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Abstract. We analyse J/ψ-production in nucleon–nucleon collisions near
threshold in the framework of a general model-independent formalism, which
can be applied to any reaction N + N → N + N + V0, where V0 = ω, φ or
J/ψ. Such reactions show large isotopic effects: a large difference for pp and pn
collisions, which is due to the different spin structure of the corresponding matrix
elements. The analysis of the spin structure and of the polarization observables
is based on symmetry properties of the strong interaction. Using existing
experimental data on the different decays of the J/ψ meson, we suggest a model
for N + N → N + N + J/ψ, based on t channel η + π exchanges. We predict
polarization phenomena for the n + p → n + p + J/ψ reaction and the ratio of
cross sections for np and pp collisions. For the processes η(π)+N → N+J/ψ we
apply two different approaches: vector meson exchange and local four-particle
interaction. In both cases we find larger J/ψ production in np collisions than in
pp collisions.

1. Introduction

It is well known that the J/ψ meson has been observed in two different reactions: in p + Be
collisions [1] and e+e− [2].

Since that time experimental and theoretical studies of J/ψ production have been going on.
As a result of high statistics and high-resolution experiments, a large amount of information on
the properties of the J/ψ meson, on its production processes and on its numerous decays has
been collected. From a theoretical point of view, the interpretation of the data, in particular in
the confinement regime, is very controversial. As an example, the c-quark mass is too large, if
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compared to predictions from chiral symmetry, but for theories based on the expansion of heavy
quark mass (heavy quark effective theory), this mass is too small [3]. In principle, all data on J/ψ
should be explained in the framework of QCD. For example, theoretical considerations of charm
production (open or hidden) should unify different steps: the parton-level hard process with
production of cc pairs, the hadronization of cc into J/ψ or into charmed hadrons (mesons and
baryons), and the final-state interaction of the produced charmed hadrons with other particles.
The relatively large transferred momenta involved in most processes of J/ψ production in
hadron–hadron collisions allow us to treat the first step in the framework of perturbative QCD, but
the applicability of QCD is not so straightforward for the description of the c-quark hadronization.

This is correct especially for exclusive reactions, such as J/ψ production in nucleon–
nucleon collisions: N + N → N + N + J/ψ. Note that the threshold for this reaction is large:
Eth = 12.24 GeV which corresponds to

√
s = 2m+mJ/ψ � 5 GeV, whereas experimental data

about p + p → J/ψ +X are available for
√

s ≥ 6.7 GeV [4]. Therefore the experimental study
of N + N → N + N + J/ψ near threshold is an important part of the programme for the future
accelerator facility at GSI [5].

Precise measurements of threshold J/ψ production will bring important information with
respect to the following issues. First of all the threshold meson production in NN collisions
gives deeper insight into the reaction mechanisms as shown by recent experiments on p + p →
p+p+ω(φ) [6]–[14], p+p → Λ(Σ0)+K++p [15]–[18] and p+p → p+p+η(η′) [7]–[12, 19]–
[27]. In this respect, J/ψ production has a specific interest: the production and the propagation
of charm in ion–ion collisions has been considered as one of the most promising probes of quark–
gluon plasma (QGP) formation [28]. The productions of charmonium (hidden strangeness) and D
(D∗) mesons (open charm) are equally important. The suppression of charmonium production
in heavy-ion collisions has been indicated as a signature of QGP [29], but in order to state
the evidence of a clear signal, it is necessary to analyse in detail all possible mechanisms for
J/ψ production in ion–ion collisions and also all other processes which are responsible for the
dissociation of the produced J/ψ meson, such as J/ψ + N → Λc + D, for example.

The aim of this paper is to study J/ψ production in the simplest NN reactions:
p + p → p + p + J/ψ and n + p → n + p + J/ψ. In the near-threshold region there is no
experimental information about a possible difference between pp and np collisions. There are
no theoretical predictions for such exclusive processes, which are very difficult to treat in the
framework of QCD. It is possible to find some phenomenological parametrizations [30] of the
energy dependence of the total cross section for p + N → J/ψ+X, without any consideration of
possible isotopic effects. However, previous experience with light meson production [31]–[34],
N+N → N+N+ω(φ), showed an essential difference in np and pp cross sections, in particular
in the near-threshold region, and there is no physical reason for a different behaviour in J/ψ
production. It is evident that knowledge of the elementary process p + N → p + N + J/ψ is
very important for a realistic calculation of J/ψ production in nucleus–nucleus collisions.

In principle the ‘elastic’ J/ψ production in NN collisions can be treated in full analogy with
processes of light vector meson production. All symmetry properties of the strong interaction,
such as the Pauli principle, the isotopic invariance and the P invariance, which have been
successfully applied to light vector meson production in NN collisions [35], hold for J/ψ
production, too. A formalism can be built, which is particularly simplified in the threshold
region, where final particles are produced in the S state. Simple considerations indicate that this
region is quite wide: the effective proton size, which is responsible for charm creation, has to be
quite small, rc � 1/mc, where mc is the c-quark mass [36]. Therefore the S-wave picture can be
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applied for q ≤ mc, where q is the J/ψ three-momentum in the reaction centre of mass (CMS).
This paper is organized as follows. In section 2 we establish the spin structure of the

threshold matrix for the two NN processes:

p + p → p + p + J/ψ,

p + n → p + n + J/ψ

in terms of partial S-wave amplitudes, and calculate the simplest polarization observables in
terms of these amplitudes. In section 3 we treat the dynamical issue in terms of t-channel
exchange mechanisms by light mesons. We give numerical predictions in the framework of a
π +η model. The experimental data about different hadronic decays of the J/ψ meson may give
constraints on our predictions.

2. Spin structure of threshold matrix elements and polarization phenomena

In the general case, the spin structure of the matrix element for the process N+N → N+N+V0 is
described by a set of 48 independent complex amplitudes, which are functions of five kinematical
variables [37]. The same reaction, in coplanar kinematics, is described by 24 amplitudes,
functions of four variables. In collinear kinematics the number of independent amplitudes is
reduced to seven and the description of this reaction is further simplified in the case of threshold
V0-meson production, where all final particles are in the S state.

Applying the selection rules following from the Pauli principle, the P invariance and the
conservation of the total angular momentum, it is possible to prove that the threshold process
p + p → p + p + V0 is characterized by a single partial transition:

Si = 1, �i = 1 → jP = 1− → Sf = 0, (1)

where Si (Sf ) is the total spin of the two protons in the initial (final) states, �i is the orbital
momentum of the colliding protons, j is the total angular momentum, and P is the parity for the
colliding pp system. In the CMS of the considered reaction, the matrix element corresponding
to transition (1) can be written as:

M(pp) = 2f10[χ̃2σy	σ · (	U∗ × 	̂k)χ1] (χ†
4σy χ̃†

3), (2)

where χ1 and χ2 (χ3 and χ4) are the two-component spinors of the initial (final) protons; 	U is

the three-vector of the V0-meson polarization, 	̂k is the unit vector along the three-momentum
of the initial proton; f10 is the S-wave partial amplitude, describing the triplet–singlet transition
of the two-proton system in V0-meson production and 	σ = (σx, σy, σz) are the standard Pauli
matrices.

In the case of np collisions, applying the isotopic invariance for the strong interaction, two
threshold partial transitions are allowed:

Si = 1, �i = 1 → jP = 1− → Sf = 0,

Si = 0, �i = 1 → jP = 1− → Sf = 1,
(3)

with the following spin structure of the matrix element:

M(np) = f10[χ̃2σy	σ · (	U∗ × 	̂k)χ1](χ
†
4σy χ̃†

3) + f01(χ̃2 σyχ1)[χ
†
4	σ · (	U∗ × 	̂k)σyχ̃

†
3], (4)

where f01 is the S-wave partial amplitude describing the singlet–triplet transition of the two-
nucleon system in V-meson production. In the general case, the amplitudes f10 and f01 are
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complex functions, depending on the energies E, E ′ and EV , where E(E ′) and EV are the
energies of the initial (final) proton and of the produced V0-meson, respectively.

Note that f10 is the common amplitude for pp and np collisions, due to the isotopic
invariance of the strong interaction. This explains the presence of the coefficient 2 in equation (2).
The parametrizations (2) and (4) are model-independent descriptions of the spin structure for
threshold production of any vector meson in NN collisions, N + N → N + N + V0, from the
light ρ, ω and φ to J/ψ, ψ′,ψ′′, including the vector bottonium: Υ(1S), Υ(2S) and even the
hypothetical exotic vector toponium states. All dynamical information is contained in the partial
amplitudes f01 and f10, which are different for the different vector particles. On the other hand,
some polarization phenomena have common characteristics, essentially independent of the type
of vector meson. For example, vector mesons produced in pp and np threshold collisions are
transversally polarized, and the elements of the density matrix ρ are independent of the relative
values of the amplitudes f01 and f10: ρxx = ρyy = 1

2 , ρzz = 0. Therefore, the angular distribution
shows a sin2 θP dependence for the subsequent decay V0 → P + P (where P is a pseudoscalar
meson) and the (1 + cos2 θ) dependence for the decay V0 → µ+ + µ−, where θ (θP ) is the angle

between 	̂k and the µ− (P ) momentum (in the rest system of V0). Possible deviations from this
behaviour have to be considered as an indication of the presence of higher partial waves in the
final state.

All other one-spin polarization observables, related to the polarizations of the initial or final
nucleons, identically vanish, for any process of V0-meson production.

The dependence of the differential cross section for threshold collisions of polarized
nucleons (where the polarization of the final particles is not detected) can be parametrized as
follows:

dσ

dω
(	P1, 	P2) =

(dσ

dω

)
0
(1 + A1 	P1 · 	P2 + A2

	̂k · 	P1
	̂k · 	P2), (5)

where 	P1 and 	P2 are the axial vectors of the beam and target nucleon polarizations, dω is the
element of phase-space for the three-particle final state. The spin correlation coefficients A1 and
A2 are real and they are different for pp and np collisions:

	p + 	p → p + p + V0 : A1pp = 0, A2pp = 1,

	n + 	p → n + p + V0 : A1np = − |f01|2
|f01|2 + |f10|2

, A2np =
|f10|2

|f01|2 + |f10|2
,

(6)

with the following relations −A1np + A2np = 1 and 0 ≤ A2np ≤ 1.
Defining R as the ratio of the total (unpolarized) cross section for np and pp collisions,

taking into account the identity of final particles in p + p → p + p + V0, we find:

R =
σ(np → npV0)
σ(pp → ppV0)

=
1
2

+
1
2

|f01|2
|f10|2

. (7)

So the following relation holds:

A1np = −1 +
1

2R .

The polarization transfer from the initial neutron to the final proton (	n + p → n +	p + V0),
can be parametrized as follows:

	Pf = P1np 	P1 + P2np
	̂k(	̂k · 	P1), (8)
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with a simple expression, which relates the real coefficients P1np and P2np to the partial
amplitudes f01 and f10:

P1np = −P2np =
2Ref01f

∗
10

|f01|2 + |f10|2
= cos δ

√
2R − 1

R , (9)

where δ is the relative phase of f01 and f10, which is non-zero, in the general case.
For the process p + p → p + p + V0 the relation P1pp = P2pp = 0 holds, for any vector

meson V0.

3. The dynamics of the t channel

The parametrization of the spin structure of the threshold matrix elements given above is based
on fundamental symmetry properties. It is therefore model independent and can be applied
to any reaction mechanism. Following the standard way of describing the nucleon–nucleon
interaction, we will apply t-channel π0, η, σ and ρ(ω) meson exchanges to J/ψ production, too.
Such an approach has been used to describe the production of light vector mesons such as φ and
ω [30]–[34]. The reaction threshold for p + p → p + p + J/ψ in the laboratory system (LAB)
is quite large. However, the formalism of Pomeron exchange cannot be applied here, even at
such large energies, because the Regge picture is valid when not only the initial energy is large,
but also the excitation energy: the quantity (W − Wth)/Wth (where W is the total energy) has
to be essentially larger than unity.

Another important kinematical variable is the momentum transfer squared, t = (p2 − p4)2,
where p2 and p4 are the four-momenta of the target and of the scattered nucleon. At threshold,
one can find that the variable t has only a fixed value, t = −mmV , where m is the nucleon mass
and mV is the V-meson mass. So, for J/ψ production this momentum is large: t � −3 GeV2,
therefore all the propagators corresponding to the light mesons are of comparable magnitude
(t − m2

π � t − m2
η � t − m2

σ � t − m2
ρ). In such a situation it is not possible to justify the

dominance of a particular exchange mechanism, so we have to conclude that threshold heavy
V0-meson production in NN collisions is determined by the exchange of the coherent sum of
many different mesons, with different masses.

But what about the quantum numbers, J P , of these exchanges (J is the spin and P is the
parity of the corresponding meson)?

We can use the parametrizations (2) and (4), which are exact and model-independent results,
with definite selection rules, from the point of view of the s channel for N+N → N+N+V0 to
understand the t channel J P picture. Using the Fierz transformations (in two-component form),
let us rewrite the general parametrization of the matrix element, see equations (2) and (4), as a
t-channel parametrization:

(χ̃2 σyχ1)[χ
†
4	σ · (	U∗ × 	̂k)σyχ

†
3] = 1

2(χ
†
3χ1) [χ†

4	σ · (	U∗ × 	̂k)χ2] + 1
2 [χ

†
3	σ · (	U∗ × 	̂k)χ1](χ

†
4χ2)

+ 1
2 [(χ

†
3	σ · 	U∗χ1) (χ†

4	σ · 	̂kχ2) − (χ†
3	σ · 	̂kχ1) (χ†

4	σ · 	U∗χ2)]. (10)

Each term in equation (10) has a precise dynamical interpretation, as it corresponds to t-channel
meson exchange (figure 1) with a definite spin and parity, J P . The first two terms describe a

scalar exchange, where the spin structure 	σ · (	U∗ × 	̂k) (in one vertex) corresponds to the matrix
element of the process σ∗ + N → V0 + N (σ∗ is a virtual scalar meson) at its threshold. The
other vertex, corresponding to the σNN interaction has a structure of the type χ†Iχ. The last
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Figure 1. Feynman diagrams for the process n + p → n + p + V0, describing
t-channel exchanges by neutral σ, η and π0 mesons.

two terms describe the exchange by neutral pseudoscalar mesons (π0 or η) with the 	σ · 	̂U -spin
structure of the matrix element for the subprocess π0∗(η∗) + N → V0 + N at threshold, and

with the 	σ · 	̂k structure for the vertex NNπ(η). The same considerations hold for the f10 partial
amplitude.

Therefore we can conclude that t-channel exchanges with J P = 0+ (scalar mesons) and
J P = 0− (pseudoscalar mesons) can be considered as the most probable mechanisms to describe
the threshold dynamics of J/ψ production in NN collisions. Let us consider these mechanisms
in detail.

3.1. σ exchange

The matrix element Mσ, corresponding to the two diagrams of figure 1, can be written as:

Mσ = M1σ + M2σ,

with the following expression for the matrix element M1σ, corresponding to figure 1(a):

M1σ = − gσNN

t − m2
σ

N (χ†
3Iχ1){χ†

4[ih1σ
	̂k · 	U∗ + h2σ	σ · (	̂k × 	U∗)]χ2}, (11)

where gσNN is the σNN coupling constant, I is the unit 2 × 2 matrix, N = 2m(E + m) =
m(mV + 4m) is a normalization factor, which arises from the transformation of the invariant
matrix element for the considered process (in terms of the four-component spinors for the initial
and final nucleons) to the two-component form, which is better adapted to the description of
threshold spin structure in the CMS of the considered process. We used the following formula
for the threshold energy of the initial nucleons, E = W/2 = m + mV /2. The complex
amplitudes h1σ and h2σ describe two possible threshold partial transitions in σ∗ + N → V0 + N:
�σ = 1 → J P = 1/2− and 3/2−, where �σ is the orbital momentum of the initial σN system.
One can find that:

h1σ = h1/2 + 2h3/2, h2σ = h1/2 − h3/2,

where h1/2 and h3/2 are the partial amplitudes corresponding to the two possible values of the
total angular momentum in σ∗ + N → V0 + N.

Comparing the spin structure of the matrix elements for the processes n+p → n+p+V0,
equation (4) and σ +N → N+V0, equation (11), one can see that only the amplitude h2σ has to
be kept, because it generates transversally polarized V0 mesons. First of all, this means that the
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cross sections of the processes n + p → n + p + V0 and σ + N → N + V0 are determined by
different combinations of the amplitudes h1σ and h2σ. This is a result of the following formulae
for the corresponding cross sections:

dσ

dΩ
(σN) � |h1σ|2 + 2|h2σ|2,

dσ

dω
(np → npV) � |h2σ|2.

Therefore these cross sections must be independent. Moreover, both amplitudes f01 and f10,
for n + p → n + p + V0 in the case of σ exchange, being proportional to h2σ, have to satisfy
simple relations. In such a case, definite numerical values can be derived for the polarization
observables in V-meson production for np collisions. To prove this, let us transform the matrix
element (11) into the ‘standard’ parametrization of equation (4), in terms of definite quantum
numbers of the s channel:

−(χ†
3χ1) (χ†

4	σ · 	Aχ2) = 1
2 [−(χ̃2 σy 	σ · 	Aχ1) (χ†

4σyχ̃
†
3) + (χ̃2 σyχ1)(χ

†
4	σ · 	Aσyχ̃

†
3)

+ iεiklAi(χ̃2 σy σ�χ1) (χ†
4σkσyχ̃

†
3)], (12)

where 	A = (	̂k × 	U∗). From equation (12) one can see that M1σ contains not only the structures
which are allowed by symmetry selection rules, but also a contribution which corresponds to
a triplet–triplet transition in the np system (last term in equation (12)). Such a transition is
forbidden by the generalized Pauli principle, following from the isotopic invariance of the strong
interaction, and should not appear in the total matrix element Mσ.

Let us consider in a similar way the matrix element M2σ:

M2σ = − gσNN

t − m2
σ

N{χ†
3[ih1σ

	̂k · 	U∗ + h2σ	σ · (	̂k × 	U∗)]χ1}(χ†
4Iχ2), (13)

where we applied the following relations: gσpp = gσnn = gσNN , hiσ(σn → nV0) =
hiσ(σp → pV0), i = 1, 2, which follow from the isotopic invariance of the strong interaction,
in the case of an isoscalar vector meson. Note that here we use the same propagator as in
equation (11). This is correct in threshold conditions, because any different propagator will
generate higher waves in the initial and final states. Summing the two contributions in the matrix
element, Mσ, the wrong term corresponding to the triplet–triplet transition in n+p → n+p+V0

is exactly cancelled:

M1σ + M2σ = −(χ̃2 σy 	σ · 	Aχ1) (χ†
4σyχ̃

†
3) + (χ̃2 σyχ1) (χ†

4	σ · 	Aσyχ̃
†
3).

Therefore, for σ exchange, one finds:

f
(σ)
10 = −f

(σ)
01 = − gσNN

t − m2
σ

Nh2σ. (14)

Independently of the numerical values of the coupling constant gσNN and of the partial
amplitude h2σ for the process σ + N → N + V0, the polarization observables for the process
n+p → n+p+V0 and the ratio R (see equation (7)), take the following values (in the framework
of σ exchange):

2A(σ)
1np = P(σ)

1np = −1 and R(σ) = 1. (15)

Note that introducing phenomenological form factors in the expression for Mσ affects the
absolute value of the cross section, but cannot change the relation f

(σ)
10 = −f

(σ)
01 and therefore

the results (15).
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3.2. η exchange

Similarly to σ exchange, the η exchange is characterized by two diagrams (figure 1) and the
matrix element is the sum of two matrix elements, corresponding to figures 1(a) and (b):

Mη = M1η + M2η,

where the matrix element M1η can be written as:

M1η = − gηNN

t − m2
η

(
k

E + m

)
N{χ†

3[h1η	σ · 	U∗ + h2η	σ · 	̂k	U∗ · 	̂k]χ1}(χ†
4	σ · 	̂kχ2), (16)

where h1η and h2η are two independent partial amplitudes, which describe the threshold spin
structure for the subprocess η∗ + N → V0 + N. These amplitudes correspond to to two
allowed threshold partial transitions (in η∗ + N → V0 + N): �i = 0 → jP = 1/2− and

�i = 2 → jP = 3/2−. The factor k/(E + m) =
√

mV /(mV + 4m) arises from the
transformation from the relativistic expression of the ηNN vertex, u(p2)γ5u(p1), to the two-

component form in the CMS of the n + p → n + p + V0 reaction, 	σ · 	̂k.
Again, one can prove that only the sum M1η +M2η generates the correct spin structure for

threshold matrix element Mη (again taking into account the isotopic invariance for both vertexes
of the considered diagrams: ηNN and η + N → N + V0, N = p or n):

M1η + M2η =
gηNN

t − m2
η

N
√

k

E + m
h1η[(χ̃2σy	σ · 	Aχ1)(χ

†
4σyχ̃

†
3) + (χ̃2 σyχ1) (χ†

4	σ · 	Aσyχ̃
†
3)],

(17)

with the following relation for the partial amplitudes for n + p → n + p + η:

f
(η)
10 = f

(η)
01 (18)

and definite numerical predictions for the polarization phenomena and for the ratio R:

A(η)
1np = −1

2 , P(η)
1np = 1 and R(η) = 1. (19)

So, only the coefficient P(η)
1np can discriminate between η and σ exchanges.

3.3. π exchange

Due to the isotopic invariance of the strong interaction, it is necessary to consider four Feynman
diagrams, corresponding to the exchange of neutral and charged pions in n + p → n + p + V0

(see figure 2). Taking into account the isotopic relations between different coupling constants
in NNπ vertexes and different amplitudes for the processes π + N → N + V0, one can find the
following expressions for the amplitudes f

(π)
10 and f

(π)
01 :

f
(π)
10 = − gπNN

t − m2
π

h1πN
√

mV

4m + mV

, f
(π)
01 = −3f (π)

10 , (20)

and the single amplitude f
(π)
10 for the process p+p → p+p+V0 is equal to 2f (π)

10 (np → npV0).
Note that the spin structure for the processes π + N → N + V0 and η + N → N + V0 has to be
similar.
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Figure 2. Pion exchange for the process n + p → n + p + V0.

Independently of the concrete model for the amplitude h1π of the process π +N → N+V0,
the relations (20) allow us to predict definite values for the polarization observables and for the
ratio R:

A(π)
1np = − 9

10 , P(π)
1np = −3

5 and R(π) = 5 (21)

which are very different from the previous cases of pure σ or η exchanges.

3.4. ‘Realistic model’: π + η exchange

Based on the previous results for t-channel exchanges, we can build a more realistic model,
combining the contributions of different mesons. As an example, let us consider the case of
π + η exchange, with the following expressions for the allowed threshold partial amplitudes f10

and f01 of the process n + p → n + p + V0:

f10 = −fπ(1 − r), f01 = fπ(3 + r), (22)

where fπ = [gπNN/(t − m2
π)]

√
mV /(mV + 4m)h1π and the ratio

r = (gηNN/gπNN)(h1η/h1π)(t − m2
π)/(t − m2

η)

characterizes the relative role of η and π exchanges in n + p → n + p + V0. Therefore, we can
find the following results for the polarization observables in n + p → n + p + V0 and for the
ratio R of the total cross section for n + p and p + p collisions:

A1np = − 9 + 6Re r + |r|2
2(5 + 2Re r + |r|2) , P1np = −3 − 2Re r − |r|2

5 + 2Re r + |r|2 ,

R =
5 + 2Re r + |r|2

|1 − r|2 .

(23)
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Figure 3. Dependence of R on r.

This primarily means that, in the framework of the considered model, two independent
parameters Rer and |r|2 enter into the definition of three observables. Therefore a simultaneous
measurement of P1np and A1np can determine uniquely Re r and |r|2 (with the evident condition
|Re r| < |r|):

Re r = −1 − 2
1 + 2A1np

1 − P1np
, |r|2 = −3 + 4

3 + 2A1np

1 − P1np
. (24)

The situation is simplified if the ratio r is a real parameter. This is the case in the framework
of the effective Lagrangian approach for the processes η(π) + N → N + V0, near threshold,
where the corresponding pole Feynman diagrams originate the real amplitudes h1η and h1π. It is
also the case for the s channel N∗ contribution, which is common to η+N and π+N interactions.
For J/ψ production the first case seems to be the most probable.

For a real value of r, the following quadratic relation between polarization observables P1np

and A1np holds:

4A1np + 4A2
1np + P2

1np = 0. (25)

After measuring the ratio R (of total cross sections for np and pp interactions) it should be
possible to find two different values for r:

r± =
R + 1
R − 1

± 2
√

2R − 1
R − 1

.

Knowing r, it is straightforward to predict any polarization observable for the process n + p →
n + p + V0. The behaviour of R, A1np and P1np as functions of r, (when r is real) are shown
in figures 3–5. One can see a strong dependence of the ratio R on r in the region −1 ≤ r ≤ 3,
where R > 1, i.e. with strong isotopic effects. Only for r < −1 do we have R < 1, with a weak
dependence on the parameter r. The coefficients A1np and P1np show particular sensitivity to r.
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Figure 4. Dependence of A1np on r.

Figure 5. Dependence of P1np on r.

3.5. Attempts to estimate r

The previous analysis is based on the most general properties of threshold vector meson
production in NN collisions and t-channel exchanges. In the last case, we used only properties
related to the quantum numbers of the corresponding t-channel mesons: spin, parity and isotopic
spin. All previous results are valid for any isoscalar vector meson production, ω, φ or J/ψ.
The properties, which are specific to a definite V0-meson reaction, appear first of all in the
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Figure 6. Feynman diagram for t-channel ω(ρ) exchange for the process
η(π) + N → N + N + J/ψ.

kinematics, in particular in the different V0-meson masses, and in the values of the partial
amplitudes for the binary subprocess, M∗ + N → N + V0, where M∗ = σ, η, π is a virtual
meson (with space-like four-momentum). So, for the considered (η + π) model, all dynamical
information, which is necessary for the calculations of such observables as R, A1np and P1np, is
contained in one complex parameter r, which characterizes the ratio of the threshold amplitudes
for η(π)+N → N+V0 processes. Therefore the identity of the V0 production is also contained
in the ratio r.

Let us estimate this ratio in the case of J/ψ production. To do this, we refer to the existing
experimental information about the different hadronic decays of the J/ψ meson. For example,
the following branching ratios [38]:

BR(J/ψ → ρ0π0) = (4.2 ± 0.5) × 10−3,

BR(J/ψ → ωη) = (1.58 ± 0.16) × 10−3,

allow us to determine r in the framework of a simple vector exchange model for the process
η(π) + N → N + N+J/ψ (see figure 6). The nice property of this model is that all the coupling
constants are known. The ρ-exchange mechanism for J/ψ production in πN collisions has been
considered earlier [39, 40]. The corresponding matrix element can be written in the following
form:

M =
gPV V ′

t − m2
V ′

εµνρσUµkνqρJσ

mJ/ψ

, (26)

Jσ = u(p2)
[
γσF1 − σσν(k − q)ν

2m
F2

]
u(p1) = u(p2)

[
γσ(F1 + F2) − p1σ + p2σ

2m
F2

]
u(p1), (27)

where F1 and F2 are the Dirac and Pauli form factors of the V′NN vertex of the considered
diagram. At the reaction threshold, the matrix element, equations (26) and (27), can be simplified
as:

M � gPV V ′

t − m2
V ′

(F1 + F2)χ
†
2(	σ · 	U∗ − 	σ · 	̂k	̂k · 	U∗)χ1. (28)

Taking into account VDM predictions for the (F1+F2) term, which in the case of the ωNN(ρNN)
vertex, is proportional to the isoscalar, µp + µn, (isovector, µp − µn,) magnetic moment of the
nucleon, one can find:

r =
gηNN

gπNN

(µp + µn)
(µp − µn)

g(J/ψ → ηω)
g(J/ψ → π0ρ0)

� gηNN

gπNN

0.88
4.8

√√√√ Γ(J/ψ → ηω)
Γ(J/ψ → π0ρ0)

� 1
7

∣∣∣∣gηNN

gπNN

∣∣∣∣,
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where g (Γ) is the corresponding coupling constant (decay width). All existing analysis of
threshold η-meson photoproduction on protons [41] indicates that gηNN � gπNN . Therefore,
in the framework of such a model, we have |r| � 1. From these considerations we cannot
determine the sign of the ratio r, but the small value of |r| indicates that the np cross section can
be essentially larger than pp cross section, in the case of J/ψ production.

However, conclusions could be different if one takes another set of experimental data about
J/ψ decays [38]:

BR(J/ψ → ppη) = (2.09 ± 0.18) × 10−3,

BR(J/ψ → pnπ−) = (2.00 ± 0.10) × 10−3.
(29)

Evidently both these decays can be considered as crossed channels of the processes η(π) +
N → N + J/ψ. Generally, each decay J/ψ → N + N + P (P is the pseudoscalar meson, P = π
or η) is characterized by a complicated spin structure—with six independent scalar (and complex)
amplitudes, which are functions of two independent kinematical variables. It is not possible to
restore the full spin structure, from a knowledge of the branching ratio alone (with unpolarized
particles). Moreover, there is the delicate problem of the extrapolation from the decay region
of the kinematical variables (of the process J/ψ → N + N + P) to the scattering region (of
the process P + N → N + J/ψ). To overcome this problem, let us consider the oversimplified
assumption that the two types of processes J/ψ → N+N+P and P + N → N+J/ψ are driven
by an effective contact four-particle interaction, with a single coupling constant. The exact spin
structure of this interaction is not important for our considerations. In such an approximation
the ratio r can be estimated from the following formula:

r =
gηNN

gπNN

(t − m2
π)

(t − m2
η)

[ BR(J/ψ → NNη)
BR(J/ψ → NNπ−)

]1/2
� gηNN

gπNN

< 1.

Again the sign of r cannot be determined by such considerations, but, again the value of r which
has been derived is in the range where the ratio R is very sensitive to the value of r. Note that
the dependence of the polarization observables A1np and P1np is also quite large, in this region
of r.

In the previous considerations, the effects of the final-state interaction in the produced
NNJ/ψ three-particle system were not taken into account. In the near-threshold region, the
NN interaction is well known, in terms of the corresponding scattering energies and effective
radius. It is not the case for the J/ψN interaction. Note in this connection, that the total J/ψN
cross section is not well known at present [42]. For example, photoproduction data give values
of 3–4 mb [43]–[45], while the analysis of charmonium absorption on nucleons (at relatively
high momentum) in p + A and A + A reactions suggests larger values, 6–7 mb [46, 47]. These
larger values can be explained in the framework of effective Lagrangian approaches [48]–[50].
Different methods have been suggested for a direct measurement of this quantity, through the
processes π+d → J/ψ+p + p [39, 40], p+d → J/ψ+n [51] and charmed meson production
in p + A collisions [52].

Note that, in the general case, it is necessary to define two different J/ψ cross sections
corresponding to transversal and longitudinal J/ψ polarization. For example, the data about
γ+N → J/ψ+N are sensitive to σT (J/ψN) cross sections, with transversal J/ψ polarization, if
the VDM hypothesis is correct. Another possible method is to determine the average σAv(J/ψN)
cross section, obtained by averaging over the J/ψ polarization. In the case of interest here, in
the near-threshold J/ψ production in nucleon–nucleon collisions, N + N → N + N + J/ψ, the
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possible effects of the J/ψN interaction are given by the σT (J/ψN) cross section alone, because
we showed that the kinematical conditions are such that the J/ψ is produced with transversal
polarization, only. To avoid double counting in the calculation of the J/ψN final interaction,
one has to take into account only the J/ψN interaction with a nucleon spectator, produced in the
vertex πNN.

Let us compare the cross sections for the φ and J/ψ production in pp collisions—in the
framework of the same approach, namely for π exchange in N + N → N + N + V0 and ρ
exchange for the subprocess π + N → N + V0, with V0 = φ or J/ψ. For the same value of
Q =

√
s − 2m − mV , we can write (in the near-threshold region):

R(J/ψ, φ) =
σ(pp → ppJ/ψ)
σ(pp → ppφ)

� g2(J/ψ → πρ)
g2(φ → πρ)

(
tφ − m2

π

tJ/ψ − m2
π

)2[F (tJ/ψ)
F (tφ)

]2
,

where g(V → πρ) is the coupling constant for the decay V → πρ, tV = −mmV is the
threshold value of the momentum transfer squared, F (t) is a phenomenological form factor for
the vertex π∗ρ∗V0, with virtual π and ρ. Using the existing experimental data about the decays
J/ψ → π + ρ and φ → π + ρ, one can find g2(J/ψ → πρ)/g2(φ → πρ) � 10−4, so that
R(J/ψ, φ) � 10−5[F (tJ/ψ)/F (tφ)]2. Taking into account that σ(pp → ppφ) � 300 nb at
pL = 3.67 GeV [6], one can find that σ(pp → ppJ/ψ) � 0.03 nb [F (tJ/ψ)/F (tφ)]2. This value
is too small, when compared with the existing experimental value for the lowest

√
s = 6.7 GeV,

namely [4] σexp(pp → ppJ/ψ) = 0.3 ± 0.09 nb.
Note that the ρ-exchange model for σ(πN → J/ψ) gives a cross section one order of

magnitude smaller than other possible theoretical approaches [53]–[55]. One possibility is to
explain the value of σexp(pp → ppJ/ψ). Another possibility is to take [F (tJ/ψ)/F (tφ)]2 � 10,
which could be plausible, because the J/ψ = cc system must have a smaller size than φ = ss.
This can be realized by the following form factor:

FV (t) =
1

1 − t
Λ2

V

,

with ΛV � mV .

4. Conclusions

Let us summarize the main results concerning the theoretical analysis of J/ψ production in
nucleon–nucleon collisions in the threshold regime.

• We established the spin structure of the threshold matrix element in terms of a limited
number of partial transitions, corresponding to S-wave production of final particles in the
process N + N → N + N + J/ψ.

• We proved the essential role of isotopic effects for J/ψ production in pp and np collisions.
The two reactions present very different characteristics concerning:

* the number of independent partial transitions,
* the spin structure of the threshold matrix elements,
* the value of the absolute cross sections,
* the polarization phenomena.

Note that all these differences are generated by a common mechanism: the origin of the
essential difference has to be found in the different role of the Pauli principle for pp and pn
collisions in the near-threshold region.
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• This model-independent analysis shows the universality of theoretical considerations of
threshold production of different vector mesons in nucleon–nucleon collisions, starting
from light ρ, ω, φ to charmed mesons.

• Only one polarization observable, the J/ψ polarization, is identical for pp and pn collisions:
the J/ψ meson is transversally polarized—even in collisions of unpolarized nucleons. The
experimental determination of the ratio of the total cross sections for np and pp collisions is
important for the identification of the reaction mechanism. Polarization phenomena, which
are trivial for threshold pp collisions, will be very useful for np collisions. The polarization
transfer coefficients show the largest sensitivity to the nature (quantum numbers) of t-
channel exchanges.

• The existing experimental data on the specific decays of J/ψ, such as J/ψ → ρπ,
J/ψ → ωη, J/ψ → NNπ, J/ψ → NNη, constrain a possible model for the threshold
J/ψ production in nucleon–nucleon collisions. These data show, in a transparent way, the
link between the possible reaction mechanisms on one side, and the physics of J/ψ decays
in the usual hadrons (N, N, π, ρ . . .), on the other side.

In this paper we stress the importance of np collisions in the threshold production of J/ψ, due to
the large sensitivity to the underlying reaction mechanisms. Therefore a polarized neutron beam
of corresponding energies or a polarized target are potentially very interesting, in this respect.
In the planned GSI facility, the possibility of having polarized targets has not been excluded.
Moreover, the unpolarized GSI beams will allow us to determine the intensity of singlet and
triplet amplitudes through the comparison of np- and pp-induced cross sections.
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