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1 Introduction

Supergravity in three dimensions has a long history. Especially in its configuration with

minimal, N = 1, supersymmetry the theory has been established a long time ago both

in on-shell and off-shell formulations as well as in the superconformal framework [1–5].

Despite of all the achievements in the supersymmetric constructions of the theory, the

three-dimensional Poincaré (super)gravity by itself is of not much physical interest as the

field equations of the theory imply that the spacetime curvature is zero, hence no physical

degrees of freedom propagate.

The Poincaré theory can be supplemented with a parity-breaking Lorentz-Chern-

Simons term. This combination is known as Topologically Massive Gravity (TMG) [6],

and leads to a non-trivial dynamics of the gravitational field describing a helicity +2 or −2

state. The N = 1 supersymmetric completion of TMG was constructed in [7, 8], and the

supersymmetric background and black hole solutions of this supersymmetric theory were

studied in [9]. In a subsequent development, a parity-preserving higher derivative extension

of three-dimensional gravity, known as New Massive Gravity (NMG), was constructed [10].

Similar to TMG, the NMG theory also provides dynamics to the three-dimensional gravity

theory corresponding in this case to two states of helicity +2 and −2. The supersymmetric
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background configurations of both N = 1 TMG and N = 1 NMG are severely restricted

due to the spinor structure of the N = 1 supersymmetry, which allows only planar-wave

type solutions with a null Killing vector as well as maximally supersymmetric AdS3 and

Minkowski backgrounds [11, 12].

In a recent paper some of us have formulated all four-derivative extension of the three-

dimensional N = (1, 1) off-shell cosmological Poincaré supergravity theory [13]. For a

discussion of this construction (and more) from a superspace point of view, see [14]. Ex-

tending the N = 1 theory with more supersymmetry cannot affect the dynamics of the

Poincaré supergravity theory. It merely extends the size of the N = 1 Poincaré multiplet,

consisting of a dreibein eµ
a, a gravitino ψµ and a scalar A with an additional gravitino,

an auxiliary vector Vµ and a pseudo-scalar B. As we will show in this paper, the merit

of the N = (1, 1) theory is that the spinors of the theory are Dirac instead of Majorana

spinors, which allows a larger variety of supersymmetric background solutions than in the

N = 1 case [15, 16].

The main aim of this paper is to study the supersymmetric backgrounds as well as

black hole solutions of the N = (1, 1) cosmological NMG, or shortly N = 1 CNMG,

theory [13] using the off-shell Killing spinor analysis. The power of the off-shell analysis

is reflected by the fact that, once the conditions on the possible field configurations are

obtained by using the off-shell supersymmetry transformation rules, one can use them to

study the solutions of any model which respects the same set of transformation rules. This

might include higher derivative corrections and/or matter couplings.

We begin our study in section 2 with a brief review ofN = (1, 1) CNMG and its off-shell

transformation rules. As a typical property of off-shell supergravity theories, the auxiliary

fields of the theory start to propagate1 when the Poincaré supergravity is extended with

higher-order curvature terms. Assuming that the supersymmetric theory admits at least

one Killing spinor, we present the Killing spinor equation and its integrability condition.

We then review the implications of the existence of an off-shell Killing spinor as presented

in [15]. The existence of such a spinor imposes numerous algebraic as well as differential

identities on the metric, the vector Vµ and the scalars A and B of the theory. These

identities are the backbone of our analysis that we present in the remainder of the paper.

The Killing spinor equation in particular implies that the background solutions can be

put into two categories depending on whether the Killing vector that is formed out of the

Killing spinors is null or timelike.

In section 3, we investigate the solutions that admit a null Killing vector. In this case,

the analysis for finding supersymmetric solutions simply reduces to the one corresponding

to the N = 1 theory [11] as the vector Vµ and the pseudo-scalar B are set to zero due

to the algebraic and differential constraints, which are consequences of the existence of a

Killing spinor. The solution are, therefore, of the pp-wave type, like in the N = 1 case.

In the timelike case, which we present in section 4, the supersymmetric solutions are

categorized according to the values of the components Va of the vector in a flat basis.

We find that the N = (1, 1) CNMG theory allows all solutions of N = (1, 1) TMG [15]

1There are exceptional cases where the auxiliary fields do not propagate such as in N = 1 CNMG [11].
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with shifted parameters. Furthermore, we find additional AdS2×R and Lifshitz solutions.

These extra solutions are possible because of the fact that in N = (1, 1) TMG, the vector

equation gives rise to a second order algebraic equation for the components Va, whereas in

the case of N = (1, 1) CNMG, the resulting equation is cubic, allowing more solutions.

In section 5, we investigate the supersymmetric black holes with AdS3 and Lifshitz

backgrounds. We first show that the rotating hairy BTZ black hole of [17], which is a

generalization of the well-known BTZ black hole [18] obtained by introducing a gravitational

hair parameter, and the logarithmic black hole of [19] are solutions of theN = (1, 1) CNMG

theory for the extremal cases. This is also true for the rotating BTZ black hole which can

be obtained by setting the hair parameter b to zero. Given the Lifshitz solution, we then

analyze whether we can find an extremal Lifshitz black hole. As the theory is ungauged,

one can hope to saturate the BPS bound with the massive vector hair Vµ. As opposed to

the pseudo-supersymmetry analysis of the Einstein-Weyl theory in four dimensional N = 1

supergravity [20], this is not the case in N = (1, 1) CNMG. Furthermore, we will show

that a simple rotating black hole ansatz fails to satisfy the Killing spinor equation and the

field equations of the theory simultaneously.

Finally, in section 6, we present our conclusions and discuss further directions.

2 N = (1, 1) cosmological new massive supergravity

The field content of the N = (1, 1) supergravity theory consists of the dreibein eµ
a, the

gravitino ψµ, a complex scalar S, and a vector Vµ. The model we shall study is a particular

combination of supersymmetric invariants up to dimension four [13] that leads to a model

that, when expanded around a supersymmetric AdS3 vacuum, propagates only helicity

± 2 and ± 3/2 states with AdS energies that respect perturbative unitarity. This model is

called cosmological New Massive Gravity (CNMG). Here we focus on the bosonic part of

the supersymmetric CNMG Lagrangian which is given by

e−1LCNMG = σ(R+ 2V 2 − 2|S|2) + 4MA

+
1

m2

[
RµνR

µν − 3

8
R2 −RµνV

µV ν − FµνF
µν +

1

4
R(V 2 −B2)

+
1

6
|S|2(A2 − 4B2)− 1

2
V 2(3A2 + 4B2)− 2V µB∂µA

]
, (2.1)

where (σ,M,m2) are arbitrary real constants and we have defined S = A+ iB. The action

corresponding to this Lagrangian is invariant under the following off-shell supersymmetry

transformation rules2

δeµ
a =

1

2
ǭγaψµ + h.c. ,

δψµ = Dµ(ω̂) ǫ−
1

2
iVν γ

νγµ ǫ−
1

2
Sγµǫ

⋆ ,

2In this paper, we follow the conventions of [15], with the only difference being that the S we are using

here is replaced by S → −Z.
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δVµ =
1

8
iǭ γνργµ

(
ψνρ − iVσγ

σγν ψρ − Sγνψ
⋆
ρ

)
+ h.c. ,

δS = −1

4
ǫ̃ γµν (ψµν − iVσ γ

σγµψν − Sγµψ
⋆
ν) , (2.2)

where ǫ̃ = ǫ⋆ , ω̂ is the super-covariant spin-connection and

Dµ(ω̂)ǫ =

(
∂µ +

1

4
ω̂µ

ab γab

)
ǫ , ψµν = 2D[µ(ω̂)ψν] . (2.3)

The transformation rules (2.2) are off-shell as the algebra closes on these fields without

imposing the field equations corresponding to the Lagrangian (2.1).

In order to determine the supersymmetric backgrounds allowed by a model with the

transformation rules (2.2), one considers the Killing spinor equation

Dµǫ = ∂µǫ+
1

4
ω̂µ

ab γabǫ−
1

2
iVν γ

νγµ ǫ−
1

2
Sγµǫ

⋆ = 0 . (2.4)

Any Killing spinor ǫ satisfying this equation must also satisfy the integrability condition

[Dµ,Dν ]ǫ =
1

4

(
Rµν

ρσ + 2δρµδ
σ
ν (A

2 +B2) + 2δρµδ
σ
νV

2 − 4iδσ[ν∇µ]V
ρ − 4δσ[νVµ]V

ρ
)
γρσǫ

−δσ[ν

(
∂µ]A+BVµ]

)
γσǫ

∗ − iδσ[ν

(
∂µ]B −AVµ]

)
γσǫ

∗ − 1

2
iFµνǫ

+iǫµνρV
ρ(A+ iB)ǫ∗ = 0 . (2.5)

Considering the field equations for A,B, Vµ and gµν ,

0 = 4M − 4σA+
1

m2

[
2

3
A3 −B2A− 3V 2A+ 2 (∇ · V )B + 2V µ∂µB

]
,

0 = 4σB +
1

m2

[
1

2
RB +A2B +

8

3
B3 + 4V 2B + 2V µ∂µA

]
,

0 = 4σVµ − 1

m2

[
2RµνV

ν + 4∇νFµ
ν + Vµ

(
3A2 + 4B2 − R

2

)
+ 2B∂µA

]
,

0 = σ

(
Rµν + 2VµVν −

1

2
gµν [R+ 2V 2 − 2(A2 +B2)]

)
− 2gµνMA

+
1

m2

[
�Rµν −

1

4
∇µ∇νR+

9

4
RRµν − 4Rρ

µRνρ − 2Fµ
ρFνρ

+
1

4
RVµVν − 2Rρ

(µVν)Vρ −
1

2
�(VµVν) +∇ρ∇(µ(Vν)V

ρ)

+
1

4
Rµν(V

2 −B2)− 1

4
∇µ∇ν(V

2 −B2)− 1

2
VµVν(3A

2 + 4B2)

−2BV(µ∂ν)A− 1

2
gµν

(
13

8
R2 +

1

2
�R− 3R2

ρσ −RρσV
ρV σ

+∇ρ∇σ(V
ρV σ)− F 2

ρσ +
1

4
R(V 2 −B2)− 1

2
�(V 2 −B2)

+
1

6
(A2 +B2)(A2 − 4B2)− 1

2
V 2(3A2 + 4B2)− 2BV ρ∂ρA

)]
, (2.6)
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it can be seen that for cosmological Poincaré supergravity, i.e. m → ∞, A,B and Vµ can

be eliminated algebraically. In this case, the integrability condition (2.5) reduces to
(
Rµν

ρσ + 2δρµδ
σ
νM

2
)
γρσǫ = 0 , (2.7)

which implies that the maximally supersymmetric background is either Minkowski with

M = 0, or AdS3 with radius 1/M2. More solutions, with less supersymmetry, can be

obtained by imposing projection conditions on ǫ. Note that even with the higher derivative

contributions, the maximally supersymmetric solution is still given by the same background

solution with a shifted value of the cosmological constant. The reason for this is that

the expectation value of A receives a contribution from the higher derivative corrections

whereas B and Vµ do not and, therefore, can still be set to zero.

In the case of cosmological Poincaré supergravity, the auxiliary fields can be eliminated

from the theory, resulting in an on-shell supergravity theory with the field content (eµ
a, ψµ).

However, with the higher derivative contributions added, the massive vector and the real

scalars become dynamical and hence cannot be solved algebraically. These ‘auxiliary’ fields

play a crucial role in determining the supersymmetric backgrounds allowed by the CNMG

Lagrangian (2.1).

Now that we have clarified the maximally supersymmetric backgrounds, let us proceed

to the case where we have at least one unbroken supersymmetry. In order to do so, we

will briefly review the implications of an off-shell Killing spinor following the discussion

of [15]. From the symmetries of the gamma matrices, one finds the following identities for

a commuting Killing spinor ǫ

ǭǫ⋆ = ǫ̃ǫ = 0 . (2.8)

Thus, non-vanishing spinor bilinears can be defined as follows

ǭǫ = −ǫ̃ǫ⋆ ≡ if , ǭγµǫ = ǫ̃γµǫ
⋆ ≡ Kµ , ǭγµǫ

⋆ ≡ Lµ = Sµ + iTµ , (2.9)

where f is a real function and Kµ (Lµ) is a real (complex) vector. Using the Fierz identities

for commuting spinors, one can show that

KµK
µ = −f2 , Kµγ

µǫ = ifǫ . (2.10)

The first equation implies that the vector is either null or timelike. Using the Killing spinor

equation (2.4) one finds that

∇(µKν) = 0 , (2.11)

showing that Kµ is a Killing vector. Finally, we may derive the following differential

identities following from the Killing spinor equation (2.4)

∂[µKν] = ǫµνρ

(
−fV ρ − 1

2
(SLρ + S⋆(L⋆)ρ)

)
, (2.12)

∂µf = −ǫµνρV
νKρ − 1

2
i
(
SLµ − S⋆L⋆

µ

)
. (2.13)

We refer to [15] for readers interested in the derivation of these Killing spinor identities

and of other implications of the existence of a Killing spinor.

– 5 –



J
H
E
P
1
0
(
2
0
1
5
)
1
4
1

3 The null killing vector

We first consider the case that the function f introduced in eq. (2.9) is zero everywhere,

i.e. f = 0. This implies that Kµ is a null Killing vector. The case that f 6= 0 will be

discussed in the next section. In our conventions, a Majorana spinor field has all real

components. This being said, the first spinor bilinear equation in (2.9) leads to a Dirac

spinor ǫ that is proportional to a real spinor ǫ0 up to a phase factor characterized by an

angle θ [15],

ǫ = e−i θ
2 ǫ0 . (3.1)

The above equation implies that Lµ = eiθKµ. Taking this into account, the differential

equation (2.12) reads

∂[µKν] = −Re(Seiθ) ǫµνρK
ρ . (3.2)

Contracting this equation with Kµ we find that

Kµ∇µKν = 0 . (3.3)

The same equation also implies that K ∧ dK = 0, i.e. K is hypersurface orthogonal. Thus,

there exist functions u and P of the three-dimensional spacetime coordinates such that

Kµ dx
µ = Pdu . (3.4)

Eq. (3.3) implies that that K is tangent to affinely parameterized geodesics in the surface of

constant P . One can, then, choose coordinates (u, v, x) such that v is an affine parameter

along these geodesics, i.e.

Kµ ∂µ =
∂

∂v
. (3.5)

By virtue of our choice for Kµ the metric components further simplify to

guv = P (u, x), gvv = gxv = 0 , (3.6)

where P = P (u, x) since we demand the null direction to be along the v direction. All

these choices yield a metric of the following generic form

ds2 = hij(x, u) dx
i dxj + 2P (x, u) du dv , (3.7)

where xi = (x, u). Without loss of generality, this metric can be cast in the following form

by a coordinate transformation [9, 11]

ds2 = dx2 + 2P (x, u) du dv +Q(x, u) du2 , (3.8)

with
√
|g| = P . With these results in hand, the auxiliary fields of the theory should satisfy

the following constraints [15]

Vµ = −1

2
∂µ θ(x, u) ,

Seiθ + S⋆e−iθ = ∂x logP (x, u) . (3.9)

In the next subsection we will investigate the solutions of CNMG under the assumption

that f = 0.
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3.1 The general solution

To find the general solution with f = 0 we set S to be a constant, to be precise we set

A = −1
l and B = 0. Using (2.13) we obtain

ǫµνρ V
νKρ = −1

l
Kµ sin θ(u, x) . (3.10)

The u component of this equation reads

1

l
Ku sin θ(u, x) = P (u, x)Vx , (3.11)

where we have used that εxuv = 1. Provided that the function P (u, x) is nowhere vanishing,

it is straightforward to integrate the first (vector) equation in (3.9) and obtain

θ(u, x) = arctan

(
2 c(u) e−2x/l

1− c2(u) e−4x/l

)
, (3.12)

for arbitrary c(u). From the second (scalar) equation in (3.9) we deduce that

−2

l
cos θ(u, x) = ∂x logP (u, x) , (3.13)

which, upon using eq. (3.12), yields

P (x, u) = P (u)[ e2x/l + e−2x/lc2(u)] , (3.14)

where P (u) is an arbitrary function of u. We may set P (u) to unity without loss of

generality [11]. Using eqs. (3.13) and (3.14) in the vector field equation (3.12), we deduce

that c(u) = 0 and θ(u, x) = nπ. In order to fix n we use to the trace of the gravity equation

and find that θ(u, x) = π.

We thus find that the metric (3.8) takes the following final form

ds2 = dx2 + 2 e2x/l du dv +Q(x, u) du2 . (3.15)

This is the general form of a pp-wave metric. Taking the limit l → ∞ gives rise to the

pp-wave in a Minkowski background. Setting l = 1 and substituting A = −1, B = 0,

Vx = Vu = Vv = 0 into the metric field equation, we find that Q(x, u) satisfies the following

differential equation

(2 + 4σm2)Q′ − (9 + 2σm2)Q′′ + 8Q′′′ − 2Q′′′′ = 0 , (3.16)

where the prime denotes a derivative with respect to x. The most general solution of this

differential equation is given by

Q(x, u) = e

(
1−

√
1
2
−σm2

)
x
C1(u) + e

(
1+

√
1
2
−σm2

)
x
C2(u) + e2xC3(u) + C4(u) , (3.17)

where the functions Ci(u) , i = 1, · · · , 4, are arbitrary functions of u. We note that this

expression for Q(x, u) matches with that of [12, 22]. It differs, however, with the expression

– 7 –
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given in [11]. This is due to the fact that the off-diagonal coupling of gravity to the scalar A

was included in the supersymmetric New Massive Gravity model studied in [11], whereas

such a term is absent in our case, see eq. (2.1).

The solution for Q(x, u) given in (3.17) has a redundancy [9]. To make this redundancy

manifest we consider the following coordinate transformation

x = x̃− 1

2
log a′ , u = a(ũ) , v = ṽ − 1

4
e−2x̃ a′′

a′
+ b(ũ) , (3.18)

where a(ũ) and b(ũ) are arbitrary functions of ũ and the prime denotes a derivative with

respect to ũ. By choosing the function a(ũ) and b(ũ) such that the differential equations

(
a′′

a′

)
′

− 1

2

(
a′′

a′

)2

− 2(a′)2 C̃4(ũ) = 0 , b′ +
1

2
a′ C̃3(ũ) = 0 , (3.19)

are satisfied the functions C̃3 and C̃4 can be set to zero. This implies that, without loss of

generality, we may set C3 = C4 = 0. In addition to this, we get

C̃1(ũ) = C1(a(ũ)) [a
′(ũ)]

1
2

(
3+

√
1
2
−σm2

)

, C̃2(ũ) = C2(a(ũ)) [a
′(ũ)]

1
2

(
3−

√
1
2
−σm2

)

.

(3.20)

There are two special values of parameters which must be handled separately. These

are the cases σm2 = ±1
2 . The reason for this is that for the σm2 = 1

2 case the function C1

degenerates with C2 whereas for the σm2 = −1
2 case the function C1 degenerates with C4

while the function C2 degenerates with C3. Therefore, we solve the field equation (3.16)

for these special cases, and display the solutions Q(x, u) for these special values of the

parameters explicitly:

σm2 =
1

2
: Q(x, u) = exD1(u) + x exD2(u) + e2xD3(u) +D4(u) ,

σm2 = −1

2
: Q(x, u) = x e2xD1(u) + xD2(u) + e2xD3(u) +D4(u) . (3.21)

Here Di(u) , i = 1, . . . , 4, are arbitrary functions of u. Setting D3 = D4 = 0, we are led to

the following cases:

σm2 6= ±1

2
: ds2=dx2+2 e2x du dv+

(
e

(
1−

√
1
2
−σm2

)
x
D1(u)+e

(
1+

√
1
2
−σm2

)
x
D2(u)

)
du2 ,

σm2 =
1

2
: ds2=dx2 + 2 e2x du dv +

(
exD1(u) + x exD2(u)

)
du2 ,

σm2 = −1

2
: ds2=dx2 + 2 e2x du dv +

(
x e2xD1(u) + xD2(u)

)
du2 . (3.22)

These pp-wave solutions coincide with the solutions of N = 1 CNMG [12]. Having found

the most general solutions for the null case, we will continue in the next subsection with

determining the amount of supersymmetry that these solutions preserve by working out

the Killing spinor equation (2.4).

– 8 –
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3.2 Killing spinor analysis

In order to construct the Killing spinors for the pp-wave metric (3.15) we introduce the

following orthonormal frame [9]

e0 = e
2x
l
−β dv, e1 = eβdu+ e

2x
l
−β dv, e2 = dx , (3.23)

where Q(u, x) = e2β(u,x). It follows that the components of the spin-connection are given by

ω01 = −β̇ du−
(
β′ − 1

l

)
dx ,

ω02 = −
(
β′ − 1

l

)
eβ du− 1

l
e

2x
l
−β dv ,

ω12 = β′ eβ du+
1

l
e

2x
l
−β dv , (3.24)

where

β̇ ≡ ∂β

∂u
, β′ ≡ ∂β

∂x
. (3.25)

For the null case, the Killing spinor equation (2.4) then reads

0 = dǫ+
1

4
ωab γ

abǫ+
1

2l
γa e

a ǫ⋆ . (3.26)

We make the following choice of the γ matrices

γ0 = iσ2 , γ1 = σ1 , γ2 = σ3 , (3.27)

where σi’s are the standard Pauli matrices. With this choice the Killing spinor equation

reads

0 = dǫ+
1

2

(
β̇ σ3 ǫ− eββ′(σ1 + iσ2) ǫ+

1

l
eβσ1 (ǫ+ ǫ⋆)

)
du

− 1

2l
e

2x
l
−β (σ1 + iσ2) (ǫ− ǫ⋆) dv

+
1

2

(
β′σ3 ǫ−

1

l
σ3 (ǫ− ǫ⋆)

)
dx . (3.28)

Decomposing a Dirac spinor into two Majorana spinors as ǫ = ξ + iζ, i.e.

ǫ =

(
ξ1 + iζ1
ξ2 + iζ2

)
, (3.29)

we find the following equations for the components

0 = dξ1 +
1

2
β̇ ξ1 du− eβ

(
β′ − 1

l

)
ξ2 du+

1

2
ξ1 β

′ dx ,

0 = dξ2 +
1

l
eβ ξ1 du− 1

2
β̇ ξ2 du− 1

2
β′ ξ2 dx ,

0 = dζ1 +
1

2
β̇ ζ1 du− eβ β′ ζ2 du− 2

l
e

2x
l
−β ζ2 dv +

1

2

(
β′ − 2

l

)
ζ1 dx ,

0 = dζ2 −
1

2
β̇ ζ2 du− 1

2

(
β′ − 2

l

)
ζ2 dx . (3.30)
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The first two equations are uniquely solved by ξ1 = ξ2 = 0. For the last two equations, the

solution for a generic function β(u, x) is given by

ζ1 = e−
1
2
β+x

l , ζ2 = 0 . (3.31)

There is an additional solution for the special case that β = x. It is given by

ζ1 = (u+ 2v)e
1
2
x , ζ2 = e−

1
2
x . (3.32)

This solution corresponds to the first case given in eq. (3.22) withD1(u) = 0 andD2(u) = 1.

There is, however, a problem with this solution. One must choose σm2 = −1
2 for this

solution and this conflicts with the condition imposed on this pp-wave solution when we

classified the different solutions in the previous subsection. Therefore, we conclude that

the pp-wave Killing spinor equation is uniquely solved by

ξ1 = ξ2 = ζ2 = 0 , ζ1 = e−
1
2
β+x

l . (3.33)

This implies that the pp-wave solutions all preserve 1/4 of the supersymmetries. Note that

in the Minkowski limit l → ∞, the equations for ξ and ζ degenerate. Thus, the number of

Killing spinors are the same for both AdS and Minkowski pp-wave solutions.

We conclude this section by noting that when D1 = D2 = 0, the metric reduces to

ds2 = dx2 + 2e2x/l du dv = dx2 + e2x/l (−dt2 + dφ2) , (3.34)

which is the AdS3 metric in a Poincaré patch. In this case, we have

e0 = ex/l dt , e1 = ex/l dφ , e2 = dx . (3.35)

which implies that

ω02 = −1

l
ex/l dt , ω12 =

1

l
ex/l dφ . (3.36)

The Killing spinor equation then turns into

dǫ− 1

2l
ex/l

(
σ1ǫ− iσ2ǫ

⋆
)
dt− 1

2l
ex/l

(
iσ2ǫ− σ1ǫ

⋆
)
dφ+

1

2l
σ3 ǫ

⋆dx = 0 . (3.37)

Decomposing the Dirac spinor into two Majorana spinors as ǫ = ξ + iζ, see eq. (3.29), the

Killing spinor equation gives rise to the following equations

0 = dξ1 +
1

2l
ξ1dx ,

0 = dξ2 −
1

l
ex/l ξ1dt+

1

l
ex/l ξ1dφ− 1

2l
ξ2dx ,

0 = dζ1 −
1

l
ex/l ζ2 dt−

1

l
ex/l ζ2 dφ− 1

2l
ζ1dx ,

0 = dζ2 +
1

2l
ζ2 dx . (3.38)

Making use of the fact that that the ξ and ζ equations are decoupled from each other, we

find the following four independent solutions:

1. ξ1 = 0, ξ2 = e
x

2l , ζ1 = ζ2 = 0,

2. ξ1 = e−
x

2l , ξ2 =
1
l e

x

2l (t− φ), ζ1 = ζ2 = 0,
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3. ξ1 = ξ2 = 0, ζ1 = e
x

2l , ζ2 = 0,

4. ξ1 = ξ2 = 0, ζ1 =
1
l e

x

2l (t+ φ), ζ2 = e−
x

2l .

Therefore, the AdS3 solution has a supersymmetry enhancement with four Killing spinors.

4 The timelike killing vector

In this section, we shall consider the case that f 6= 0 and hence that K is a timelike Killing

vector field. Introducing a coordinate t such that Kµ∂µ = ∂t, the metric can be written

as [15]

ds2 = −e2ϕ(x,y) (dt+Bα(x, y) dx
α)2 + e2λ(x,y)(dx2 + dy2) , (4.1)

where λ(x, y) and ϕ(x, y) are arbitrary functions and Bα (α = x, y) is a vector with two

components. The Dreibein corresponding to this metric is naturally written as

et0 = f−1 , eti = −f2Wi , eα0 = 0 , eαi = e−λδαi , (4.2)

where we have defined f ≡ eϕ and Wα = e2ϕ−λBα. We write µ = (t, α) for the curved

indices and a = (0, i) for the flat ones, respectively. We also require that all functions

occurring in the metric (4.2) are independent of the coordinate t. Taking all these things

into account, the components of the spin connection ωabc in the flat basis read as follows,

ω00i = −e−λ f−1∂if ,

ω0ij = −ωij0 = f e−2λ ∂[i
(
Wj]e

σf−2
)
,

ωijk = 2e−λ δi[j∂k]λ . (4.3)

Following [15], it can be shown that the existence of a timelike Killing spinor leads to the

following relations between the auxiliary fields Vµ, S and the metric functions

V0 =
1

2
ǫij ωij0 , (4.4)

V1 − iV2 = ie−λ ∂z (ϕ− λ+ ic) , (4.5)

S = ie−λ−ic ∂z (ϕ+ λ− ic) , (4.6)

ǫij∂iBj = −2V0 e
2λ−ϕ , (4.7)

where c(x, y) is an arbitrary time-independent real function and z = x + iy denotes the

complex coordinates.

At this stage we have paved the way for constructing supersymmetric background

solutions by exploiting the Killing spinor identities. Making an ansatz for the vector field

Vµ we can now solve eqs. (4.4)–(4.7) and determine the metric functions λ and ϕ. Following

the same logic in [15], we now look for solutions for with the following field configuration

S = Λ , Va = const. , V2 = 0 , c = 0 . (4.8)
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V 2 V0 V1 Equation Solution of STMG?

Round AdS3 0 0 0 4.15 ✓

AdS2 × R > 0 0 Λ 4.18 ✗

Null-Warped AdS3 0 ±Λ Λ 4.21 ✓

Spacelike Squashed AdS3 > 0 < Λ Λ 4.25 ✓

Timelike Streched AdS3 < 0 > Λ Λ 4.27 ✓

AdS3 pp-wave 0 V0 εV0 4.34 ✓

Lifshitz > 0 0 6= 0 and 6= Λ 4.39 ✗

Table 1. Classification of supersymmetric background solutions of the N = (1, 1) CNMG. The

solutions are classified with respect to the values of the components of the auxiliary vector Va, and

compared with the solutions of the N = (1, 1) TMG (STMG).

With these choices, the non-vanishing components of the spin connection given in eq. (4.3)

in a flat basis read as follows

ω002 = −(Λ + V1) , ω112 = Λ− V1 ,

ω120 = ω201 = −ω012 = V0 . (4.9)

Note that, by setting V2 = c = 0, we can solve for λ and ϕ using eqs. (4.5) and (4.6) and

their integrability conditions. Furthermore, By can be set to zero by a gauge choice. As a

result, we obtain the following differential equations for the functions ϕ, λ and Bx

e−λ∂yϕ = V1 + Λ, (4.10)

e−λ∂yλ = Λ− V1, (4.11)

∂yBx = 2V0 e
2λ−ϕ, (4.12)

with ∂xϕ = ∂xλ = 0.

It is worth emphasizing that so far we have not used the equations of motion, we

have only considered the constraints that follow from supersymmetry. The solutions

of eqs. (4.10)–(4.12) will bifurcate depending on the value of the vector component V1.

In the next subsection we will classify the supersymmetric solutions of the CNMG La-

grangian (2.1) with respect to the value of this vector field component by imposing the

field equations.

4.1 Classification of supersymmetric background solutions

In this subsection, we first integrate the differential equations (4.10)–(4.12) depending on

the different values of the vector field components Va, which yields the metric functions λ

and ϕ. Next, we impose the field equations and determine the couplings. The results for

the different cases are given in three subsubsections. For the convenience of the reader, we

have summarized all supersymmetric background solutions allowed by the theory (2.1) in

table 1.
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4.1.1 The case V1 = 0

We start with the simplest case, i.e. V1=0. The supersymmetry constraint equations (4.10)–

(4.12) yield

λ = − log(−Λy), ϕ = log

(
− 1

Λy

)
, Bx = −2V0

Λ
log(−Λy). (4.13)

The vector equation (2.6) then implies V0 = 0 for Λ 6= 0. Finally, from the scalar equation

we fix M to be

M = − Λ3

6m2
+ Λσ. (4.14)

Thus, the metric becomes

ds2 =
l2

y2
(−dt2 + dx2 + dy2) , (4.15)

which describes the round AdS3 spacetime with l = − 1
Λ , see table 1.

4.1.2 The case V1 = Λ 6= 0

For V1 = Λ, we obtain

λ = 0, ϕ = 2Λy, Bx = −V0

Λ
e−2Λy . (4.16)

The vector and the scalar field equation lead to the following subclasses A, B and C which

we describe below.

A. V0 = 0, Λ = −2
√

m2σ

7
, M = 7Λ3

12m2 + Λσ. With this choice of parameters the

metric reads

ds2 = −e4Λydt2 + dx2 + dy2 . (4.17)

After a simple coordinate transformation y = log r
2Λ , x = x′

2Λ the metric is brought into the

following form

ds2 =
l2

4

(
−r2dt2 +

dr2

r2
+ dx2

)
. (4.18)

which is AdS2 × R. This background also appeared in the bosonic version of NMG, al-

though given in different coordinates [23, 24].

B. V0 = ±Λ, Λ = −
√

−2m2σ

7
, M = − Λ3

6m2 +Λσ. This choice of parameters leads to

the metric

ds2 = −e4Λydt2 ± 2e2Λydtdx+ dy2 . (4.19)

Performing a coordinate transformation

y = l log u, t = lx−, x = ± lx+

2
, (4.20)

the metric (4.19) can be put into the more familiar form [21]

ds2 = l2

[
du2 + dx+dx−

u2
−
(
dx−

u2

)2
]
, (4.21)

which is null warped AdS3.
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C. V0 = ±
√

7Λ2
−4m2σ

21
, M = − Λ3

3m2 + 8Λσ

7
. Using these values for the parameters

and fixing the value of V0 we deduce from the vector equation that

ds2 =
V 2

Λ2

(
dx+

V0Λ

V 2
e2Λy dt

)2

− Λ2

V 2
e4Λy dt2 + dy2 . (4.22)

After making a coordinate transformation V0Λ
V 2 e

2Λy = 1
z , the metric reads

ds2 =
V 2

Λ2

(
dx+

dt

z

)2

− 1

z2
V 2

Λ2

dt2

ν2
+

dy2

4Λ2z2
, (4.23)

where ν2 = 1− V 2

Λ2 < 1.

This is not yet the end of the story for this subclass: provided that V 2 > 0, which

implies 7Λ2 + 2m2σ > 0, we have 1 > ν2 > 0. By making a coordinate transformation

x =
x′ν

2V
, t =

t′ν

2V
, (4.24)

the metric (4.22) can be cast into the following form

ds2 =
l2

4

[
−dt2 + dz2

z2
+ ν2

(
dx+

dt

z

)2
]
, (4.25)

which is the metric of spacelike squashed AdS3 with squashing parameter ν2.

For V 2 < 0, i.e. 7Λ2 + 2m2σ < 0, we perform a coordinate transformation

x =
x′

2

√
−ν2

V 2
, t =

t′

2

√
−ν2

V 2
, (4.26)

after which the metric (4.22) can be written in the following form

ds2 =
l2

4

[
dt2 + dz2

z2
− ν2

(
dx+

dt

z

)2
]
, (4.27)

where ν2 > 1. The metric (4.27) is one of the incarnations of the timelike stretched AdS3

background.

4.1.3 The case V1 6= Λ and V1 6= 0

This class of solutions have V1 6= Λ and V1 6= 0. The calculation of the metric func-

tions follows the computations performed in the previous subsubsections with the extra

definitions

σ = − log(z), ϕ = log(zα), Bx = −V0

V1
z−(1+α), (4.28)

where

z ≡ (V1 − Λ)y, α ≡ V1 + Λ

V1 − Λ
. (4.29)

Using the components of the vector equation, we find

V0(V
2
0 − V 2

1 )(V1 − Λ) = 0 . (4.30)

From eq. (4.30) it is straightforward to see that this subclass has two different branches,

i.e. V0 = 0 and V1 = εV0 with ε2 = 1. We will discuss these two branches as separate cases

A and B below.
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A. V1 = εV0 , ε = ±1, V0 = −εΛ ±
√

Λ2
−2m2σ

2
. With this choice of parameters the

vector equation gives rise to

2V 2
0 + 4εV0 + Λ2 + 2m2σ = 0 . (4.31)

The parameter M can be solved by using the field equation for A as follows,

M =
−Λ3

6m2
+ Λσ . (4.32)

Plugging in the metric functions, we obtain the following expression for the metric

ds2 = −z2α(−dt+ 2εz−1−αdx)dt+
1

(V1 − Λ)2
dz2

z2
.

Performing the coordinate transformation [15]

z = u
(Λ−V1)

Λ , t = lx− , x =
εlx+

2
, (4.33)

this metric can be written as follows

ds2 = l2

[
du2 + dx+dx−

u2
− u

2
(

Λ−V1
Λ

)(
dx−

u2

)2
]
. (4.34)

This is the metric of a AdS3 pp-wave. Note that the limit V1 → Λ is well defined and gives

rise to the minus null warped AdS3 metric of eq. (4.21), as expected.

B. V0 = 0, V1 = α+1
α−1

, M =
Λ(9V 2

1
−2Λ2)

12m2 + Λσ. The final spacetime we consider

appears for V0 = 0. Rather than solving the vector equation for V1 as we did in the

previous cases, we set V1 =
α+1
α−1 using eq. (4.29). The field equations further imply that

(1− 14α− 7α2)Λ2 + 4m2(−1 + α)2σ = 0, (4.35)

whose solution is given by

Λ = −
√

4m2σ(α− 1)2

(1− 14α− 7α2)
. (4.36)

Here, we would like to restrict our attention to α < 0, as α will be the minus of the Lifshitz

exponent, thus giving rise to spacetimes with positive Lifshitz exponent

(1) α < 1
7(−7− 2

√
14) then m2σ > 0,

(2) 1
7(−7− 2

√
14) < α < 0 then m2σ < 0.

Provided that the vector field components are chosen as discussed, we obtain the Lifshitz

metric

ds2 = l2L

[
−y2αdt2 +

1

y2
(dx2 + dy2)

]
, (4.37)
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where lL is the Lifshitz radius which is defined as

l2L =
1

(V1 − Λ)2
. (4.38)

We have redefined t as t → (V1 − Λ)2α+2t. Note that in the limit V1 → 0 one obtains the

round AdS3 metric given in eq. (4.15). Taking y = 1
r gives the metric in the standard form

ds2 = l2L

(
−r−2αdt2 + r2dx2 +

1

r2
dr2

)
, (4.39)

where l2L and V1 are given in terms of α and Λ as3

l2L =

(
α− 1

2Λ

)2

. (4.40)

As shown in [15], all the supersymmetric backgrounds that we have found in this

section except the AdS3 metric preserve 1/4 of the supersymmetries.

5 Supersymmetric black holes

In this section, we discuss the supersymmetry aspects of black hole solutions of CNMG in

a AdS3 or Lifshitz background. The existence of a Killing spinor is highly restricted due to

the global requirement that the angular coordinate φ should be periodic. As shown in [15],

the spacelike squashed AdS3 solution can be interpreted as an extremal black hole upon

making a coordinate transformation. Therefore, in this section we will discuss three specific

cases of black hole solutions. We start our discussion in subsection 5.1 with a generalization

of the BTZ black hole, and show that the periodicity condition implies the extremality of

the black hole. In the next subsection we investigate the ‘logarithmic’ black hole given

in [19], and show that, the logarithmic black hole is also supersymmetric. Finally, in a

third subsection we investigate the possible black holes in a Lifshitz background.

5.1 The rotating hairy BTZ black hole and its killing spinors

The CNMG Lagrangian (2.1) admits the following rotating black hole solution [17]

ds2 = −N2F 2dt2 +
dr2

F 2
+ r2

(
dφ+Nφdt

)2
, (5.1)

where N , Nφ and F are functions of the radial coordinate r, given by

N2 =

[
1 +

b

4H

(
1− Ξ

1
2

)]2
,

Nφ = − J
2Mr2

(M− bH) , (5.2)

F 2 =
H2

r2

[
H2 +

b

2

(
1 + Ξ

1
2

)
H +

b2

16

(
1− Ξ

1
2

)2
−M Ξ

1
2

]
,

3Note that the standard Lifshitz exponent z in the literature is given by z = −α.
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and

H =

[
r2 − 1

2
M

(
1− Ξ

1
2

)
− b2

16

(
1− Ξ

1
2

)2
] 1

2

. (5.3)

where we have set the AdS3 radius l = 1. Here Ξ := 1 − J 2/M2, and the rotation

parameter J /M is bounded in terms of the AdS radius according to

− 1 ≤ J /M ≤ 1 . (5.4)

The parameter b is the gravitational hair, and for b = 0 one recovers the BTZ black hole [18].

Since we impose the global requirement that φ should be periodic, i.e. 0 ≤ φ ≤ 2π, the

vacuum of the BTZ black hole with gravitational hair, defined by M = J = b = 0,

admits only two Killing spinors. In order to see that, we consider the Killing spinor

equations (3.38). Since the equations for ξ1 and ζ2 enforce exponential solutions for ξ1
and ζ2, we cannot find a solution for ξ2 and ζ1 that is periodic in φ. Therefore, finding a

periodic solution requires setting ξ1 = ζ2 = 0. This implies that only two of the solutions

of equations (3.38) are valid.

Introducing the following orthonormal frame for the metric

e0 = NFdt , e1 = rdφ+ rNφdt , e2 = F−1dr , (5.5)

the spin-connection components are given by

ω01 =
1

2

rNφ′

FN
dr , ω02 =

(
−FNF ′ +

r2NφNφ′

2N
− F 2N ′

)
dt+

r2Nφ′

2N
dφ ,

ω12 =
1

2
F (2Nφ + rNφ′)dt+ Fdφ , (5.6)

and hence the Killing spinor equation reads

0 = dǫ+
1

2

(
− rNφ′

2FN
σ3ǫ+

1

F
σ3ǫ

⋆

)
dr +

1

2

(
r2Nφ′

2N
σ1ǫ− iFσ2ǫ+ rσ1ǫ

⋆

)
dφ

+
1

2

[(
−FNF ′ +

r2NφNφ′

2N
− F 2N ′

)
σ1ǫ− i

(
FNφ +

1

2
rFN ′

)
σ2ǫ

+ iNFσ2ǫ
⋆ + rNφσ1ǫ

⋆

]
dt . (5.7)

Decomposing the Dirac spinor into two Majorana spinors like in eq. (3.29), we obtain the

following equations

0 = dξ1 +
1

4N

(
Nφ [2N(r − F ) + r2Nφ′]− FN(−2N + 2rF ′ + rNφ′ + 2FN ′)

)
ξ2 dt

+
1

4N

(
2N(r − F ) + r2Nφ′

)
ξ2 dφ+

1

4FN

(
2N − rNφ′

)
ξ1 dr ,

0 = dξ2 +
1

4N

(
Nφ [2N(r + F ) + r2Nφ′] + FN(−2N − 2rF ′ + rNφ′ − 2FN ′)

)
ξ1 dt

+
1

4N

(
2N(r + F ) + r2Nφ′

)
ξ1 dφ+

1

4FN

(
− 2N + rNφ′

)
ξ2 dr ,
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0 = dζ1 +
1

4N

(
Nφ [−2N(r + F ) + r2Nφ′]− FN(2N + 2rF ′ + rNφ′ + 2FN ′)

)
ζ2 dt

+
1

4N

(
− 2N(r + F ) + r2Nφ′

)
ζ2 dφ− 1

4FN

(
2N + rNφ′

)
ζ1 dr ,

0 = dζ2 +
1

4N

(
Nφ [−2N(r − F ) + r2Nφ′] + FN(2N − 2rF ′ + rNφ′ − 2FN ′)

)
ζ1 dt

+
1

4N

(
− 2N(r − F ) + r2Nφ′

)
ζ1 dφ+

1

4FN

(
2N + rNφ′

)
ζ2 dr . (5.8)

From these equations it follows that for the generic case not all the dφ components can

be set to zero, which is the requirement for finding a periodic Killing spinor. Therefore,

we turn our attention to the extremal solutions with M = |J |. For this case we find the

following Killing spinors that are periodic in φ

(1) M = −J

ξ1 = ζ1 = ζ2 = 0 , ξ2 =
b+

√
−b2 + 8J + 16r2√

r
, (5.9)

(2) M = J

ξ1 = ξ2 = ζ2 = 0 , ζ1 =
b+

√
−b2 − 8J + 16r2√

r
. (5.10)

Note that for zero hair, i.e. b → 0, one re-obtains the Killing spinors for a BTZ black hole.

5.2 The ‘logarithmic’ black hole

The supersymmetric CNMG Lagrangian (2.1) also admits the following so-called ‘logarith-

mic’ black hole solution [19]

ds2 = − 4ρ2

l2f2(ρ)
dt2 + f2(ρ)


dφ− ε

q l ln
[

ρ
ρ0

]

f2(ρ)
dt




2

+
l2

4ρ2
dρ2 , (5.11)

where q ≤ 0 and 0 < φ < 2π. The function f2(ρ) is defined by

f2(ρ) = 2ρ+ q l2 ln

[
ρ

ρ0

]
, (5.12)

and the parameter ε = ±1 determines the direction of the rotation since

M = 2q , J = 2 ε lq . (5.13)

Setting q = 0 and making the coordinate transformation ρ = r2/2 we obtain a AdS3

background with φ being periodic. This implies that the background of the ‘logarithmic’

black hole preserves only half of the supersymmetries like in the case of the rotating hairy

BTZ black hole in the previous subsection.
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We now determine the explicit expressions for the Killing spinors. Introducing the

following orthonormal frame for the metric

e0 =
2ρ

lf(ρ)
dt , e1 = f(ρ) dφ−

lq ε ln
[

ρ
ρ0

]

f(ρ)
dt , e2 =

l

2ρ
dρ , (5.14)

we find the following expressions for the spin-connection components

ω01 = − l2q ε

4ρ2f(ρ)

[
f(ρ)− 2ρ f ′(ρ) ln

[
ρ

ρ0

]]
dρ , ω12 = − q ε

f(ρ)
dt+

2ρ f ′(ρ)

l
dφ ,

ω02 = − 1

2l2 ρ f2(ρ)

(
f(ρ)

[
8ρ2 − l4q2 ln

[
ρ

ρ0

]]
+ 2ρf ′(ρ)

[
−4ρ2 + l4q2 ln

[
ρ

ρ0

]])
dt

−lq ǫ

(
f(ρ)

2ρ
+ ln

[
ρ

ρ0

]
f ′(ρ)

)
dφ . (5.15)

Using these expressions in the Killing spinor equation (2.4), we find that the Killing spinors

of the logarithmic black hole are given by

i. ε = 1

ξ1 = ξ2 = ζ2 = 0 , ζ1 =

√
ρ

ρ0


 1

2r + l2q ln
[

ρ
ρ0

]




1/4

, (5.16)

ii. ε = −1

ξ1 = ζ1 = ζ2 = 0 , ξ2 =

√
ρ

ρ0


 1

2r + l2q ln
[

ρ
ρ0

]




1/4

. (5.17)

This result may be somewhat surprising considering the expectation that the only

existing supersymmetric black hole in an AdS3 background is an extremal BTZ black

hole [12]. However, unlinke the rotating BTZ black hole, the “logarithmic” black hole

does not have a non-extremal limit J 6= M . Thus, one cannot recover a static, non-

supersymmetric black hole from the J → 0 limit of the “logarithmic” black hole. Therefore,

this particular case evades the argument presented in [12].4

5.3 Searching for a supersymmetric Lifshitz black hole

In this section, we briefly present our attempts to find a supersymmetric Lifshitz black

hole. Following [20], we first try to saturate the BPS bound using the vector field Vµ, since

it can, in principle, contribute as a massive vector hair. In order to do so, we consider the

following metric ansatz

ds2 = l2L

(
−adt2 + r2dx2 +

1

f
dr2

)
, (5.18)

4We thank Paul Townsend for a clarifying discussion on this exceptional case.
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where the functions a and f depend on the coordinate r only. With this ansatz for the

metric, one can show that the Killing spinor equation imposes the following constraint of

these functions

a′
√
f

a
+

2
√
f

r
+ 2(α− 1) = 0 . (5.19)

Having obtained this constraint, we next turn to the vector equation (2.6). Using the

metric ansatz (5.18), the V0 and V2 components of the vector equation are automatically

satisfied, while the V1 component reads

0 = (1 + α)
[
r2fa′ + 2a2

(
− 8f + r[2r(−1 + 5α+ α2) + 5f ′]

)

−ra
(
ra′f ′ + 2f(−5a′ + ra′′)

)]
. (5.20)

Imposing the Killing spinor constraint (5.19) to simplify the vector equation, we obtain

−7r
√
f(α− 1)− 11f + r

(
r(7α− 2) + 3f ′

)
= 0 . (5.21)

As we wish to find a solution for f which has a double root at r = r0, which is a necessary

condition for an extremal black hole, we need to be able to eliminate the f terms in the

vector equation. Using the fact that the Killing spinor constraint (5.19) can be cast into

the following form

√
f(1− α) = −1

2

(
a′

a
+

2

r

)
f , (5.22)

the vector equation can be written as

7

2
r

(
a′

a
− 8

7r

)
f + r

(
r(7α− 2) + 3f ′

)
= 0 , (5.23)

which has the following solution

a = r8/7 , f = r2 − r20 . (5.24)

However, using this equation in the Killing spinor constraint (5.19), we find that r0 = 0.

A further check with the metric equation also imposes r0 = 0. Therefore, although the

Killing spinor equation allows the existence of a supersymmetric black hole, we find that

the vector and metric equations are incompatible with that possibility.

Alternatively, one may try to start with a rotating Lifshitz black hole using the fol-

lowing metric ansatz

ds2 = l2L

[
−r−2αF (r)dt2 +

(
rdx+ r−αG(r)dt

)2
+

1

r2F (r)
dr2

]
, (5.25)

where F (r) and G(r) are arbitrary functions that depend on the coordinate r only. In this

case the Killing spinor equation constrains the function F (r) to be of the form

F (r) = 1 + ar−2+2α , (5.26)
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where a is a constant. Furthermore, the vector equation constraints the function G(r) via

the following differential equation

21r4G′2 − 42r3(α+ 1)GG′ + 21r2(1 + α)2G2 + 4ar2α(6α− 11) = 0 . (5.27)

Using the solutions of this differential equation, along with the expression (5.26) in the

gravity equation, we find that it takes us back to the Lifshitz background, not allowing a

rotating black hole solution.

The result of this subsection is somewhat expected, considering the fact that for the

only rotating Lifshitz solution known to us [25], the couplings are determined by using a

stationary Lifshitz spacetime which has a rotation term. This is not allowed by the given

matter configuration of the N = (1, 1) CNMG theory.

Finally, we would like to comment that as our attempts to find a supersymmetric

Lifshitz black hole has failed with the parity-even theory under our consideration (2.1),

one may consider to modify the CNMG by adding a parity violating Lorentz-Chern-Simons

term, which gives rise to the so-called N = (1, 1) Generaized Massive Gravity (SGMG) [13].

In that case, we found that the vector equation is modified in such a way that the Lifshitz

background is no longer a solution with the field configuration given in (4.8).

6 Conclusions

Using the off-shell Killing spinor analysis, we have investigated in this work the supersym-

metric backgrounds of the N = (1, 1) CNMG model given by the Lagrangian (2.1). The

background solutions are classified according to the norm of the Killing vector constructed

out of Killing spinors. There are two cases only. First of all, when the Killing vector is null,

see section 3, the N = (1, 1) analysis reduces to that of the N = 1 CNMG model, since

the null choice forces the auxiliary massive vector Vµ and the auxiliary pseudo-scalar B

to vanish. Therefore, the solution is of the pp-wave type which preserves 1/4 of the su-

persymmetries. In the AdS3 limit, there is a supersymmetry enhancement, and the AdS3

solution is maximally supersymmetric.

As a second case, in section 4 we investigated the case that the Killing vector is taken

to be timelike. In particular, we did consider a special class of solutions in which the

pseudo-scalar B vanishes. In that case all the supersymmetric solutions can be classified

in terms of the components Va of the massive vector in the flat basis. A subclass of these

solutions, with different parameters, are also solutions of the supersymmetric TMG model,

see table 1. In addition to these solutions, we found that the N = (1, 1) CNMG model

possesses Lifshitz and AdS2 × R solutions. All these background solutions preserve 1/4 of

the superymmetries.

Next, in section 5 we investigated three cases of black hole solutions in a AdS3 or

Lifshitz background. In the case of AdS3, we studied the rotating hairy BTZ black hole in

subsection 5.1 and the logarithmic black hole in subsection 5.2. We found that in general

the rotating hairy BTZ black hole is not supersymmetric due to the fact that the periodicity

condition on the φ coordinate and the periodic Killing spinors only arise when the black

hole is extremal. In the case of the logarithmic black hole, we found that only the extremal
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black hole solution exists, which is supersymmetric by its own nature. Finally, we analyzed

the conditions for the existence of a supersymmetric Lifshitz black hole, and showed that

it does not exist given the field configuration of the N = (1, 1) CNMG model.

There are numerous directions one can consider for future study. An intriguing problem

is to find a supersymmetric Lifshitz black hole. Although our trials with the current model

has failed, it is natural to consider different approaches. For instance, one could saturate

the BPS bound with a U(1) charge. This can be achieved by coupling the N = (1, 1)

CNMG model to an off-shell vector multiplet and repeat the analysis presented in this

paper.

Finally, we would like to mention that the same procedure that we presented in this

paper can be applied to the N = (2, 0) CNMG model. This model has a different field

content consisting of two auxiliary vectors and a real scalar as well as the graviton and

the gravitino. Given that the N = (2, 0) theory with matter couplings has new supersym-

metric solutions [26], we would expect that the N = (2, 0) CNMG model exhibits different

supersymmetric solutions. Therefore, it would be interesting to see what the consequences

of the different field content is for the supersymmetric solutions of the model.
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