o.division location.name

>from Company o, Company ¢

>where (c.name="MGM’) and

(c.division. location=0.division.location);

QUERY RESULTS

MGM Los Angeles METU Los Angeles
MGM Los Angeles MGM Los Angeles

2 Objects are listed !

MoodSQL>select vamanulacturer.name

>from Vehicle v

>where (v.color = "red”) and (v.manufacturer.president.drives.id

= vid);

QUERY RESULTS

GM
I Objects are listed |

MoodSQL>select vananulacturer.name, c.president.name
>from Vehicle v, Company ¢

>where (v.color = “red’) and
(v.manufacturer.president=c. president)

sand (c.name="GM");

QUERY RESULTS

GM Paul Newman
I Objects are listed !
The following examples use the example schema in Figure 4.2,

SELECT x.age
FROM Person x
WHERE x.naume="pPat’

SELECT x.name, y.name
FROM Students x, x.takes.taught_by z
WHERE z="Full Professor’

4.4 User Defined MQOD Functions and their Use in MOODSQL

Syntax :

CREATE [PUBLIC | PRIVATE] FUNCTION FOR CLASS className
WITH PROTOTYPE “prototype declaration’

USING ‘fileName,

MoodSQL>create function for class Employce
>with prototype "int UpdateSal()’
>using "/UpdateSal.c™;

14




int EmploycenUpdateSal() |
float pinc;

if (ssno == 1)

pinc = 1.3;
clse if (ssno == 2)
pinc = 1.2;

else
pinc = L I;

return( (int) (salary * pinc) ).

!

MoodSQL>select s.nmme, sxakary, s.UpdateSal()
>from Employee s
>where s.ssno < H);

QUERY RESULTS

Tansu Ciller SO000 64999
Asuman Dogac 50000 60000
Certan Ozkan 50000 55000
Meclhnet Altinel 50000 55000
Hker Altintas 50000 35000
Budak Arpinar 50000 55000
Suha Sevuk 50000 55000
Tuncay Birand 50000 55000

8 Objects are listed !

MoodSQL>create function for class Division
>with prototype "SET_Employee GetStal{()’
>using " /GetStalle’;

SET_Employee Division:GetStal{() |
return staltl; :

!

MoodSQL>select c.division.GetStalt().name

>from Company ¢

>where (c.presidentage = 45) and (c.president.name = "Tosun
Terzioghu'):

QUERY RESULTS

Asuman Dogac
Certan Ozkan
Mehmet Altinel
fker Altintas
Budak Arpinar

5 Objects are listed !
MoodSQL>create function for class Employee
>with prototype “boolean IsWellPaid(integer)’

>using " /IsWellPaid.c'™;

integer EmployeesIsWellPaid(integer Criterion)

15




il (sadary > Criterion)
return 1
return ()

MoodSQL>select e.name, e.salary
>from Employee ¢

>where e lsWellPaid(ROODM=FALSE;

QUERY RESULTS

Certan Ozkan 70000
Mehmet Altinel 60000
Hker Altintas 60000
Budak Arpinar 60000
John Wayne RO000

5 Objects are listed !
4.4.1 Deleting User Defined Functions
MoodSQL>Is fnc of Employee;

FUNCTIONS
__ct__SEmployeeFiPcTISREE_Date
Well_Paid_Emp__S8EmployecFi

MoodSQL>drop Ine with signature "Well_Paid_Emp__8EmployecFi’
>from class Employee;

MoodSQL>1s fne of Employee;
FUNCTIONS

__ct__8EmployecFiPcTISREF _Date

4.5 Update in MOODSQL

MoodSQL>update Company ¢

>set c.president=(select ¢ from Employee ¢
>‘where {e.drives.color="red") and (e.ssn0=2))
>where coname="METU";

MoodSQL>select c.president.name
>from Company ¢

>where c.name="METU";

QUERY RESULTS

Asuman Dogac
I Objects are listed !

MoodSQL>delete ¢ from Company ¢
>where ( c.divisionstalfsalary>100000) and (c.divisionstalf.ssno=14);

Object deleted successtully...

16




MoodSQL>sclect c.name from Company ¢

QUERY RESULTS
TUBITAK
GM

2 Objects are listed |

4.6 Querying the Catalog

MOODSQL can be used to query the Catalog. Additionally following command are provided:
MoodSQL>list database;

LIST OF DATABASES
sigimod_demo
asuman_demo

certan

yuksel_demo

ilker

MoodSQL>use db sigmod_demo;
Database in use
MoodSQL>describe Employee:

User Class Employee
Inherits from MoodsRoot
TUPLE (
SSHO INTEGER .,
nime STRING[32] ,
age INTEGER
residence STRING[20]
safary  INTEGER |
hiredate  REF( Date ),
drives  LIST( Vehicle ),
cmanager REF( Employee ),
photo OID |

)
MoodSQL>Describe DomesticCompany;

User Class DomesticCompany
Inherits from Company
TUPLE (

ExportTax INTEGER
)

MoodSQL>1ist function of Employee;

FUNCTIONS

__ct__S8EmployceFiPcN2 IKREF_DateT2
IsWellPaid__8EmployecFi
ShowPhoto___REmploycecFy

17




GetAge_ 8EmployecFi

MoodSQL>list type;
TYPE NAME SIZE 1D TYPE TYPE!

INTEGER 4 | BASIC TYPE
FLOAT 4 2 BASIC TYPE
BOOLEAN I 3 BASIC TYPE
CHAR | 4 BASIC TYPE
STRING | 5 BASIC TYPE
OID 12 6 BASIC TYPE
Ho 8 7 BASIC TYPE
FID 12 8 BASIC TYPE
TUPLE 0 9 SYSTEM TYPE
SET 12 10 SYSTEM TYPE
LIST 12 11 SYSTEM TYPE
REF 12 {2 SYSTEM TYPE
MoodsRoot 4 14 USER CLASS
Vehicle 32 15 USER CLASS
Employee 116 16 USER CLASS
Date 16 18 USER TYPE
City 28 20 USER CLASS
Division 48 24 USER CLASS
Company 068 28 USER CLASS
DomesticCompany 72 30 USER CLASS
ForeignCompany 72 32 USER CLASS

5. Installation

JRAE Rk kR o ok SR ok kR ok kR R ot Rk otk kR kR ok ok ok ok kok f

* MOOD ( Metu Object-Oriented Database Management System )
* Copyright (¢) 1994 Scientific and Technical Research Council of Turkiye

* Software Research and Development Center, Ankara
* Al Rights Reserved.
E3

*Permission to use, copy, modily and distribute this software and its documentation is herchy granted. provided
*that hoth the copyright notice and this permission notice appear in all copies of the software, derivative works
*or maditied versions, and any portions thereof, and that both notices appear in supporting  documentation,

*

*THE SOFTWARE RESEARCH AND DEVELOPMENT CENTER ALLOWS FREE USE OF THIS
*SOFTWARE IN ITS "AS 18" CONDITION. THE CENTER DISCLAIMS ANY LIABILITY OF ANY KIND
*FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.

E 3 .

* The MOODS Project Group requests users of this softwire to return any improvements or extensions that they
*make to:

MOQDS Project Group

TUBITAK Software Research and Development Center
Departinent of Computer Engineering

Middle East Technical University

Ankara, 06531

asuman@ srde.metu.edutr

¥ Ok K ¥ & K O R ¥ ¥

*In addition, the MOODS Project Group requests that users grant the Software Rescarch and Development

*Center rights to redistribute these  changes,
etk otesedotob koot dobokodot ok ok okok okl dok tolokokskofskok ot Sokok kbt otskok o okokok ok Aotsbofot kot ol ok otk ek bk dobobofofkokok ok Sk otk |

18




About the MOOD V. 1.0

This version of MOOD ( VIO ) is a research prototype of an Object_Oriented DBMS. MOOD (METU
Object-Oriented DBMS) 1s developed on the Exodus Storage Manager (ESM) and supports a0 SQL-like
ohject-oriented query language (MOODSQL) and a graphical user interface, called MoodView developed using
Motif. The system is coded in C++ on Sun Sparc 2 workstations and has a type system derived from Ca4,
eliminating the impedance mismatch between MOOD and C4++.

ESM provides the MOOD the following kernel functions :
- storage management

- concurrency control

- backup and recovery of data

Additionally, the MOOD kernel provides the following functions :

- catalog management

- optimization and interpretation of  SQLU statements. During this interpretation, functions (which have been
previously compiled with MOODCC)  within SQL statements are dynamically linked and cexecuted. The
advantage of this approach is that by eliminating the interpretation of the functions the overall efficiency of the
system is improved.

Each object ig given a unique Object Identifier (O1D) at object creation time by the ESM which is the disk
address of the object returned by the ESM. The object encapsulation propertics are supported through the public
and private declarations of C++. Objects are grouped in the abstraction level of a class, in other words, classes
have extensions. Class inheritance mechanism of the MOOD is multiple inheritance.

Aggregate definitions are handled in the MOOD system by introducing type constructors (Set, List, Ref and
Tuple). Aggregate classes can be constructed by recursive use of these type constructors but there e some
restrictions,

The MOOD Catalog Manager uses three classes o store data definitions. These are MoodsTypes,
MouodsAlttributes and MoodsFunctions classes. The MoodsTypes class instances keep definitions ol clisses,
indices and data types of the database. Basic data types (integer, tloat, string, cfc.) and type constructors (i.e.,
set, Hist, ref, tuple) defined by the system, arc instances of MoodsTypes class. Instances of MoodsTypes class
may have pointers to MoodsAttributes class instances which stores the information about the attributes. The
MoodsFunctions class instances keep track ol necessary information about functions and  function definitions
of classes to support dynamic definition and linking of functions.

The query optimizer of the MOOD is generated by using the Volcano Query Optimizer Generator, The Volcano
Query Optimizer Generator - provides for very fast and easy development of a query optimizer.

A graphical user interface. namely MoodView is implemented. MoodView provides the database programmer
with tools and functionalitics for every phase of OODBMS application development. Current version of
MoodView allows a database user to design, browse, and modify database schema interactively. Furthermore,
a database administration tool, a full screen text-editor, and a SQL hased query manager is provided.

What: MOOD V1.0 offers?
1¢ Data Definition Language
; a . creation and deletion of databases

b creation and deletion of clusses and types

¢ . insertion and deletion of member functions( including constructors)

2.The system has two interfaces:
a. Textual user interface ( moodsyl )
h. Graphical user interface ( moodview )

The external software used in the MOOD VL0 prototype

1. Exodus Storage Manager V3.0

19




2. Volcano Query Optimizer Generator
3. XTech/Mot! ( for graphical user interface )

Avaliable platforins
Sun Workstations/SUN-OS
Features not yet implemented

1. View Management

2. Security

3. Aggregation operations ( SUM, MIN, ...)

4, NOT/OR in where predicate

5. Member function calls with parameters other than constants  is not supported by the current optimizer.

Disk Requirements

27MB including the binaries.

Prerequisites

The Exodus Storage Manager uses System V shared memory and semaphores, so your kernel must have them
installed. The kernel should support a shared memory segment of at least 4 mega-bytes. If you are not sure
whether your system is configured with shared memory, please see your system administrator. If you try to run
the Storage  Manager server on a system that does not have shared memory, the storage manager will print a
message about this failure o allocate shared memory, and it will telf you how much shared memory it
was trying (o acquire; then it will exit.

Installation

To use MOODV L0 the guidelines are as follows:

0. GETTING THE SOFTWARE

The MOOD (Mctu Object-Oriented  DBMS) is available  without charge by anonymous FTP from
ftp.srde.metuedutr. All of the MOOD software is located in the /pub/mood directory. The MOOD sources,
documentation, and demo script programs are available in: moodV LOtarZ. Note that MOOD runs on Exodus
Storage Manager which is available [rom fip.cs.wisc.edu free of charge.

To eliminate the need to compile the MOOD, we provide librarics, binarics for SPARCstations/SUN-OS in
moodV [.0.tar.Z. The instructions below describe how to un-tar the release  and stall the Storage Manager
by huilding binaries from the librarics provided. We also include instructions for compiling the MOOD for those
who wish to do so.

I. INSTALLATION OF MOOD

create a directory to place MOODV LU ( we assume that this directory is "/mood” . If you install MOOD V1.0
to another directory, please make all the related changes in the following instructions)

cd /mood
uncompress moodV1.0.arZ
tar xvl moodV1.0.tar

The following directories are present in the moodVI9LO.ar

bin - hinary files of MOOD and Exodus Storage Manager

20




moodsyl - textual interface of the MOOD

moodview - graphical user interface of the MOOD

VolOpt - optimizer ol the MOOD

MOODCC - precompiler of the MOOD

moodsetup - script file to create necessay directories in the directory in which MOOD will be executed.
browser &query - subprograms that are to be excecuted by MoodView

The following are ESM executables. Please refer to ESM documents for further information.

sm_server - Exodus Storage Manager server
formatvol - To format volumes
diskrw - to read write data from volumes

< shutserver- (o shut down server

lih - library files of MOOD
libmoodsgl.a - MOOD execution engine library
libsm_client.a - ESM client library

doc - documents of MOOD

doc/esmdoc - documents of ESM

sre - source files of MOOD

include - include files of MOOD

include/esminclude - include files of ESM

include/optinclude - include files of Volcano Optimizer Generator
examples-demo script fifes of moodsql

3. CONFIGURING ESM Server
3.1, Preparing Volumes

To run MOOD you should prepare three volumes, namely. log volume, data volume, and temporary volume. A
volume can be a Unix file or a Unix raw disk partition. When a raw disk partition is used., data is transferred
between the stornge manager server’s buffer pool and the disk by the disk process, bypassing the Unix file
system’s buffer pool. In the following we provide an example storage manager server configuration file. The
actuad name of this file should be .sm_config and it is advisable to put it in /mood/bin directory. Please keep
in mind that you have to run /mood/bin/sm_scrver and /mood/bin/formatvol in the directory where this
configuration file exists to start ESM server,

This example is provided in /mood/fconfig/server_config.example file.

#set storage manager buffer pool size in pages
#(Please refer to ESM documents for further information)
server*bulpages: 400

#

# The server "sm_server” will run on this port, Notice that 8000
# matches the information in the client’s mount option below,

" .

server*portnaime: 8000

#set the place of the disk processor
#Notice that /mood is the installation directory!!!
servertdiskproc:  /mood/binfdiskrw

# ;

# Here we tell the server and formatvol about the log and data
# volumes,

# The "[s1T*" prefix o the options makes them visible o

21




# servers and formatvol,

#

# The loglormaat option describes the log volume.

# The first part of the option is the name of the file containing
# the volume. Next is the volume 1D, the number of cylinders
# in the volume, the number of tracks/per cylinder, the number
# of pagesfrack, and finally the size (in K) of log pages.

ﬁ .

[sfP*[eldoglormat: fdev/logvol 0 2000 1 10 12 1000: 8

#

# The dataformat option describes the data volumes,

«# It is identical to loglormat except there is no log page size
# parameter. Note that colons or white space can be used to
# delimit the parts of the option value.

#

[st]* el datatormat: Mdev/datavol: 20010 11 1000

#

# The templormat option describes the temporary volumes.
# I is identical to loglormat except there is no log page size
# paramcter. Note that colons or white space can be used to
# delimit the parts of the option value,

#

[stP*{riltempfomat: fdev/timpvol 0 2002 1 1 1000

#

# This specifics that the server, "sm_server”, uses volume 2000
# for a log.

#

# end of server conliguration file

Run

servertlogvolume: 2000

formatvol -vol 2000 -vol 2001 -vol 2002

For more information about volumes please refer to "USING STORAGE MANAGER SERVERS” section in
docfesmdoc/sm3doc.*,

4. TO RUN MOOD tools

To run MOOD tools, you may create another directory in which you will run the MOOD (optinal). We assume
that this directory is "/moodworkspace”

Any user of MOOD has to define four environment variables :
for (csh)

setenv MOOD_HOME /moodworkspace
The MOOD_BIN environment is needed to find the place of MOOD exceutables, and necessary resource fTiles
tor MoodView. However if you intend to use MOODSQL only, you do not need to define MOOD_BIN
provided that it is placed in your path,

seteny MOOD_BIN /mood/bin

Two enviromment variables EVOLID, TMPVOLID to identify data volume and temporary volume respectively

seteny EVOLID 2001
setenv TMPVOLID 2002 -

22




After setting the above environment variables, please run moodsetup
$MOOD_BIN/moodsetup

It is a UNIX script file that creates three directorics by using MOOD_HOME environment variable

$(MOOD_HOME)/DATABASES
$(MOOD_HOME)/timp
$(MOOD_HOME)/contig

$(MOOD_HOME)/tmp directory is used for some temporary file operations by MOOD.
$(MOOD_HOME)/DATABASES contains header files of created databases for method compilation,

$(MOOD_HOME)/config should contain ".sm_config” file needed by MOOD as a ESM client. A sample
g g H e H H " M H - " : " ;o
.sm_conlig" file ( this lile is presented in "/mood/config/client_config.example )" with respect to ".sm_conlig”
file given for the server is as follows;

# ---- EXAMPLE .sm_config FILE for mood users ----

# This is an example configuration file for SM 3.0

# The client has a 400 page buffer pool.

client*bulpages: 2200

#

# The client library finds out what volumes it can mount from the mount
# option. The first number in the option value is the volume ID. The

# second number is a port number for the server managing the volume,
# The address after "@" is the machine on which the server is running.

#
client*mount: 2001 RO0O@ sariyer.srde.mctu.cdu
client*mount; 2002 8000@ sariyer.srde.metu.edu

Please note that you have to change the server machine name!
When.you are through with the above steps-and after starting the ESM server ( /miood/bin/sim_server ), you can
safely run one of the MOOD user interfaces

$MOODBIN/moodsyl
. $SMOODBIN/moodview english (or gerinan if you want to use MoodView in German)

Note that there is no on-line help. Therelore please refer w the user manual in the mood/doc directory.

To create example database

To create example database, a moodsqgl script is provided in "/inood/examples™ directory. Please read README
file in this directory.

Com piiatiun of MOOD

For compilation, please make necessary changes in the files
fmood/ste/Makefile, fmood/sre/Makelile.common (.., compiler, place of libraries ) and /mood/bin/MOODCC.

to re-generate library for mood execution engine
cd /mood/sre
make libmoodsyl

To compile textual interface of MOOD

cd fimood/sre
make moodsyl

23




To compile graphical user interface of MOOD
cd /mood/sre
make moodview

To generate moodsyl query optimizer
cd /mood/sre/volsre
make optimizer

for whole compilation

cd /mood/sre
make all

APPENDIX

Sereen spapshots in German,

24




| SitKrsmpani

—

\:\\\
1t

/’//
et /
// 4 r
I DumulicComEnnxlI l FonlEnComBnny’l

25

I_qy_e]i tVehlclelI lx—:mwmeli lmmnonli pany|

Houdshoot

‘Mtl:h'év;inll sl h

ct
lswellPard
ShowPhoto

AUt




‘I INTEGER

} INTEGER

4 STRING

finclude <databasa. h>
ftinctude "sm_client.h*

}

{1 extern "C" {

int GetObject  FGINOIDPPaPi( OID  , char rx,
int showGiF(unsigned char %, int);

void Empioyea::Showbthato()

unsigned char *Buf;
int Size;

Q1D *plcoid;
picoid « ( OID * ) gphoto;

GetObject __FG30IDPPcPi( #picOid, (char **) &Buf,sSize);

Figure 2. Type Designer, Method Presentation and Method hody

26




SET{Erpleyee}

2 Asnrman Dagae 2% Ankare 90000 PEF(Date) LIST(Vebucle) J’ R PEF(Erployee; !

LR Certan O zhom 2 Ankarn 7000 REF (Date) UST(Veude L PEF(Emplyesy

Mehsmet Alinel 2 Ankens 000 peroee UST(Vehds) |  PEF(Empleyee) |
s Nker Alkintes 2 Askana 60000 REF(Dae) LiSTVehdey | PEF(Bmphye) !

6 Budsk Aspine 28 Ankase 8000 prrae LSTVends | REF(Employee) |

7 Yuksel Seygn 2 Ankars oo 1] R !  PEF(Employee) | -

1)

|

Figure 3. Query Manager and Objects displayed as a result of the Specific Query

27




METU Object-Oriented DBMS ICernel

Asmnan Dogac Mehmet Altinel Cetin Ozkan
[lker Durusoy
software Research and Development Center
scientific and Technical Research Council of Tarkiye

Middle Fast Techuical University (M)

06531 Ankara Turkiye

emadl: asnman@vm.ceametu.edu tr

Abstract

This paper describes the design and implementation of a keruel for
an OODBMS, namely the METU Object-Oriented DBMS (MOOD).
MOOD is developed on the Exodus Storage Manager (ESM) and
therefore some of the kernel functions like storage management, con-
currency control, backup and recovery of data were readily avail-
able through ESM. Additional kernel functions provided are the op-
timization and interpretation of SQL statements, dynamic linking of
functions, and catalog management. SQL statements are interpreted
whereas functions (which have been previously compiled with (4 +4)
within SQL statements are dynamically linked and executed. Thus
the interpretation of functions are avoided increasing the efliciency
of the system. A query oplimizer is inplemented by using the Vol
cano Query Optimizer Generator. A graphical user interface, namely
MoodView, is developed using Motif. MoodView displays both the
schiema information and the query results graphically. Additionally it
is possible to update the database schema and Lo traverse the refer-
ences in query resulls graphically.

Keywords: Object-oriented database systems, OODBMS kernel
implementation, query optimization in OODBMSs, dynamic function
linker, late binding




1 Introduction

In this paper we describe our experience in the design and implementa-
tion of the METU Object-Oriented DBMS (MOOD) kernel. 'The system
is coded 1 GNU C44 on Sun Spare 2 workstations. MOOD has a SQL-like
object-oriented gnery langiage, namely MOODSQL[Ozk 931, Dog 94¢], and
a graphical user interface, called MoodView [Arp 93a, Arp 93b] developed
using Motif. MOOD has a type system derived from C++4, elimimating the
impedance mismateh between MOOD and C4+. The users can also access
the MOOD Kernel from their application programs written in C4+4-. For this
pirpose MOOD Kernel defines a class named U s(ll((qnvs that contains a
method for the execution of MOODSQL statements. The MOOID) system is
available through ftp from ftp.e s.wm,.wlu.

MOOD is developed on top of the Exodus Storage Manager (ESM) which
has a client-server architecture [KSM 92, Car 86] and each MOOD process is
a client application in ESM. IESM provides the MOOD the following kernel

[mnetions:
e storage management
e concurrency control
o bhackup and recovery of data.
Additionally, the MOOD kernel provides the following functions :
e catalog management

. uptinxizﬂ-'un zm«l iterpretation of SQL statements. During this inter-
pretation, functions (which have been previously compiled with (44-)
within SQL stntvnwnt,x are dynamically linked and executed. This
late binding facility is essential since database environments enforce
run-time modification of schema and objects. With our approach, the
interpretation of funetions are avoi «!( d inereasing the efliciency ol the

system.

An alternative way to handle dynamic linking is to extend a C4 inter-
preter with DBMS fanctionality. In this alternative there is a problem of
performance decrease due to }m,m‘pn‘t,at.iml. The advantage is to he able to

nse the full power of C4+,




The implementation of a query optimizer for a SQL-like object-oriented
query langnage, namely MOODSQL, is presented. The \n]mnn Qm ry Op-
Limizer Generator is nsed in developing 110 ;'"I()()]) optimizer.

The [m]u‘r is m'qzmizml as follows: An overview ol the MOOD Kernel
is deseribed 1 Section 2.0 o Section 3, the implementation of the (‘atalog
Manager is given. The Query Manager and Dynamic Function Linker are
discussed in Sections 4 and 5 respectively. Section 6 describes the MOOD
Query optimizer. In Section 7, the implementation of the Database Engine
s stummarized.  KNernel mteraction with MoodView is given in Section 8.

Finally conclusions are presented in Section 9.

2 MOOD Kernel Design Considerations and
an Overview

There are some design choices that we have made and some decisions are
enforced by the implementation langnage. namely C4+. These are discussed
in the [()HUV\’IHQ, within the framework presented in [Mat 93]

Object Specification in MOOD: Fach object is given a unique Ohject
[dentifier (OID) at object creation time by the ESM which is the disk start
address of the object returned by the ESM. Object encapsulation is consid-
ered in two parts, method encapsulation and attribnte encapsulation. These
encapsulation properties are similar to the public and private declarations of
(.

De(rlarutive propertie@ of the MOOD : In the MOOD, the aspect
concept given in [Mat 93] is limited to type specifications, in other words,
class delinttions are analogons to type definitions in a programming langnage.
Henee cach instance in the system is defined as a member ol a class.

Procedural 1’)1‘0;)@1’151«38 of the MOOD: Methods can he defined
CH++ by nsers to manipulate user defined classes. Method binding is per-
formed dynamically at run time. Dynamic I 'kino‘ primitives are imple-
mented by the use of the shared objeet facility of StmOS [Snun 90]. Over-
loading is realized by making use of the swgnn,ifm‘v mnrvpi, of C4+.

Object Abstractions in the MOOD: Objects are gronped in the ab-
straction level of a class, in other words, classes have extensions. (lass ex-
tensions are implemented as ESM files. A elass in the system has an nnique




type identifier which is inherited from a meta class named MoodsRoot. This
type identifier is nsed in accessing the catalog to obtain the type information
to be used in int m‘pr(»‘ g the ESM storage objects which are untyped arrays
ol bytes. The relation hetween classes and instances is a L orelation. ie..
under a class there could be any number of instances associated with it. hut
an instance can not be associated with more i.]m.n one class. Class inheri-
tance mechanism of the MOOD Kernel is multiple inheritance. The name
resolntion is handled as in standard C+4++. Additionally in onr system in case
of name contlicts, if the scope resolution operator is not used, the first class
the inheritance order having that attribute is assumed as defanlt
Aggregates in the MOOD: Aggregate definitions are handled in the
MOOD system by introducing type constructors (Set, List, Ref and Tuple).
Aggregate classes can be constricted by recursive use of these type constrie-

fors.

2.1 MOOD Overview

The geveral How ol execution in the MOOD system is shown in the Fig-
nwre Lo MoodView [Arp 93a, Arp 93b] is the graphical user interface of the
system. MoodView displays both the schema information and the query re-
sults graphicallyv. Additionally it is possible to update the database schema
and to traverse the references in query results graphically. In displaying the
schema, MoodView either makes divect calls to the Catalog Manager (1) or
mstes the necessary commands to the Query Manager (3). For primitive op-
erations involving a single function call, MoodView directly communicates
with the catalog.  Complex operations are passed to the Query Manager.
Query Manager parses and execntes these commands by obtaining the nee-
essary tnformation from the Catalog Manager (5,6). Results are returned
rom the Catalog Manager or from the Query Manager depending on which
subsystem received the request (2,4). Query Manager handles the method
creation through Dynamic Function Linker (8, ‘~))

MoodView passes the MOODSQL [Dog 94¢, Ozk 93a, ()Zk 93h] queries
to the Query Manager without any modification ( 3). Query Manager obtains
the necessary information from the Catalog Manager (5,6) mul then makes
syntax and semantic checks on the gueries. 1 no ervor is detected, a query tree
is generated and passed to the query optimizer (7). After the optimization
phase, resalting query tree is ready to be executed by the MOOD engine (10).




During execntion, class extents are read from the Exodus Storage Manager
(I5SM) and temporary results are stored in the ESM (16, 17). The query tree
s execnted in the engine starting from the leal level. 11 the class methods
are used in the query, they are activated through the Dynamic Function
Linker subsystem (14,15). At the end of the execution, results are returned
divectly to MoodView (13). In Moodview, a user can traverse the links in
the database or execute class methods with void return type by nsing the

cursor mechanism providesd,

A
1 Y
"“‘::ﬁ MOODVIEW f"’“
4
KERNEL 2 1 4
Y 5 Y
Catalog I >{ Query I<
Manager | o Manager
| ° ;8 9
1 12 Y
Query
Optimizer
13 ¥
10y 4
Dynamic
Engine Function
5 Linker
A
¥ 6y 7 18 19
EXODUS STORAGE g:,‘s;g:i
MANAGER ’

Figure 1. An Overview of the MOOD System

MOOD also has a textual interface to the database. For this interface,
MOODSQL provides schema delinition and modilication commands.




3  Query Manager

Query Manager (QM) is the main subsystemn of the kernel which accepts the
MOODSQL commands through the MoodView or directly from the textual
interface. During the interpretation ol these commands, QM communicates
with the other kernel subsystems. Functionality of MOODSQL commands
can be divided into two parts: schema definition and modification commans,
and data manipalation commands. For schema commands, QM interacts
with the Catalog Manager and in case of method definitions it also interacts
with the Dynamic Funetion Linker. QM exports the MOOD data types and
classes to the C44 compiler of the MOOD, namely MOODCC, by preparing
and updating the C+4+ header files when a new database or a new class is
created. Catalog Manager serves as the information storage of the Query
Manager. For the method delinitions, QM activates the Dynamic Punction
Linker to construet the shared object of the method and to get information
about the method. For the MOODSQL queries, QM makes the syntax and
semantic checks on the query using the information obtained from the Cat-
alog Manager. It hm) constriucts an input query tree for the optimizer by
filling in the nodes with the information necessary for the optimizer and for
the database engine.

A detailed description of the MOOD data model and MOODSQL is given

[Dog 91e, Ozk 93b]. Tu this section, briel overviews of the data model
and the query language are presented. In the MOOD data model the hasie
data types are Integer, Float, Longlnteger, String, Char, and Boolean. Any
complex data type is defined using these types and by recursive application of
the Tuple, Set, List and Rel type constructors. The data model also supports
multiple inheritance and strongly typed methods.

The syntax of the SELECT-FROM-WHERI block is as follows:

SELECT projection-list
FROM  path-name ry,

path-name 1y,

path-name r,
WHIERIS scarch-expression

Projection-list and search-expression may inchide path expressions and




methods.

MOOD allows dynamic schemamodifications and MOODSQL queries re-
b objects. By nsing these two leatnres a nser can store the new objects
obtained as the vesult of a query in the database. Notice that it is nser'’s re-
sponsibility to place the new class in the inheritance hierarchy. The following

example ilhustrates a class delinition in MOODSQL.
CREATE CLASS Company

'UPLEY
name STRING20]
location STRING20
Annnallncome INTEGER,
president REF( Employee ),
division SET( Division ) )

An example MOODSQL query that finds the president who drives a car
manfactired by his company and the company has a division at Los Anecles.

sogiven in the following.

SELECT c.president.name
FROM  Company ¢
WIHERE (c.president.drives.manulacturer = ) AND

(r.:!i\'isiun.lm‘a,nn name = Los Angeles™)

The existing objects returned hy MOODSQL queries can be used in popi-
lating the REF,SET and LIST attributes in UPDATE and NEW commoands

as illustrated in the following.

UPDATIE Company ¢

ST copresident= (SELECT «
FROM  Employee ¢
HI

WHERL (e.drives.color="red") and (c.ssno=2))
WHERE cname="MET

NEW Company("GM™New York™ 9000000,SELECT «
FFROM Employee e
\'\"H]ﬁl U essno=24,
{ SELECT d
I H()M Division
WHERE docation.name="Ankara" } )




An example to DELETE command is as {ollows:

DELETE ¢
FROM  Company ¢
WHERTE ( c.president.salary <c.division.stall.salary)

Notice that an object is deleted physically when its reference count reaches
fo zero and garbage collection is handled by the ESM.

Using methods in the queries is described in Seetion 5.

4 Catalog Manager

The MOOD catalog contains the definition of classes, types, and member
Linctions in a stroctiure similar to a compiler symbol table. The catalog
s stored on the ESM. In order to achieve late binding at run time, it s
necessary to carry compile time information to run time. This information
is obtained from the Catalog Manager by the MoodView or Query Manager.

Catalog Manager uses three classes to store data definitions. These are
Moods Types. MoodsAttributes and MoodsFunctions classes. The Moods Types
class instances keep definitions of classes, indices and data tvpes of the
database. Basie data types (integer, lloat, string, ete.) and type constrictors

(e set, dist, vel, tuple) defined by the system, are instances of MoodsTypes
class, which are defined externally while creating the database. It is clear
that a nser can define any type and method to the database. Instances
ol MoodsTypes class may have pointers to MoodsAttribules class instances
which store the information about the attributes. The Moodstunctions class
imstances keep track of the member hinetion definitions of classes to support
dynamie linking and execution of functions. Needed information to constriet
imstances of MoodslFunctions is extracted from the sonrce code of the meth-
ods through the MOODCC. Figure 2 shows the structure of the catalog on
the ESM.

Catalog classes are not any different from user defined classes. There-
fore, MOODSQL can be used in accessing the required information from the
catalog, '

This implementation approach provides dynamic sehemaupdates which is
oue of the main design considerations of MOOD. However, since versioning
facility has vot been implemented yet, the objects in class extents whose




definitions have heen moditied, are deleted.

Root Page of ESM

Database Catalog

Type Catalog

|

User Defined Types Basic types System Classes
User Defined Classes !

Type Catalog
Function Catalog
Attribute Catalog

Figure 2. Structure of the catalog on KSM

5 Dynamic Function Linker

Dynamic Fanction Linker (DIFL) provides the late binding of methods to
the objects during the query interpretation. DFL is implemented using the
shared ohject facility of SunOS. Methods are stored as shared objects [Sun 90]
in a special divectory hierarchy in the UNIX file system and they are mapped
to the MOOD address %pa(‘t‘ il they are not already there and execnted dur-
ing the mterpretation of MOODSQL queries. In this respect, funetionality
of DI'L can be divided into two parts: During the definition of methods,
DIL construets shared objects and provides the necessary information about
methods to the Catalog i\'idllcl.}_{("l' throngh the Query Manager. During the
in t,vr]n‘c'tai'un of MOODSQL queries, DFL locates and fetches the shared
objects of the methods to the memory and ftinds the address of a method
within a shared object.

In the definition phase of a method, DIFL fivst constructs the shared object
of the method. Tlis s1< p requires the compilation of the method body with
the C44 compiler of MOOD, namely MOODCC, MOODCC is developed
by modifying the cfront part of the AT&T C4+ compiler (Release 2.0). The




function of cfront is llustrated in the Figure 3.

Other Module

C++ Source C++ C Position
= (PP | cfront »~ CC "™ |ndependent
Source Source + Code
I
I
with cflags -c
and -pic

Fignre 3. Execution flow of the ATET C4++4+ (MOODCC) Compiler

The purpose of this modilication is to extract the necessary information
about the method, to pass the pa;rzunv(m' valies and to get the result valies
from the method after its execntion. As a result, users can code the method
hodies without any restriction and method codes are modilied transparently
by the MOODCC. The modified cfront makes the {ollowing updates in the
method:

e All the parameter types are converted to the pointer ol the parame-
fer type except for the parameters that are already pointers. This is
necessary to eliminate the type dependency in parameter passing,.

e Method return t vpm are converted to the pointer of the return type
again to eliminate the type dependency as in parameter passing. But
there is vet en.nut,hvr ]m)Mv m: I a function returns a constant, 1t s not
possible to take the address of it. Therefore the following mmliﬁ('ui on
1s also necessary. A global variable having the same type as the function
return type is created and the function definition is modified so that
each lunction has a new retnrn type as the pointer to this variable. For
cach retirn statement, return value is copied to this variable and the

address of this vartable is returned tnstead of actual return valne.

Sinece all the database Tunctions are stored in different shared ohjects,
their invocations have to be «1«»1';»('1,@«1 in the method source i order to provide
dyvnamic linking and execution of the called method (This is also requived for
recursive function calls), Because the methods are not interpreted, to handle

i




this situation MOODCC pastes the necessary O code block to the ontpnt ¢
code of the method.

Fach method is stored in a distinet file and the exported MOOTD) data
types and classes are accessed by the method by inclnding a header file
named "database.h” at the beginning of the code. In the following example,
a method for the class Company is coded which caleulates and returns the
amonnt ol tax the company will pay depending on a eriferion given as a

parameter to the method.

H#include "database.h”
integer Company:Calenlate_Tax(integer Criterion) {

float TaxRate:

TaxRate = 0.1;
il (Annuallncome >Criterion)
TaxRate = 0.2;
return (integer) (TaxRate © Annunallneome);

It is clear from the example that C4-+ types and MOOD types (e.g. in-
teger) can be mixed in MOOD methods. Assuming that user saves this code
in the file Tax.e, this method is declared to the MOOD by the following
MOODSQL command in the textual interface:

CREATE FUNCTION FOR CLASS Company
WITH PROTOTYPE ‘integer Calenlate Tax(integer)’
USING ../Ta,,\(‘("

Upon receiving this MOODSQL command, Query Manager activates the
DIL to obtain the shared object code of the method. In DI'L Tax.c is com-
piled with MOODCC and if no errors are detected, object code of the method
is prepared and stored in a special directory hierarchy. In addition to the
shared object code, MOODCC returng the information about the method
inchiding its signature. This signature is prepared by using class name fo
which method helongs, the method name and the type of the parameters. A
method is identified in MOOD by using its signature since signature makes
the method name unique within the database. Signature concept also pro-

I




vides the overloading facility since each overloaded method has a different
stenatire,

During the interpretation of MOODSQL queries that include methods,
locating the shared object and finding the binding address of the method in
the shared object are handled by the DEFL using the signature of the method
constricted by the Query Manager. After DIFL performs these operations,
the Database Engine executes the method for v;wh instance and the return
valie is used in the expression.

MOOD also allows users to deline methods returning no valne (i.e. void
return type). Stuch methods can he ineluded in projection expressions. In this
case instances are located in Database Fngine bt activation of the method
is left to the nser in the MoodView.

Users also have the chance of nsing the ESM calls in the methods which
provides them to perform low Tevel object operations in the methods.

A detailed deseription o the implementation of DIFL is presented

[ATE O]

6 The Query Optimizer

The MOOD Optimizer is implemented using the Voleano Extensible Opti-
mizer Generator (VOG) [Mel 93] The Voleano Query Optimizer Generator
is a data model independent tool that is used to develop a gnery upt nizer for

v DBMS. VOG search algorithm uses dynamic programming with branch-
;m«l-lmnml pruning based on cost. The Volcano generated optimizers pro-
duce the optimmm execution plan when the transformation riles and support
functions are provided properly.

The Voleano optimizer generator uses two algebras, called the Togical
and the physical algebras, The job of a generated optimizer is to map an
expression of the logical algebra (a query) into an expression of the physical
algehra (a query evalnation plan consisting of algorithms). To do so. 1t nses
transformations within the logical algebra and cost-hased mapping of fogical
operators to physical algehra]Mel 93]

Since the paradigm of MOODSQL is the selection from extents of the
classes, the traditional set and relation upmmvm's are accepted as the hasis of
the logical algehra. Selection, Join, Intersection, Projection and Union are
defined as in the relational systems. An Unnest operator is used to manip-




nlate set-valued components. In addition, a materialize operator (MAT) i
nsed as defined in [Bla 93] to represent, each link of path expressions Sll(‘h
as t‘m|>|u)’(\(\.<[vparhn(‘nt,,lxlzl,n:tgvtxn;\mv. The purpose of MAT operator is
to indicate to the optimizer where path expressions are used so ,ha,i, alge-
braie transformations can be applied. The GET_SET operator appears at
the leaves of the query tree. b includes a class into the scope of the query.
MOOD Physical Algebra operators are given in Section 7.

An example of the input and output of the optimizer is given in the
following to clarify the point. Consider the following query :

SELECT ename, vitype
f‘ ROM  Emplovee e, Vehicle v
WIHERE c.comp.mgr.age =45 AND c.parttime() AND
vid=12315 AND v.producer. fI(‘ shoyear< 60 AND

coeompamgr.age = voproducer.dept \(<1|+)

Query i\*ls\,nzngv' produces a logical input tree that is given in Figure 1
The generated optimizer optimize this tree and produces the plan given in
Fioure h. The produced plan is the optimal according to the given statis-
ties. In this example, as ii,. is observed from the input and output trees, the
selections are pushed down the tree according to their selectivities. Materi-
alize operators are converted into explicit joins and are implemented using
the PTR_HH_JOIN algorithm which is the pointer based version of the hash
partition join [She 90]. The traversal of long path expressions are converted
into a series of joins, so that the optimal execution plan is obtained according

y the given statisties.

7 Database Engine

Database engine is the query execntion subsystem of the MOOD. It consists
ol mainly four parts: expression interpreter generator, query interpreter,
expression exectition subsystem and object hudler as shown in Figure 6.

The expression interpreter implementation approach of the MOOD il
fers from the classical ones in that there is no general expression interpreter

stthsvstem. For each operator that has an expression argniment, a specilic




- . HASH_JOIN
SELECT "
e.comp.mgr.self=e.comp.mgr
e.comp.mgr.age>45 and e.parttime() and
v.id=12345 and v.producer.dept.year<60

l HASH_JOIN PTR_HH_JOIN
e.comp.mgr.age=v.producer.dept.year+5 e.comp
JOIN
e.comp.myr.age=v.producer.dept.year+5
FILTER FILTER FILTER COMP
v.producer.dept.year<60 e.comp.mgr.age>45 e.parttime()
MAT MAT
e.comp.mgr v.producer.dept
\\ PTR_HH_JOIN BIND BIND
v.producer.dept e.comp.mgr e
AT EMP MAT DEPT
e.comp v.producer I
\ \ PTR_HH_JOIN DEPT | e
v.producer
GET_SET COMP  GET_SET COMP \
-] v

FILTER COMP

v.id=12345
EMP VEHICLE
BIND
v
VEHICLE
Figure 4. Input. Query to the Figure 5. Optimal Access Plan Gen-
MOOD Optimizer erated

interpreter is generated which is dedicated only to that input expression.
This provides efficient execution of the expressions since dedicated inter-
preter does not have to deal with any type checking or operator selections.
The Query interpreter livst sends the input expression tree to the expression
interpreter generator and then generated interpreter is executed in the ex-
pression execution stubsystem for cach object in the input extent(s). This
implementation approach can be thought of as some kind of compilation of
the input query tree and the dedicated interpreter generated can he thought
ol as the obhject code.

The dedicated interpreter is also generated in the form ol a tree and its
topology is exactly the same as the input query tree. What makes it different
from the input query tree is that cach node has an action, an input to that




MoodView l l Optimizer

A
DATABASE
ENGINE
Query results
Mery Optimized
Input parse ] 'S::t auery
tree - .
Expression - 0 nstancels Dedicated
had uer H
Interpreter Y expression
w. INterpreter - ;
generator - 2 e reseon execution
Dedicated Iy result unit
f 3 execution
tree
Rezulting Objects
Method Shared temporary
eall object ohjects |
request code ’
Object
. Buffer
Ubject
request Objects “
| Y
Dynamic Exodus
.
Function “1 Storage
Linker Manager
UNIX
File
System

Figure 6. Overview of the Database Engine

action and a local hufler to hold the result of the action. An action is imple-
mented by coding a unique function for it. In general, these functions take
the action input as argument and after executing the code store the result in
the node’s local bulfer. During the generation of the dedicated interpreter,
depending upon the input elements, necessary actions and action inputs are
binded to the nodes and the methods in the expressions are made ready to
he execnted by the DIFL interaction.

Query interpreter is the main part of the database engine since it controls
the execntion How. It takes the optimized gquery tree from the optimizer and
interprets it starting at the leal level. Before the execution has started, an
object bufler is opened to store the intermediate results obtained during the
execition.  If the operator has an expression argument, guery interpreter
first generates the dedicated interpreter and this interpreter is executed i
the operator throngh the dedicated interpreter execution subsystem. MOOD




physical algebra operators are implemented using ESM calls. Chrrently, the
physical algebra operators implemented are as follows:

o Selection operator (FILTER)

o ludexed Selection (IND_SEL)

e Dereference operator (DIEREL)

o Bind operator (BIND)

e Nested Loops Join (NESTED_LOOP_JOIN)
e Pointer Hybrid Hash Join (PRT_HH_JOIN)
e Sort-Merge Join (SM_JOIN)

o lash Partition Join (HASH_JOIN)

e Sort operator (SORT)

e Union operator (UNION)

o Dillerence operator (DII7)

o Intersection operator (INT)

o Materalize operator (TRAVERSE)

o Unnest operator (UNNEST)

o Assel operator (ASSET)

e Aslist operator (ASLIST)

At the end of the query execution, the information about the extent in
which resulting objects are stored is returned to the MoodView or to the

textual interface.

16




8 Interacting with MoodView

As shown in Figure 1. MoodView interacts with the Catalog Manager, the
Query Manager and Database Engine subsystems of the kernel. For schema
processing, it communicates with hoth the Catalog Manager and the Query
Manager depending on the complexity of the operation. However for the
MOODSQL queries, MoodView sends the query to the Query Manager and
results are returned from the Database Engine. These results are displayed
using a cursor mechanism. A cnrsor on the query results is opened by using
retn 'nwl extent information and a cnrsor handle is obtained. Then with the
help of this handle, object browsing on the extent is enabled. The cursor
operations inchide accessing the first object in the extent, getting next or
previous object from the current one, and accessing the last object in the
extent. Once the object is obtained by the cursor functions, the attribute
values can be extracted using the extent information.

The attributes having the ty]ws reference, set, list, method or other
database types are displayed in a different way so hat, user can perform
operations specific to that ab nlm te. I the attribute type is reference, Hu‘n
referenced object is accessed and shown to the user. For the set and his
attributes objects are located and displayed in another window. Il the at-
tribute type is method, its activation is deferred to user request. Some ex-
ample screens showing the schema and the query results are given in Figure
7 and Figire 8 respectively.

Users also have the chance ol accessing the MOOD Kernel from their ap-
plication programs written in C+4+. For this purpose MOOD Kernel defines
a class named UserRequest that contains a method for the execution of SQL

statements.

class UserRequest {
// Local variables ol UserRequest
/] Method for Query Execntion
errorMessage executeQuery( ... ):

Whenever a user action requires a database operation at the schema or
instance levels, user passes the corresponding SQL statements to the kernel
throngh execnteQuery method in the application program. The {unction




returns a message indicating the success or failure of the operation.

Using

the crrsor mechanisim nser can access the results of the (ueries.

3 Hoodl s
i Class Fresentation

b
Topm: Ndacg

e Id

Class Tpas

< Sustess Clasy % User Clasy

e stsm Tupe O Bovie Tape

o list

Separeldsaan)

triocasHoot

Hih

i1} Rights Reserved

METY OBJELT ORIENTED DATRBASE MONRGEMENT SYSTEM

Copyright 1934 TURITAK Softuare RAD Center.

minady bew

L.ct
Talini [Patd
Sheublnts

Houd¥isw

Pesigrer

Type

FIELE Nag

T

9

Figure 7. Display of the Example Schema

Conclusions

Our design started by deciding to use Exodus Storage Manager after making
the observation that it is a powerful, reliable and efficient tool for storage

management that also provides for conenrrency control and erash recovery.
Recognizing the fact that an adhoe query language is essential, onr second
design decision became to iimplement an OO0SQL whose power is enhanced

by nsing C++ method calls in queries. The persistency needed for cata-

log management and for the object algebra is implemented through direct

[




query E M

[Qm Edit Heto
n won
? ooftion HETY OBJEC
[ g
s
5
Copyright
.......................... ALl Rightx
SELECT s.name, 8.d¢Ives, &, ShouPhoto(d, & manager, | I
= maneger ShowPhotad)
FRON Enpiouss &
AMERE (e IsHel 1Paid{B0000)) anD :
(5.Gatvahizies() menufacturar nans = B')

Acnimon Dogac

Certan Ozkan

Hehomier Atuned
Iker Altintes

Hndsk Arpnar

Asuisa Dagae 8 Arkere $0000

e

Figure 8. A MOODSQL Query and Resulting Screens

ESM calls. We have left the implementation of a persistent C4+ for our
system as the final phase.  Although persistent C+4+ is not implemented
for the MOOD yet, the following features of the MOOD provide a powertul
application development environment:

MOOD kernel can be accessed from O+ application programs and there
is no impedance mismatceh between MOOD types and C44 types. Further-
more full C44 power is available in the methods.

The paper provides both the design decisions and also the implementation
details of the hasic components of the MOOD. The implementation details
were necessary to provide insight to the techniques used.

The kernel functions implemented are the catalog management, optimiza-
tion and interpretation of SQL statements and dynamic linking of functions.

19




Some design decisions are enforced by C4+ to prevent the impedance mis-
match between the system and C4.

The proposed Dynamic Function Linker approach provides an eflicient so-
Iition to the late binding problem of object-oriented databases. By dividing
the labor between an object-oriented SQL interpreter and a C4+ compiler,
the interpretation of functions are avoided increasing the overall efficiency of
the system. It is clear that previously written C++ methods can be ported
to omr system without any modification.

I'he Voleano Query Optimizer Generator is used in developing the MOOD
optimizer. VOO provides for fast and easy development of a query optimizer.
However VOG's search engine is highly recursive and therefore main mem-
ory requirements increase rapidly with increasing number of riles and with
complex queries. The next version of VOG will heuristically reclaim memory
to overcome this problem [McK 94}, Method up!imimt'un is not cnrrently
heing supported in the MOOD. An object algebra is implemented to realize
the operations required by MOODSQL.

The following features are currently missing from the MOOD: View man-
agement, security, aggregation operations ( SUM, MIN, ... ) in MOODSQL
queries, NOT/OR in where predicates. Furthermore memlmr function calls
with parameters other than constants are not supported hecanse of the lim-
itations of the MOOD optimizer.

Acknowledgements

The authors wish to gratefully acknowledge the MOOD project 11nplv~
mentation team: [lker /\Hmmm Budak Arpinar, Tolga Gesli, Ismail Tore
and Yuksel Saygin.

References

[AIL94]  Altinel, M, "Design and Implementation of a Dynamic Funetion
Linker and an Object Algebra for the MOOD™, MS. Thesis, Dept
of Computer Eng., METU, September 1994,




Arpinar, B, Dogac, A., Bvrendilek, C. "MoodView: An Advanced
Graphical User Interface for OODBMSs”, SIGMOD Record, Vol
22, No. 4., Dec. 1993,

Arpinar. B., "An Advanced Graphical User Interface for Object-
Oviented DBMSs: MoodView”, M.S. Thesis, Dept. of Compnter
Ing., METU, September 1993,

Blakeley, J., McKenna, W. J., Graefe, G., "Experiences Building
the Open OODB Query Optimizer” in Proc. ACM SIGMOD Inil.
C'onf. on Management of Data, 1993,

farey, M., DeWitt, 1. l{i(‘lmr(l%on J., Shekita, E., "Object and
} ile j\landgtm( nt i I“\()I)l y [oxt ensible D dtabast System”, in
Proc. of the [2th Intl. Conf. on VLD, 1956,

Carev M.J., DeWitt Do, Vandenberg 5.L., 7A l)d ta Model and
Query Language for 1EXODUS™, Proc. o_/ the ACM SIGMOD
Conf., 1988.

Dar S.. Gehani N.H., Jagadish H.V., "CQL4++: A SQL for the
ODE Object-Oriented DBMS”, in Proc. of Ertending Dalabas
Technology, 1992.

Deux, O.. et al., "The 02 System”™, Comm. of the ACM, Vol. 34,
No. 10 l()()l

Doeac, A., Ozkan, C., Arpinar, B., Okay, T., Evrendilek, €.,
"METU Object-Oriented DBMS”, Advances in Object-Oricnted
Database Systems, A.Dogac, T. Ozsu., Al Bilivis, T Sellis (Fdtrs.)
Springer Verlag, 1994.

Dogac, A., et al, "METU Object-Oriented DBMS”, Demo de-
scription, in Proc. ACM SIGMOD Intl. Conf. on Management of
Data, 1994. '

Dogac, A., MOOD User Manual, 1994,

Durusoy, 1. 7 MOOD Query Optimizer”, M.5. Thesis, Dept. of
Computer Eng., MIETU, February 1994,

.)l




[ESM 92]

[Kim 90]

[Mat 93]

[Ozk 93D]
[Ozk 94]
[She 90]

[Sin 90]

Using the Exodns Storage Manager V2.1.1, June 1992,

Kim W., Introduction to Object-Oriented Databases, The MIT
Press, 1990,

Mattos, N.M., Meyer-Wegener, K., Mitschiang, B., " Grand Tour of
Concepts for Object-Orientation from a Database Point of View™,
Data and Knowledge Engineering, No.9, North Holland, 1993.

MeRKenna, W. J., "Efficient Search in Extensible Database Query
Optimization: The Voleano Optimizer Generator™, PhD thesis,
Department of Computer Science, University of Colorado, 1993.

Meklenna, W. J., Personal Communication.

Ozkan, (., Dogac, A., vrendilek, C., Gesli, T, "Efficient Order-
ing of Path Traversals in Object- Oriented Query Optimization”,
In Proc. of Int. Sym. on Compuler and Informalion Sciences, Is-
tanbul, Nov. 1993.

Ozkan, C., 7 Design and Implementation of an Object-Oriented
Query Langnage, MOODSQL, and its Optimizer™, M.S. Thesis,
Dept. of Comprter Eng., METU, September 1993,

Ozkan, ., Dogac, A., Durusoy, 1., "An Efficient Henristies for
Join Reordering”, TUBITAK Software R&D Center, Tech. Rep.
94-2, January 1994.

Shekita, E.J., Carey, M. J., A Performance Bvaluation of Pointer
Based Joins™, in Proc. ACM SIGMOD Intl. Conf. on Manageniend
of Data, 1990.

Sun Microsystems, "Shared Libraries”, Programmer’s Overview,
Utilities and Libraries, 1990,




A Heuristic Approach for
Optimization of Path Expressions in Object-Oriented Query Languages

Cetin Ozkan Asuman Dogac Yuksel Saygin
Software Research and Development Center
Scientific and Technical Research Council of Turkiye
Middle East Technical University
06531, Ankara Turkiye

e-mail: asuman@srdc.metu.edu.tr

Abstract

The object-oriented database management systems store references to objects (implicit joins,
precomputed joins), and use path expressions in query languages. One way of executing path
expressions is pointer chasing of precomputed joins. However it has been previously shown that
converting implicit joins to explicit joins during the optimization phase may yield better execution
plans. A path expression is a linear query therefore considering all possible join sequences within
a path expression is polynomial in the number of classes involved. Yet when the implicit joins are
converted to explicit joins, because of path expressions bound to the same bind variable, the query
becomes a star query and thus considering all possible joins is exponential in the number of paths
involved. This implies that there is a need for improvement by using héuristic in optimizing
queries involving path expressions.

A heuristic based approach for optimizing queries involving path expressions is described in this
paper. First, given the costs and the selectivities of path expressions by considering a path
expression as a unit of processing, we provide an algorithm that gives the optimum execution order
of path expressions bound to the same bind variable. For this purpose we derive the formulas for
the selectivities of path expressions. Then by using this ordering as a basis we provide a general
heuristic approach for optimizing queries involving path expressions.

Two optimizers are developed to compare the performance of the heuristic based approach
suggested in this paper with the performance of an optimizer based on an exhaustive search
strategy. The exhaustive optimizer is generated through Volcano Optimizer Generator. The results
of the experiments can be summarized as follows:

Heuristic optimizer greatly reduces the optimization time. The estimated query execution time of
the exhaustive optimizer is slightly better. When it comes to total time, the heuristic optimizer has
a superior performance with the increasing number of paths. This result is expected because the
time spend in query optimization phase by the exhaustive optimizer is uncomparably larger then
the execution time. The heuristic optimizer also performs well for linear queries implying that the
heristic suggested is an effective one.

1. Introduction
The object-oriented database management systems store references to objects (implicit joins,

precomputed joins), and use path expressions in query languages. One way of executing path
expressions is pointer chasing of precomputed joins. However it has been shown in [Bla 93] that




converting implicit joins to explicit joins during the optimization phase, makes it possible to
consider a wider range of join sequences and thus yields better execution plans in most of the
cases.

A path expression corresponds to a linear query in relational systems where tables are connected
by binary predicates in a straight line. In [Ono 90], it has been shown that the computational
complexity (i.e the number of joins that must be considered when using dynamic programming for
optimization) of linear queries with composite inners (bushy trees) is (N-N)/6. If the composite
inners are not considered the complexity reduces to (N-1)2. Therefore considering all possible join
sequences within a path expression is polynomial in the number of classes involved. Yet when the
implicit joins are converted to explicit joins, because of path expressions bound to the same bind
variable, the query corresponds to a star query (in fact a hybrid query, i.e., star of linear queries)
in relational systems where a table at the center is connected by binary predicates to each of the
other surrounding tables. In [Ono 901, it has also been shown that using dynamic programming to
optimize a star query with N quantifiers requires evaluating (N-1 )2V* feasible joins. Thus
considering all possible joins is exponential in the number of classes involved.

Many existing relational optimizers use heuristics within dynamic programming to limit the join
sequences evaluated. One heuristic employed by System R [Sel 79] and R* [Loh 85] constructs
only joins in which a single table is joined at each step with the results of previous joins, in a
pipelined way.

We have developed a heuristic based approach for optimizing queries involving path expressions.
First, given the costs and the selectivities of path expressions by considering a path expression as
a unit of processing, we provide an algorithm that gives the optimum execution order of path
expressions bound to the same bind variable. For this purpose we derive the formulas for the
selectivities of path expressions. Then, by using the results obtained as hint a general heuristic
approach is developed.

In order to test the effectiveness of the heuristic proposed, two query optimizers are developed.
The first optimizer is based on the heuristic suggested in this paper. The second optimizer is based
on an exhaustive search strategy and is generated through Volcano Query Optimizer Generator.
Since path optimization mainly involves join enumeration, a subset of the transformation rules
given in |Bla 93] are used. The results of the experiments indicate that the heuristic based
optimizer has a superior performance with the increasing number of path expressions.

Previous work on optimizing path expressions are given in [Mai 86, Kem 90, Lan 91|, [Mai 86|
has concentrated on optimizing path expressions by exploiting path indices. [Kem 90] suggested
access support relations, which are separate structures to store object references for processing path
expressions. In this work the optimizer may choose between the traversals that start at either end
of a path. In [Lan 91] a more general framework has been suggested for processing path
expressions where the traversal may start anywhere in a path and other operations like selects and
joins can be interleaved with path traversals. Recently the design and implementation of a query
optimizer based on complete extensible framework has been reported in | Bla 93] where the query
optimizer of the system is generated by Volcano Query Optimizer Generator (VOG) [McK 93, Gra
93]. The Volcano Query Optimizer Generator is a data model independent tool that is used to
develop a query optimizer for a DBMS. VOG generates all possible execution plans and its search




algorithm uses dynamic programming with branch-and-bound pruning based on cost. The Volcano
generated optimizers produce the optimum execution plan when the transformation rules and
support functions are provided properly.

In section 2, the cost model is presented and the formulas for the selectivity of path expressions
are derived. In Section 3, an algorithm that gives the optimum execution order of path expressions
bound to the same bind variable is provided by considering a path expression as a unit of
processing. Section 4 presents the principles of the heuristic based optimizer. In Section 5, the
performance results are given. Finally, Section 6 contains the conclusions.

2. Cost Model

In this section the cost model which is used in both of the query optimizer implementations is
explained. The cost model parameters are presented and the formulas for the selectivity of path
expressions are derived. The cost formulas for implementing the join operations with different join
techniques are provided in the Appendix.

2. 1. Cost Model Parameters

The cost model parameters which are used in various selectivity calculations that form the basis
of the cost calculation of path traversals, are given in Table 1. Similar cost model parameters have
been defined in [Kemp 90], [Ber 92] and [Ber 93]. In defining the cost model, [Kem 90] considers
the extensions of classes where in [Ber 92] and [Ber 93], the class inheritance hierarchy is also
taken into account. Qur cost model considers the class extensions. Furthermore we have defined
some more parameters that serve better to our purposes.

In the Table 1, C is a class, A is either an attribute or a parameterless method of class C with an
atomic return type which is treated in the same way as an atomic attribute.

Paramet ey Definition

[C Total number of instances of C

nbpages (C) Total number of pages in which.class € is stored

size (C) Size of an instance of class C

notnull (A, C) The proportion of the instances in class © with
attribute A being not null

fan(a,C, D) The average number of instances of class D that

are referenced by the instances of ¢ through
attribute A

rotref (A,C,D)] The total number of objects in the class D which
are referenced by at least one object in class C
through attribute A. (2)

dist (A, C) Number of distinct values of the atomic attribute
A of class C

max (A, C) The maximum value of the atomic attribute A of
class C

min (A, C) The minimum value of the atomic attribute A of

class C

Tuble 1 . Cost Model Parameters

The number of the total references from class C to class D through the attribute A is denoted by




totlinks(A,C,D) and given by the following equation :
totlinks(A,C,D) = fan(A,C,D) * | C|

The probability that an instance of class D is referenced by the instances of class C through the
attribute A is denoted by hitprb(A,C,D) and given by the following equation:

hitprb(A,C,D) = totref(A,C,D) / | D|
2.2. Selectivity

A simple predicate in the system is a triplet of the form <P, , ©., oprnd>, where P, is a path
expression, O is a comparison operator ( =, <>, >=, <=, >, < ), and oprnd is either a constant or
another path expression.

2.2.1. Selectivity for Atomic Attributes

The well-known selectivity calculations assuming the uniform distribution of the atomic values
described in [Ozk Y0] are used. The selectivity of the expression "s.A = constant”, denoted as ©
where s is a bind variable binding to a class C, and A is an atomic attribute, is given by the
following formula where dist is distinct values of A in C:

a(s.Ay = | / dist(AC)
2.2.2. Selectivity of Path Expressions

Assume that there is a path expression involving m classes referenced through attributes, A,
through A, where A, through A, is constructed using the set or the reference constructors. A,
is an atomic attnbute and A, is an attribute of class C;. We need to calculate the selectivity,

OpunlD-A L ALLALLO), for asingle path expression "p.A, AyLA, O ¢, where O is a comparison
operator dnd ¢ is a constant. For this calculation we defme the shorthand nomtmn for some of the

prevnomly mentioned parameters as follows:

fan, = tan(A,,C.C,)
totref, = totref(A,,C.Cy,,)
totlinks, = totlinks(A,,C,,C,,,) where [ <i<m-I.

The calculation of the selectivity of "A,, © ¢", G(A,), is clear from the previous section. Therefore
the expected number of instances of C,, denoted by k,,. that satisfies this condition is:

m = ¥ Cm[ ¥ G{Am)

It is clear that when there is no selection on the A,, attribute k,, = | C, |

In forward traversal, assuming that we start with k objects of class C; and traverse the path
p.A.A,..A, in forward direction, the expected number of objects of class C,,, , denoted by fref,
is given by the following formula:




k b
fref(p. A, A, ALk) = {
c(totlinks,, totref,, fref(p.A, A, A, k) * fan, ) d>0

where, c(n,n,r) is an approximation to the following statistical problem: Given n objects uniformly
distributed over m colors, how many different colors ¢ are selected if we take just r objects? This
statistical problem has been solved by using different mathematical approximations. An
approximation assumed in [Cer 85] is as follows:

r , T <my/2
c(nmyr) = (r+m)/3 ,m/2 <1< 2m
- m , > 2m

Note that [Car 75] and |Yao 77], in approximating the number of page accesses to a file for a
given query, has defined better approximations to this statistical problem. However we have
calculated and compared the average error per unit time, and found out that c¢(n,m,r) well serves
our purposes.

Starting with one instance of class C, , the number of objects of class C,, obtained at the end of

forward path traversal is given by fref(p.A,...A,,.,.1). On the other hand, k, objects have been
selected through the predicate A, © c. Then the selectivity of a path expression, p.A| A, A, ©

m

¢ , which is defined to be the probability of at least one object being in common in two sets with
cardinalities fref(p.A,.A,...A,, . 1) and k,* hitprb(A,,,.C,,.;,C,) respectively, is given by

Opanl D-ALALLA, 0) = o(totref,,, ., fref(p. A Ay A, D), k™ hitprb(A,.C 0 CL))

where o(t,x,y) is the probability that there exists at least one object in common in two sets selected
with replacement out of t distinct objects and is defined as follows:

o(t,x,y) =1 - C (t-x,y) / Clt,y)
where C stands for combination, and x and y are the cardinalities of the two sets respectively.
3. On the Execution Order of Path Expressions
Consider m path expressions which are bound to the same bind variable, say p, in an AND-tern:
Py gy, 0, ¢
Py iy iy, 05
P e iy O S

Assume F, denotes the cost of executing the path expression i, p.a,.a;.a,,0; ¢, and let the
selectivity of this path expression be =0, (p.a;.a5...2,,0; ¢).




Given the cost and the selectivity of each of the path expressions, the problem of finding the least
costly execution order of these path expressions can be stated as the following minimization
problem:

Find a permutation of the integers | through m stored in i 1] through i[m] which minimizes

— ok ¢ ke k o ke ok < S
f=Fpy+ S Fia + s Si"Fiar + o+ S ™Sig™ - Simen Fimi
where F, and 5, j € i[1] through i[m], are the cost of traversing and the selectivity of the "™ path
expression respectively. In other words, we are trying to minimize the objective function f.
denoting the total cost of executing m path expressions in the order induced by the array 1.

Theorem 1 : Assume m denotes a permutation of the integers 1 through m such that path
expression indices are sorted in ascending order of F; / (1 -5, ) values, such that 1sism. This 1t
minimizes the objective function f.

Sketch of Proof : By induction on the number of path expressions.

It is true for 2 path expressions. In this case f=F + s, Fyor f=F, + s, F, .

If F,+s, F, <F, +s, F, then by simple manipulation,

F,/(1-s)<F,/(1l-s,)is obtained.

Assuming that it is true for m path expressions and we will try to show that it is also true for m+]
path expressions. Let us assume that F/(1-s) < F,,/(1-s,,) for 1<ism-1, and assume also that
Fi/(1-s) <F, /(1-s,,) <Fp /(1-s;,,) for some j where 1 <j<m.

We claim that
f=F s Pt s Fobsgs s s F
contrary that,

f=F s Fob s sy Fubs sy s 8 F

8 S8 S Fpa o 888 S8 By 1S MINEMUML Assume  on the

e

S S S PSSy S r-So B 18 MiNimMum with the assumpticn
that k<j without loss of generality. -

First observe that by the induction hypothesis, it can be shown that with the addition of the m+1"
path expression, the relative order of the previous path expression indices do not change.

Therefore, if we parenthesize f, by §,5,...5,,8 starting from the k+1* term, we observe that the
induction hypothesis stating that aforementioned sort order minimizes the objective function for
m-+1-k<m path expressions, is violated.lJ

The strong assumption underlying this approach is that a path expression is an indivisible unit of
processing. However as shown in [Bla 93] by converting implicit joins to explicit joins, wider
range of join sequences can be obtained and thus better (i.e. less costly) execution plans can be
produced. It is clear that when the implicit joins are converted to explicit joins. because of the
path expressions bound to the same bind variable, the query becomes a hybrid query, i.e.. star of
linear queries. Thus when we allow implicit joins to be converted to explicit joins, by using an
exhaustive search strategy it is possible to obtain the optimum execution plan. However the
number of join sequences to be considered is exponential in the number of classes involved. This
observation indicates that heuristic is necessary to improve the performance of object-oriented
queries involving path expressions.

6




4. A Heuristic based Approach for Object-Oriented Queries Involving Path Expressions

In this section we propose a heuristic based method for optimizing object-oriented yueries
involving path expressions. In this method, we first order the path expressions by using Theorem
I. Procedure 4.1 which implements Theorem | decides on the execution order of the path
expressions. In Procedure 4.1 the cost of executing the path expression is taken as its forward
traversal cost since we are using this cost as a hint to order the path expressions. Then for the
chosen path, heuristic is used again as given in Procedure 4.2, to decide on the execution order
of the joins within this path expression.

The heuristic we propose in Procedure 4.2 is to favor the less costly and more selective join at
each iteration. Notice that the cost and the selectivity of a join operation directly effects the join
order but their effect on the order varies depending upon their values. Therefore we have tried a
number of evaluation functions that all favor less cost and more selectivity but the effect of cost
and selectivity on the evaluation function is different in each of them.

Before proceeding further we will provide some definitions to be used in the Procedures 4.1 and
4.2

Definition 4.1 Size Selectivity : The size selectivity of a join operation, € = A »< B where A and
B are two classes, is denoted by o, ,(A,B), and defined as

o..(AB) = nbpages(C) | ( nbpages(A) + nbpages(B) )
where nbpages( C ) is the estimated number of pages of the class produced as a result.[]

Definition 4.2 Per-Unit Cost: The per-unit cost of a join operation, C = A »< B where A and B
are two classes and J_, is the minimum of the costs of performing this join operation wih
different join implementation techniques, is denoted by P, (A,B), and defined as

P.(AB)=1,/(AB)/(IAl +IBl). O

Definition 4.3. Evaluation Function: In defining the evaluation function, we make the following
observation: the cost and the selectivity of each join operation in a join sequence directly effect
the join order. As an example consider A »< B »< C with costs 1., (A,B), J,(B.C) and selectivities
6..(AB), 6,.(B,.C) and assume J_(A.B) > J ,(B.C) and 0,,(A,B) < 0,.(B,C). Here if we only
consider cost we will execute B s« C first, but since 0,,,(A,B) < ..(B,C), executing Ase (The
resulting relation) may be more costly depending upon the cost and selectivity values. Therefore
less costly and more selective join must be favored at the same time. Again depending upon the
cost and selectivity values it may be beneficial to increase the effect of cost or selectivity on the
join order. With these observations and with some experimentation we have defined four
evaluation functions. In each of these functions low cost and high selectivity are favored however
from y'(A.B) to y'(A.B), the effect of cost in the evaluation function is reduced while the effect
of the selectivity is amplified.

W(AB) = I (ABY(1-0,(A.B))
v (A.B)= ] (AB)c,, (AB)

size




|

\i[‘ (A’B): PC(NQ(A*B)*GQ‘”(A,B)
\V4 (A.B)=InJ_ (A B)*e sz AR) ]

n the following we present the algorithms implementing our heuristics.

Procedure 4.1 The Evaluation Order of Path Expressions

double orderPathExp( List ListofPathExpressions )

{

double totalCost = ();
int k=ICl;
YathExpression p,p’;
while( ListofPathExpressions is not empty )
{
for each p in ListofPathExpressions
{
Calculate the forward traversal cost F, for each path expression;
Calculate the selectivity of the each path expression , G,
} M=F / (1- G )
p’= min(M,) where pe ListofPathExpressions:
totalCost=total Cost+Orderlmplicit/oins(p’, schemalnfo);
k=Cardinality from the schemalnfo;
remove p’ from ListofPathExpressions :
i
return totalCost:
!

Procedure 4.2. Immplicit Join Ordering

Let us assume that there is a path expression p.a,.a,...a, where p is bound to C, and u; references
to the instances of the class C, (1 £ i < n-1). I (C, C,) and o, (C,, C;)denote the individual

cost and selectivity of the temporary collection obtained by joining class C; and class G,

double orderlmplicit/oins (List PathExpression, structure schemalnfo)
// the list PathExpression contains the classes { Gy, Cp..... €}
{
List tempPE;
double totalCost;
for t=1 to 4; // ' denotes the Evaluation function in use
{ tempPE=PathExpression;
total Cost'=();
for each <C, C, > in tempPE do
{ caleulate I (C Cot) s G (G Cyp)y and WG, Cup) e
J/ In evaluating W'(C,, C))y Jo(Ci C,y)) is the minimum of the costs of applicable
// join techniques given in the Appendix.




while( tempPE is not empty) do

{ select C,= <C,, C,,,> which gives the minimum value for y/(C;, C,,)):
Generate schemalnfo for C;
totalCost' = totalCost' +y/'(C,, C,,,):
Delete i and i+1™ items from tempPE;
Compute J(C 1 € .04,(Cihs Cs T Chy Ca)s 04,(Cy Cr) WG, G,
and y'(C,, C):
Insert C, after C,; to the list tempPE:

}

totalCost=min, (totalCost") ;
schemalnfo=schemalnfo for C
return totalCost;

It should be noted that when a temporary collection C; is obtained by joining class C; and class
C,. the references from class C;, can not be used to reach the objects in C;;. For such cases, only
explicit join techniques can be used.

The time complexity of this algorithm is O(n?).

5. Performance Evaluation

Two optimizers are developed for optimizing the queries involving path expressions. The first
optimizer uses the heuristics described in Section 4. The second optimizer is generated through
Volcano Query Optimizer Generator [McK 93]. The Volcano generated optimizers produce the
optimum execution plan when the transformation rules and support functions are provided properly
because of its exhaustive search strategy. In this implementation the transformation and
implementation rules given in [Bla 93] are used. However since we are considering only the join
“and path expression optimizations, in other words, join enumeration, some of the transformation

rules given in [Bla 93] are not necessary and therefore they are disabled. The transformation rules
used are:

I. The rule implementing the join commutativity.
JOIN 2ol (71 72) ->VJOIN 02 (72771)

The ->! sign in the rule denotes that this transformation is performed exactly once. This prevents
the infinite recursion. '

2. The rule implementing join associativity.
JOIN Tol ( JOIN Y02 (1172 ) 13 )->JOIN 703 (71 JOIN Tod (7273 ))
Join associativity together with the join commutativity, provides for all possible join sequenceé.

3. The rule that converts a materialize node into joins.

Y




MAT 7ol (71)->JOIN 702 (71 GET_SET 703 ())

Notice that materialize operator indicates a path expression of length one. By converting a
materialize operator into join it becomes possible to apply the transformation rules on join
associativity and on join commutativity.

4. The rule that interchanges two successive materialize nodes.
MAT Yol ( MAT 702 (11 ) ) ->! MAT 703 ( MAT Y04 (71 ))
The application of this transformation rule may results in other transformations.

With these rules the VOG generated optimizer finds the optimum join ordering for the gueries
involving path expressions.

5.1. Testhed

Both of the optimizers are run on a Sun Sparc 2 station which has Sun 4/40 CPU, 12 MB of
memory and 32 MB swap space. Each of the optimizers were the only active process during the
experiments.

A random query generator is used to generate the queries with m path expressions of length n
where both m and n ranges between 1 and Y. With our hardware, 12 MB memory, the optimizer
generated through Volcano can not run queries when m exceeds 9, or when m*n exceeded 12.
Note that, McKenna, was able to go up to 12 joins for star queries with 32 MB of main memory
[McK 93]. The reason for this behavior is that the Volcano Optimizer Generator’s search engine
is highly recursive, and therefore as the number of equivalent classes in the guery increases.
optimizer rapidly exhausts the memory. The next version of VOG will heuristically reclaim
memory to overcome this problem [McK 94].

"For each n, m pair, 50 random queries are generated and the average values for optimization time
and execution costs are obtained. The size of the classes involved ranged between 1000 and
100,000 objects where object sizes ranges from 100 to 2000 bytes. Exactly the same gueries are
run on both of the optimizers.

In the cost calculations, the available buffer space for executing the queries is assumed to be 4MB.
Furthermore we have assumed that the results of the join operations are written back to disk. The
queries generated do not contain select operator,

The results of the some of the test runs are tabulated in Table 5.1.

5.2. Query Optimization Time

The Figures 5.1 and 5.2 depict the query optimization times of the optimizers for linear and star

queries respectively. From these figures it is clear that the heuristic based optimizer greatly reduces
the optimization time. The explanation for this behavior is two fold:




[. The number of joins enumerated by the heuristic based optimizer for a path expression of length
N is 3*(N-1). In procedure 4.2 we first generate N-1 joins, choose one and for the remaining N-1
joins, generate 2 more joins. However exhaustive optimizer generates (N*-N)/6 joins for linear
queries. Heuristic based optimizer order the path expressions by using Procedure 4.1 and for m
path expressions, forward traversal cost is calculated m® times. Yet exhaustive optimizer, by
converting implicit joins into explicit joins creates star queries and generates (N-1)2Y* feasible
joins.

2. In the heuristic based optimizer, the data structures and the algorithm itself are very simple.
Therefore it spends less time in optimization. This fact is clear from the comparison of the
optimization times of the two approach for I join as depicted in Table 5.1.

In Figure 5.3 the optimization time of the exhaustive optimizer for star and linear queries are
plotted and Figure 5.4 shows the optimization time of the heuristic based optimizer which verify

the analytical formulas.

Table 5.1 Results of some of the test runs

Exhaustive Exhaustive Heuristics Heuristics
Path Length | No of Paths | Optimiztion Execution ‘Optimization Execution
() (m) time(secs.) time(secs) time(secs.) time(secs.)
I 1 0.1854 78.9585 0.053 78.9585
1 3 1.203 197.705 0.138 200.806
I b 11.261 175.962 0.298 176.65
I 9 1881.438 222.342 .739 226.257
3 | 0.911 168.517 0.098 168.565
3 3 74.124 204.05 0.349 218.255
4 3 385.958 154.577 0.475 171.262
5 ! 2.748 420.894 0.149 421.29
6 2 9%.233 178.341 0.439 185.088
7 ! 7.198 277.837 0.217 277.995
8 | 11.71 435.722 0.261 436.019
9 1 17.082 260.921 0.293 263913




for No. of Palhs = 1 (Le., linear )

T2 3 4

o
~3 -
=
~3

5
Path Length

[ = Hairisie @ Exhoustive

Figure 5.1 Query optimization time of linear queries

2000.00
1500‘00 1S PP PSS PSOPRTOUITUN SUeTN
1600.00 4o

__1400.00 e .
1200.00

£ 1000.00 f-rrrenem

¢ soo.00

" 600.00 -

400.00 4
200.00
0.00

Number of Joins

]-—seur ~©- Linear

Figure 5.3 Query optimization time of the exhaustive

optimizer

450

(1.8) @ 4)  2)

(Path Length, No. of Paths)

':Hmrisﬁc - emnﬂ

(8. 1)

Figure 5.5 Estimated query execution time
tor a mixture of queries

for path length = 1 (Le., stor )
2000.00

1800.00 1~

1600.00
__1400.00 -
g 1200.00 -
£ 1000.00
E Bo0.00 e
" §00.00

£00.00 Hrrerermreesernresis s

200.00 - Al:@// ..................
0.00 = d -

!:“‘ Heuristie <9~ Ethsﬁvew

Figure 5.2 Query optimization time of star queries

0.80
0.70
0.60

’g‘o.so

2 0.40

é 0.30 1

l+5hr B LInear

Figure 5.4 Query optimization time of the heuristic
based optimizer

for No. of paths=1! (Le., linear )

~#~ Harisfle  ~@3- Exhaustive

Figure 5.6 Total time for linear queries




for path length = 1 (lLe., star)

2500 800
P11/ 15 ER——
B 1500 4o 7
3 ]
é 1000 - E
500
Mﬁ,ﬂ-&‘_
04— ; . . . . "
2 3 4 5 6 7 8 9 100 . ' .
No of Paths (1.8) (2 4) (4. 2) (8. 1)
Lmom No of Paths)
- Haristic  ~@- Exhaustive
{ 1 i-@— Hetrfsiie @3- Exhaustive ]
Figure 5.7 Total time for star queries Figure 5.8 Total time for a mixture ol gueries
for no of paths = 1 (i.e., linear) for poth length = 1 (Le, stor )
0.10
0.02 0.00 ‘
0.01 ~0.10 TR
0.00 ~0.20 . =
o 030
2001 £-0.00
€ .02 11 [
QI B Ao e rcn e
~0.03 1 ~0.70 e
—0.04 -0.80 oo
: ~0.90 A . ,
~0.05 T2 3 4 5
No of Paths
[~== Exec. Time Raflo €~ Totl Time Ratio | [~ Exec. Time Ratio @ Total Time Ratio |
Figure 5.9 Time crror for linewr queries Figure 5.10 Time error for star queries

5.3. Execution Time and Total Time

The costs are estimated by using the cost model presented in Section 2 after obtaining the quely

execution plans from both of the optimizers. Figure 5.5 indicates that there is no drastic difference
between the plans generated by the two optimizers; the plans generated by the exhaustive optimizer
are slightly better than the plans generated by the heuristic optimizer.When we consider the total
time, that is, the query optimization time plus the query execution time, heuristic based optimizer
outperforms the exhaustive optimizer when number of paths exceed 7 as shown in Figure 5.7. For
linear queries. heuristic based optimizer is slightly better than the exhaustive optimizer as shnwn
in Figure 5.6. These results indicate that the heuristic used is an effective one. ;

Figure 5.8 indicates that the total query execution time is greatly reduced for star queries. In Figure
5.9 and Figure 5.10 we have plotted the execution time error and total time error for linear and
star queries respectively, which are defined as follows: :

execution time error = execution time of heuristic based optimizer- execution time of exhaustive
optimizer/ execution time of exhaustive optimizer

13




total time error = total time of heuristic based optimizer- total time of exhaustive optimizer/ total
time of exhaustive optimizer

From Figure 5.9, it is clear that for linear queries, the plans produced by the heuristic based
optimizer deviates from the optimal plans by | percent for path length 9, but when the total time
is considered for the same path length, the heuristic based optimizer performs 5% better. When
star queries are considered the performance gain in total time is a drastic 90% as shown in Figure
5.10 although slightly worse plans are produced by the heuristic based optimizer.

6. Conclusions and Future Work

Because of the exponential nature of the query optimization for star queries, many existing
relational optimizers use heuristics within dynamic programming to limit the join sequences
evaluated. A path expression in an object-oriented query language is a linear query but because
of the path expressions bound to the same bind variable, the query becomes a hybrid guery when
the implicit joins are converted to explicit joins.

Two optimizers are developed to compare the performance of the heuristic based approach
suggested in this paper with the performance of an optimizer based on exhaustive optimization.
The exhaustive optimizer is generated through Volcano Optimizer Generator. The results of the
experiments indicate that the heuristic based optimizer performs as good as exhaustive optimizers
for queries involving a single path expression (linear queries) and has a superior performance with
the increasing number of path expressions.

As a future work we plan to generalize the heuristics suggested in this paper to relational systems
to involve explicit joins and different bind variables and also to compare its performance with 2
Phase-Optimization technique given in [loa 90].

References

[Ber V3] Bertino, E.. Martino, L., Object-Oriented Database Systems: Concepts and Architectures, Addison-Wesley.
1993,

[Ber 2] Bertino, E.. Foscoli, P.. "A Model of Cost Functions for Object-Oriented Queries”. In Proc. of Sth
International Workshop on Persistent Object Systems, Italy, September 1992.

[Bla 93] Blakeley. J. A., McKenna, W. J., Graete, G.. "Experiences Building the Open OODB Query Optimizer”, Proc.
of the ACM SIGMOD Conf., 1993, :

[Car 75] Cardenas A.F.. "Analysis and Performance of Inverted Data Base Structures”. Comm. ACM. May 1975.
[Cer 85] Ceri. S.. Pelagatti, G.. Distributed Database systems, McGraw Hill. 19¥5

[Gra 93] Greafe, G.. McKenna, 1. W.. "The Volcano Optimizer Generator:Extensibility and Efficient Search” | Proc.
IEEE Conl. on Data Eng.. Vienni Austria, 1993,

Hoa 901 loannidis. Y.. Kang. Y., "Randomized Allgorithns for Optimizing Large Join Queries”™, Proc. of the ACM
SIGMOD Conf.. 1990.

[Kem 90} Kemper A.. Moerkotte G.. " Access Support in Object Bases”, Proc. of the ACM SIGMOD Conf.. 1990,

14




[Lan 91] Lanzelotte. R. S, G.. Valduriez, P., Ziane, M., Cheiney, J-P.. "Optimization of Nonrecursive Queries in
OODBs", In Proc. of the Second Intl. Conf. on Deductive and Object-Oriented Databases. 1991,

[Loh 85] Lohman. G.M. et. al., "Query Processing in R*", Query Processing in Database Systems. Kim, Batory,
Reiner, eds. Springer-Verlag, 1985,

[Mai R6] Maier, D, Stein. J.. "Indexing in an Object-Oriented DBMS", in Proc. Intl. Workshop on OODBMSs,
September 1986,

IMcK 93] McKenna, W.I., "Efficient Search in Extensible Database Query Optimization: The Volcano Optimizer
Generator”. Ph. D. Thesis, Univ. of Colorado, 1993,

IMcK 94] McKenna, W 1., Personal communication, 1994,

[Ono 90 Ono, K., Lolman, G. M., "Measuring the Complexity of Join Enumeration in Query Optimization”. Proc,
of Intl. Conf. on Very Large Databases, 1990,

107k 90] Ozkarahan E.. "Database Management Concepts, Design and Practice”, Prentice-Hall, 1990,
{Sal 88} Salzberg B.. "File Structures, an Analytic Approach”, Prentice-Hall International, Inc, 1988,

[Sel 791 Sellinger, P.G.."Access Path Selection in a Relational Database Management System”. Proc. of the ACM
SIGMOD Cont.. 1979,

[She VO] Shekita, E. .. Carey. M. ].. "A Performance Evaluation of Pointer-Based Joins”, Proc. of the ACM SIGMOD
Conf.. 1990,

[Yao 77 Yao S.B.. "Approximating Block Access in Database Organizations”, Comm. of the ACM. Vol. 20, No. 4.
April 1977,

Appendix
Cost Analysis of Join Operator in a Paged Environment:

Physical parameters of the disk, which are used in the cost formulas are as shown in Table Al
[Sal&K].

Parameter Definition

B page size

btt page transfer time

ebt effective page transfer time
r average rotational latency

s average seek time

Table Al. Physical Parameters for hard disk

The cost of sequential accesses to b pages is denoted by SEQCOST(b) and is calculated as
SEQCOST(b) = s + v + Db * ebt .

The cost of random access to b pages, denoted by RNDCOST(h) is

15




RNDCOST(h) = Db * (s + r + btt ).
Cost of Explicit Join Operation

Nested-Loop With Hashing: In this method the first relation with b pages is divided into
partitions such that half of the available buffer space is enough to construct a hash table for each
partition |Sal 88]. Thus in total there are ceiling(b/((no. of available buffer pages/2)*.7) segments
of the first relation where .7 is the load factor. For each partition a hash table is constructed in the
memory on the join attribute. After the construction of hash table, second relation with b* pages
is scanned using the same hash function and matches are found. The cost of this method iy :

I = SEQCOST(b)+nsg*SEQCOST(H" )+SEQCOST(D")

Seost T

where b" is the number of pages in the output relation and SEQCOST(D") denotes the cost of
writing the result of the join operation back to disk.

Cost of Hash Partition Join: The cost of Hash-Partition Join in relational databases for two
relations is given as [Sal 8&]:

I, =3 SEQCOST(b+D’ J4[1+(D1D)[*nsg™*(r+s)+SEQCOST(b")

where b and b" are the number of pages in outer and inner relations respectively, and nsg denotes
the number of segments of the smaller relation;

nsg=ceiling(b/no. of available buffer pages).

Cost of Sort Merge Join: The cost of Sort-Merge Join in relational databases for two relations
is given as [Sal 8&]:

I G=I3ESEQCOST(b+D" )+ 2% (’nxgl“’+nxg2‘) VE(r+8)+SEQCOST(D")
where b and »' are the number of pages of the involved relations, and nsg/, nsg2 denote the
number of segments of relations as defined above.
Cost of Implicit Join Operation
Throughout the following cost analysis, it is assumed that the objects of Class C are to be joined
(implicitly) through the attribute A of the class C with the objects of Class D, which can be

explicitly shown as C.A=D.self.

Cost of Forward Traversal: The cost of forward traversing the objects of C into D is given by
the following formula:

1., =SEQCOST(nbpages(C)+RNDCOST(/C/*fan(A,C.D)+SEQCOST(D")




This is worst case formula where there are no page hits in the buffer allocated for the objects of
Class D.

Cost of Using Pointer-based Hash Partition Join: In case of pointer-based Hash-Partition Join
[She 901, the referencing class, i.e., class C is hashed on the pointer field A and partitions are
created. Then for each object of class C. the pointer, C.A, is chased to retrieve the object from
class D. So the cost of joining the objects of class C with the objects of class D by using pointer-
based hybrid hash join can be given as follows:

J .o = 3XSEQCOST(nbpages(C))+ RNDCOST(nbpg) )+SEQCOST(hH")
where nbpg = nbpages(D) * (1 - ( 1 - 1inbpages(D) )* ) and o= totref(A,CD).

Note that this join technique can only be applied when constructor of attribute A is Reference.

17




Nesne-yonelimli veri tabanlar1 konusunda diinyada yapilan ¢aligmalarin bir ozeti

Nesne yonelimli veri tabans sistemlerinin su andaki pazart 70 milyon Dolardir. lligkisel sistemlerin 3 milyar dolarlik
pazanyla kargilagtirildifinda ihmal edilebilir bir pazar gibi goriilmesine kargin, veri tabani camiasinda yaygm goriig
bu sistemlerin gelecegin sistemleri oldugudur. Bu meyanda hemen hemen biitiin biyiik ticari iligkisel veri tabam
sirketleri, tiriinlerinin yeni versiyonlarinin nesne-yonelimli olacagin agiklamiglardir. Bununla beraber nesne yonelimli
sistemlerin heniiz tam olarak olgunlastigini s6yleyemeyiz. Bu nedenlede nesne-yonelimli veri tabanlari (Object-
Oriented DBMSs) konusunda gerek aragtirma gerek geligtirme ¢aligmalart ¢ok yogun bir sekilde devam etmektedir.

Bu pazara hakim belli bagh sirketlerin olugturdugu bir grup, iiriinlerinde bundan boyle bu standarta uyacaklarim
taahiit ederck, bir standart, ODMG 93, gelistirmiglerdir. ODMG 93 standardina, bu standarda uyacaklarini taahhiit
ederek katilan sirketler soyledir: SunSoft, ObjectDesign, Ontos, O2 Technology, Versant, Objectivity

Bu standarda katilan diger sirketler soyledir: Hewlett-Packard, Poet Software, ltasca, Intellitic, Digital Equipment
Cooperation, Sevio, Texas Instruments.

Bu standardin belli bagh ozellikleri soyledir:

1. Veri modeli karmagik nesnelere ilave olarak geri yonde iligkileri de desteklemektedir, Nesneler igin anahtar alan
tanimianabilmektedir.

2. OQL (Object Query Language) adli SQL benzeri bir sorgu dilini  desteklenmekte, ayrica veri tabamna C++ ile
erigim saglanmaktadir.

Bu standarda rakip bir standartta SQL3 standardidir. 1200 sayfayr agan SQL3 standardi nesne yonelimli sistemlerden
beklenen biitin  ozellikleri saflamaktadir. SQL3 standardint  "gatekeeper.dec.com” internct  adresinden,
/pub/standards/sql dizininden almak miimkiindiir.

Nesne-yonelimli veri tabanlart konusunda yapilmig aragtirmalar ile ilgili bir referans listesi ilisikie sunulmugtur. Bu
liste daha ziyade akademik yayinlan ve iiriinler pazara ¢ikmadan 6nce yapilmig olan yaymlan igermektedir. Uriinler
bir kere ticari hale geldikten sonra bu iiriinlerin gergeklegtirimini anlatan yaymlar, ticari sir olmalan nedeniyle
aciklanmamaktadir.

Pazarda bulunan nesne-yonelimli veri tabanlart sistemleri soyledir:

- Gemstone yazihmi  Serviologic (1987) tarafindan geligtirilmig olup, sisteme C, Smalltalk, ve C++ ile ulagim
saglamaktadir.

- Ontos yazihmi Ontologic(1989) tarafindan geligtirilmis olup, sisteme C++ ile ulagimi saglamaktadir,

- ObjectStore yazithmi ObjectDesign (1990) taralindan geligtirilmis olup, sisteme C, ve C++ ile ulagum
saglamaktadir.

- ObjectivityDB yazilimi Objectivity (1990) tarafindan geligtirilmis olup, sisteme C++ ile ulagimi saglamakitadir.
- Versant yazilimt Versant(1990) tarafindan  geligtirilmis olup, sisteme C, Smalltalk, ve C++ il ulagim
saglamaktadir.

- 02 yazihm 02 Technology(1991) taralindan geligtirilmis olup, sisteme C ve:C++ ile ulagumi saglamakitadir.

- Open ODB yazihmi HP(1992) tarafindan geligtirilmis olup, sisteme OSQL ile ulaginn saglamaktadir.

- Poet yazihmi BKS Software(1992) tarafindan geligtirilmis olup, sisteme C++ ile ulagimi saglamaktadir.

- Matisse yazithmi Intellitic(1993) tarafindan geligtirilmig olup, sisteme C++ ile ulagim saglamaktadir.

Aragtirma laboratuarlarinda geligtirilen sistemlerden bazilari isc soyledir: ODE (AT&T Bell), IRIS (HP), Open
OODBMS (Texas Inst.), Starburst (IBM), Postgres (Berkeley), Zeitgeist (Texas Inst.), MOODS (TUBITAK)




Referanslar:

Books

[Ber 93] Bertino, E., Martino, L., Object-Oriented Database Systems: Concepts and Architectures, Addison-Wesley.
1993.

[BDK 92] F. Bancilhon, C. Delobel, and P. Kanellakis, Edus., Building an Object-Oriented Database System,
Morgan-Kaufmann, 1992,

[C 94] The Object Database Standard: ODMG-93, Edited by R. Catell, Morgan Kaufmann, 1994,

[DOBS 94] Dogag, A.. Ozsu, T., Biliris, A., Sellis, T., Object-Oriented Database Systems, Springer-Verlag, 1994,
[K 901 Kim, W., Introduction to Object-Oriented Databasces, MIT Press, 1990.

[K 95] Kim, W., Modem Databases, Addison-Wesley, 1995.

The Data Model and the Query Language

[AG 89a] Agrawal R. and Gehani N. H., " ODE (Object Database Environment): The Language and the Data
Model," Proc. ACM SIGMOD Intl. Conf. on Management of Data, 1989.

[ALS 89] Alashqur A. M., Su S.Y.W. and Lam H., " OQL: A Query Language for Manipulating Object-Oriented
Databases." Proc. of 15th Intl. Conf, Very Large Data Bases, 1989.

[BZ 87] Bloom, T. and Zdonik, S. B., " Issues in the design of Object-Oriented Database Programming Languages”,
OOPSLA’87, Oct. 1987.

[CDV 88] Carey M. 1., DeWitt D. J. and Valdenberg S. L., "A Data Model and Query Language for EXODUS,"
Proc. of ACM SIGMOD Intl. Conf. on Management of Data, 1988.

[K 89] Kim, W. "A Model of Queries for Object-Oriented Databases,"Proc. of 15th Intl. Conf. Very Large Data
Bases, 1989.

[KM 90] Kemper, A., and Moerkotte, G., " Access Support in Object Bases ", Proc. of ACM SIGMOD Intl. Conf.
on Management of Data, 1990.

[LRV 88] Lecluse C., Richard P., and Velez F.." O2, an Object- Oriented Data Model,” Proc. of ACM SIGMOD
Intl. Conf. on Management of Data, 1988.

[LR 89 Lectuse C., and Richard P.," The O2 Database Programming Language” Proc. of 15th Intl. Conf. Very Large
Data Bases, 1989.

[S 84] Stonebraker M., Anderson A., Hanson E. and Rubenstein B..,” QUEL as a Data Type," Proc. of ACM
SIGMOD Intl. Conf. on Management of Data, 1984.

[RS 87] Rowe L. and Stonebraker M., " The POSTGRES Data Model," Proc. of 13th Intl. Conf. Very Large Data
Bases, 1987.

[Ber 92] Bertino, E., Foscoli, P., "A Model of Cost Functions for Object-Oriented Queries”, In Proc. of 5th
International Workshop on Persistent Object Systems, Italy, September 1992.

[Bla 93] Blakeley, J. A., McKenna, W. J., Graefe, G., "Experiences Building the Open OODB Query Optimizer”.
Proc. of the ACM SIGMOD Conf., 1993.

[Gra 93] Greafe, G., McKenna, J. W., "The Volcano Optimizer Generator:Extensibility and Efficient Search” | Proc.
IEEE Conf. on Data Eng., Vienna Austria,1993.

[Toa 90] loannidis, Y., Kang, Y., "Randomized Allgorithms for Optimizing Large Join Queries”, Proc. of the ACM
SIGMOD Cont., 1990.

[Lan 91} Lanzelotte, R. S. G., Valduricz, P., Ziane, M., Cheiney, J-P., "Optimization of Nonrecursive Queries in
OODBs". In Proc. of the Second Intl. Conf. on Deductive and Object-Oriented Databases, 1991.

[Loh 85] Lohman, G.M. et. al., "Query Processing in R*", Query Processing in Database Systems, Kim, Batory,
Reiner, eds. Springer-Verlag, 1985.

[McK 93] McKenna, W.]., "Efficient Search in Extensible Database Query Optimization: The Volcano Optimizer
Generator”, Ph. D. Thesis, Univ. of Colorado, 1993.

[Ono 90] Ono, K., Lohman, G. M., "Measuring the Complexity of Join Enumeration in Query Optimization™, Proc.
of Intl. Conf. on Very Large Databases, 1990.

[She 90] Shekita, E. J., Carey, M. J., "A Performance Evaluation of Pointer-Based Joins", Proc. of the ACM
SIGMOD Conf., 1990.




Systems in General

[ABD 94] Atkinson, M., Bancithon, F., DeWitt, D., Dittrich, D., Maier, D., Zdonik, S., "The Object-Oriented
Database Systems Manifesto” in the book entitled "Building an Object-Oriented Database System" (F. Bancilhon,
C. Delobel, and P. Kanellakis, Edtrs.), Morgan-Kaufmann, 1992.

[M 94] Wesley P.Melling, Gartner Group, "Enterprise Information Architectures - They're finally Changing", ACM
Intl. Conf. on Management of Data, Minneapolis, Mayis 1994.

[V 94] David Vaskevitch, Director of Enterprise Computing, " Microsoft CorporationDatabase in Crisis and
Transition: A Technical Agenda for the Year 2001", ACM Intl. Conf. on Management of Data, Minncapolis, Mayis
1994,

[B 89] Bretl R., Maier D., Otis A., Penney J., Schuchardt B., Stein J., Williams E. H., and Williams M., "The
GemStone Data Management System,” Object-Oriented Concepts, Databases, and Applications. W. Kim and F. H.
Lochovsky Edtrs., ACM Press, 1989,

[BK 90] Bancilhon, F. and Kim, W., "Object-Oriented Database Systems: In Transition", ACM SIGMOD Record,
Vol.19, No.4, Dec. 1990.

[BK 90} Bancilhon, F. and Kim, W., "Object-Oriented Database Systems: In Transition”, IEEE Data Engineering,
Vol.13, No.4, Dec. 1990.

[BM 91] Bertino, E and Martino, L., " Object-Oriented Database Management Systems: Concepts and Issues
IEEE Computer, April, 1991.

[C 90] Cattell R. G., "Object Data Management,” Tutorial 2, OOPSLA Conference, 1990.

[CM 84] Copeland G. and Maier D., "Making Smalltalk a Database System,” Proc. ACM SIGMOD Intl. Conf. on
Management of Data, 1984.

[F 87} Fishman D.H., Beech D., Cate H.P,, Chow E.C., Connors T., Davis J.W., Derrett N., Hoch C.G., Kent W,
Lyngback P., Mahbod B., Neimat M.A., Ryan T.A., and Shan M.C., "Iris: An Object- Oriented Database
Management System," ACM Trans. on Office Information Syst., vol.5 no.1, Jan. 1987.

[HK. 87] Hudson, S.E. and King. R., "Object-Oriented Support for Software Environments”, Proc. of ACM
SIGMOD Intl. Conf. on Management of Data, 1987.

[K 90] Kim, W., "Object-Oriented Databases: Definition and Research Directions”, IEEE Trans. on Knowledge and
Data’ Engmeermg, Vol.2, No.3, Sept. 1990.

[KB 89] Kim, W., Ballou, N., Chou, H., and Garza, J. F, "Featurcs of the ORION Object-Oriented Database”,
Object-Oriented Concepts, Databases, and Applications, Edited by Kim, W. and Lochovsky, F. H.. ACM Press,
1989,

[KW' 87] Kemper, A., Lockemann and Wallrath, M., "An Object- Oriented Database System for Engineering
Applications”, Proc. of ACM SIGMOD Intl. Conf. on Management of Data, 1987. :

[M 89] Maier, D., "Making Database Systems Fast Enough for CAD Applications”, Object-Oriented Concepts,
Databases, and Applications, Edited by Kim, W. and Lochovsky, F. H., ACM Press, 1989

[P 90] Premerlani W. J., Blaha M.R., Rumbaugh, J. E. and Varwig T. A, "An Object-Oriented Relational Database,”
Commun. ACM, Vol.33, No.11, Nov. 1990.

[S 90] Stonebraker M., Rowe L., Lindsay B., Gray J., Carey M. and Beech D.,” Third Generation Data Base System
Manifesto,” Proc. ACM SIGMOD Intl. Conf. on Management of Data, 1990,

[SR 86] Stonebraker M. and Rowe L. A., " The Design of POSTGRES." Proc. of ACM SIGMOD Intl. Conf. on
Management of Data, 1986.

[V 91] Vural, S., " A Survey on Features of Object-Oriented Database Systems", Tech. Rep.

Query Processing

[AG 89b] Agrawal R. and Gehani N. H., " Design of the Persistance and Query Processing Facilities in O++: The
Rationale" IEEE Data Engineering, vol.12, no.3, Sept. 1989, "

{B 86] Batory, D. S., "Extensible Cost Models and Query Opumn?auon in GENESIS", IEEE Data Engincerig,
Vol.13, No.4, Dec. 1986. .

[BR 86] Bertino, E., Rablm F., "Query Procesmng Based on Complex Object Types". 1EEE Data Engineerig,
Vol.13, No.4, Dec. 1936. ‘




[GD 87] Graele, G. and DeWitt, D. J., "The EXODUS Optimizer Generator”, Proc. of ACM SIGMOD Intl. Conf.
on Management of Data, 1987.

[KM 90] Kemper, A. and Moerkotte, G., " Advanced Query Processing in Object Bases Using Access Support
Relations”, Proc. of 16th Intl. Conf. Very Large Data Bases, 1990.

[SZ 89] Shaw, G. and Zdonik, S., " An Object-Oricnted Query Algebra” IEEE Data Engineering. vol.12, no.3, Sept.
1989. .

Storage Structures and Indexing

[BK 89] Bertino, E. and Kim,W., "Indexing Techniques for Queries on Nested Objects”, IEEE Trans. on Knowledge
and Data Engineering, Oct. 1989.

[CDRS 89] Carey, M.I., DeWitt, J. D, Richardson, J. E., Shekita, E.J.. " Storage Management for Objects in
EXODUS", Object- Oriented Concepts, Databases, and Applications, Edited by Kim, W. and Lochovsky, F. H.,
ACM Press, 1989

[KKD 89] Kim, W. Kim, K., and Dale, A. " Indexing Techniques for Object-Oriented Databases”. Object-Oriented
Concepts, Databases, and Applications, Edited by Kim, W. and Lochovsky, F. H., ACM Press, 1939

[HO 89] Hafez A. and Ozsoyoglu G., " Storage Structures for Nested Relations” IEEE Data Engineering, vol.12,
n0.3, Sept. 1989.

[VBD 89] Velez, F. Bemnard, G., and Darnis, V., “The 02 Object Manager: A overview” Proc. of 15th Intl. Conf.
Very Large Data Bases, 1989.

Object-Oriented Deductive Databases

[ 1 Prolog Interface in Smalltatk V.

[B 88] Ballou, N., et al. " Coupling an Expert System Shell with Object-Oriented Database Systems”, Journal of
Object-Oriented Programming, Vol.1, No.2, July 1983.

[CCCTZ} Cacace. F., Ceri. S., Crepsi-Reghizzi, Tanca, L. and Zicari, R., " Integrating Object-Oriented Data
Modelling with a Rule-Based Programming Paradigm ", Proc. of 1990 ACM SIGMOD Intl. Conf. on Management
of Data.

[DM 89] Diederich, J. and Milton. J., " Objects, Messages, and Rules in Database Design”, Object-Oriented
Concepts, Databases, and Applications, Edited by Kim, W. and Lochovsky. F. H., ACM Press, 1989,

[KW 89] Kifer, M and Wu, J., "A Lgic for Object Oriented Programming", Proc. of ACM PODS, 1989.

[UZ 90] Ullman, J. D. and Zaniolo, C., "Deductive Databases: Achievements and Future Directions”, ACM
SIGMOD Record, Vol.19, No.4, Dec. 1990.

Architectural Issues

[B 87] Bennet, J., " The Design and Implementation of Distributed Smalltalk”, Proc. 2nd Intl. Conf. on
Object-Oriented Programming  Systems, Languages, and Applications, Oct. 1987.

[D 89] Decouchant D., "A Distributed Object Manager for the Smalltalk-80 System”, Object-Oriented Concepts,
Databases, and Applications, Edited by Kim, W. and Lochovsky, F. H., ACM Press, 1989

[DMFV 90} DeWitt, J. D., Maier, D., and Futtersack, P. and  Velez, F., " A Study of Three Alternative
Workstation-Server Architectures for Object-Oriented Database Systems” Proc. of 16th Intl. Conf. Very Large Data
Bases, 1990.

[MRS 87] Mellender, F. Riegel, S. and Straw, A., " Optimizing Smalltalk Message Performance”, Object-Oriented
Concepts, Databases, and Applications, Edited by Kim, W. and Lochovsky, F. H., ACM Press, 1989

Concurrency Control

[CF 90] Cart, M. and Ferrie, I., "Integrating Concurrency Control into an Object-Oriented Database System ", Proc.
of EDBT’90, Venice, March 1990.

[CFR 90] Cart, M., Ferrie, J. and Richy, H.. " An Optimistic Concurrency Control for Nested Typed Objects”,

4




Proc. of EDBT’90, Venice, March 1990.

[GK 88] Garza, .F., and Kim, W, "Transaction Management in an Object-Oriented Database System”, ACM
SIGMOD Record, Sept. 1988,

[H 90] Herlihy, M., " Apologizing Versus Asking Permission: Optimistic Concurrency Control for Abstract Data
Types", ACM Trans. on Database Syst., Vol.15, No.1, March 1990.

[HK 89] Hudson, S. E., and King, R., "Cactis: A Sclf-Adaptive Concurrent Implementation of an Object-Oriented
Database Management System”, ACM Trans. on Database Syst., Vol.13, No.3, Sept. 1989.

[W 91] Wieczerzycki, W., "Concurrency Control for Multiversion Composite Objects”, Proc. of ISCIS VI, 1991.
[SZ 90] Skarra, A. H. and Zdonik, S.B., " Concurrency Control and Object-Oriented Databases”, Object-Oriented
Concepts, Databases, and Applications, Edited by Kim, W. and Lochovsky, F. H., ACM Press, 1989

Pictorial Databases

[C 90] Cardenas, A. F., "Pictorial/Visual access to Multimedia/heterogenous Databases” 1EEE Data Engineering,
Vol.13, No.2, June 1990.

[CIK 88] Cheng, Y. Iyengar, S.S. and Kashyap, R. L., " A New Method of Image Compression Using Irreducible
Covers of Maximal Rectangles ", IEEE Trans. on Software Eng.. Vol. 14, No.5, May 1988.

[CYDA 88] Chang, S. K., Yan, C. W., Dimitrof, D. C. and Arndt, T.," An Intelligent Image Database System ",
IEEE Trans. on Software Eng., Vol. 14, No.5, May 1988,

[GHS 89] Goodman A. M., Haralick, R.M., and Shapiro, L. G., "Knowledge-Based Computer Vision”, IEEE
Computer, Dec. 1989.

[JC 88] Joseph, T. and Cardenas, A. F., " PICQUERY: A High Level Query Language for Pictorial Database
Management ", IEEE Trans. on Software Eng., Vol. 14, No.5, May 1988.

[JO 89] Jagadish, H.V. and O’Gorman, L., "An Object Model for Image Recognition”, IEEE Computer Dec. 1989.
[KA 88] Kasturi, R. and Alemany, J., " Information Extraction from Images of Paper-Based Maps ", IEEE Trans.
on Software Eng., Vol. 14, No.5, May 1988.

[MK 88] Mohan, L. and Kashyap, R. L. , " An Object-Oriented Knowledge Representation for Sparial Information
" IEEE Trans. on Software Eng., Vol. 14, No.5, May 1988.

[OM 88] Orenstein, J. A and Manota, F. A., " PROBE Spatial Data Modeling and Query Processing in an Image
Database Application ", IEEE Trans. on Software Eng., Vol. 14, No.5, May 1988.

[RFS 88] Roussopoulos, N. Faloutsos, C. and Sellis, T.. " An Efficient Pictorial Database System for PSQL ", IEEE
Trans. on Software Eng., Vol. 14, No.5, May 1988.

[TI 88] Tanaka, M. and Ichikawa, T., " A Visual User Interface for Map Information Retrieval Based on Semantic
Significance ", IEEE Trans. on Software Eng., Vol. 14, No.5, May 1988.

{USV 88] Unnikrishnan, A. Shankar, P. and Venkatesh, Y.V., " Threaded Linear Hierarchical Quadtrees for
Computation of Geometric Properties of Binary Images ", IEEE Trans. on Software Eng., Vol. 14, No.5, May 1988.

CAD Databases

[BKK 85] Bancilhon, F., Kim, W. and Korth, H., " A Model of CAD Transactions” Proc. of 11th Intl. Conf. Very
Large Data Bases, 1985.

[BK 85] Batory. D., and Kim, W. , " Modeling Concepts VLSI CAD Objects”, ACM Trans. on Database Syst.,
Vol.10, No.3, Sept. 1985.

[KIM 84] Kim, W., McNabb, D., Lorie, R. and Plouffe, W., "A Transaction Mechanism for Enginecring Design
databases”, Proc. of 10th Intl. Conf. Very Large Data Bases, 1984.




SR B NANT AN A e wmm oma e e e

oje No: Yazihm 1 Rapor Tarihi: 30 Eylul 1994

ojenin Baglangig ve Bitiy Tarihleri: 1 Ekim 1991 - 30 Eylal 1994

rojenin Adi: Nesnesel Veri Tabam Yonetim Sistemi Protolipi

roje Yiiriitiictisii ve Yardimer Aragtictlar: Prof.Dr. Asuman Dogag, Cetin Ozkan,

‘em Evrendilek, Mehmet Altinel, Budak Arpinar ve MS ogrencileri.

'rojenin Yiiriitildiigii Kuoruluy ve Adresi: TUBITAK Yazilim Arastirma ve Gelistirme
Jnitesi, Bilgisayar Mih.Boélami, ODTU, 06531, Ankara

destekleyen Kurulug(lann) Ade ve Advesi: -

Yz (Abstract):
esne-yinelimi yaklagime kullanan MOOD sisteminin safiludiji baghea teknik olanaklar goyledir:

Grafik. totogirad, ses gibi okl ortam verisi de igerebhilen K wimagtk veri vaparsan lemsit ve ctkin bir sekilde
lenme: okt

Bu veritere gralik ortamda cerisimi sagilayan ve Mot yazilime kallantlarak peitstirilmiy hir pratik kullame
abirimi (Graphical User Interface). MoodView

Yine veri erisimi ve giinleme amaciyla kulluntan bir nesne yonelimli SOL dili, MoodSOL

Ca+ dili ile tumbanmy olan fonksiyontarm, SQL dili igerisinden dinamik olarak cafrdmasing sagilvan bir
namik fonksiyvon haglayicst (Dynamic F unction Linker)

SOL sorgularmm sistende kullandigis kaynaklar conaza indirmek amaciyla gelistiribnis bir SOL sorga on
ileyicisi (Query Optimizer). Bu sistem Colarado Universitesinde geligtivilmiy bulunan Volcano Query Optimizer
enetor yazihime kollamlarak geligtivibnistir,

Sistem kataloglarim yineten birim. MOOD Catilog Manager

- Veri erigim komutlarim disk yonetim sistemi komuotharia doniigtiien MOOD Muln 1

(nk !mymln verilere ctkin erigimi saglamak amacryla, R ve R* tree ve ikonik indeksleme vnnumkn
iitiin ‘bu sistemder Wisconsin-Madison Universitesinde geligtivilmis buluman Exodus Stovige Manager isimli disk
netimi yapan sistem dizerine geligtiibmigtir. Projenin itk sathialarmda aynca Borlnd Ca "persistent” hale
tirilmigtir '

htar Kelimeler:Nesne yénelimli veri tabani yonetim sistemleri, sorgu eniyileme.

roje ile ilgili Yay/Tebliglerle ilgili Bilgiler  Proje ile ilgili 1 kitap, 1 makale, 11 yaymn

ve 13 Yiksek Lisans tezi gergeklestirilmistir.

Bilim Dali: Bilgisayar
Dogentlik B. Dah Kodu: 1S1C Kodu:
Uzmanhk Alani Kodu:  619.02.02

Dagiim (*): O Swrly ® Smirsiz

Raporun Gizlilik Durumu : O Gizh 63 Gizli Degil

ojenizin Sonug Raporunun wlagardmason istedifiniz kurum ve kurulduglar: ayrica belirtiniz

TUBITAK Yayn - Dsgitin Daire Bagkanhfs 92 - 0034

e

i



	00000001.TIF
	00000002.TIF
	00000003.TIF
	00000004.TIF
	00000005.TIF
	00000006.TIF
	00000007.TIF
	00000008.TIF
	00000009.TIF
	00000010.TIF
	00000011.TIF
	00000012.TIF
	00000013.TIF
	00000014.TIF
	00000015.TIF
	00000016.TIF
	00000017.TIF
	00000018.TIF
	00000019.TIF
	00000020.TIF
	00000021.TIF
	00000022.TIF
	00000023.TIF
	00000024.TIF
	00000025.TIF
	00000026.TIF
	00000027.TIF
	00000028.TIF
	00000029.TIF
	00000030.TIF
	00000031.TIF
	00000032.TIF
	00000033.TIF
	00000034.TIF
	00000035.TIF
	00000036.TIF
	00000037.TIF
	00000038.TIF
	00000039.TIF
	00000040.TIF
	00000041.TIF
	00000042.TIF
	00000043.TIF
	00000044.TIF
	00000045.TIF
	00000046.TIF
	00000047.TIF
	00000048.TIF
	00000049.TIF
	00000050.TIF
	00000051.TIF
	00000052.TIF
	00000053.TIF
	00000054.TIF
	00000055.TIF
	00000056.TIF
	00000057.TIF
	00000058.TIF
	00000059.TIF
	00000060.TIF
	00000061.TIF
	00000062.TIF
	00000063.TIF
	00000064.TIF
	00000065.TIF
	00000066.TIF
	00000067.TIF
	00000068.TIF
	00000069.TIF
	00000070.TIF
	00000071.TIF
	00000072.TIF
	00000073.TIF
	00000074.TIF
	00000075.TIF
	00000076.TIF
	00000077.TIF
	00000078.TIF
	00000079.TIF
	00000080.TIF
	00000081.TIF
	00000082.TIF

