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TheKlein-Gordon (KG) equation for the two-dimensional scalar-vector harmonic oscillator plus Cornell potentials in the presence
of external magnetic and Aharonov-Bohm (AB) flux fields is solved using the wave function ansatz method. The exact energy
eigenvalues and the wave functions are obtained in terms of potential parameters, magnetic field strength, AB flux field, and
magnetic quantumnumber.The results obtained by using different Larmor frequencies are comparedwith the results in the absence
of both magnetic field (𝜔

𝐿
= 0) and AB flux field (𝜉 = 0) cases. Effect of external fields on the nonrelativistic energy eigenvalues

and wave function solutions is also precisely presented. Some special cases like harmonic oscillator and Coulombic fields are also
studied.

1. Introduction

The exact solution of Schrödinger equation (SE) and the
relativistic wave equations for some physical potentials are
very important in many fields of physics and chemistry since
they contain all the necessary information for the quantum
system under investigation. The hydrogen atom and the
harmonic oscillator are usually given in textbooks as two
of several exactly solvable problems in both classical and
quantum physics [1]. The exact 𝑙-state solutions of the SE are
possible only for a few potentials, and hence approximation
methods are used to obtain their solutions. According to the
Schrödinger formulation of quantummechanics, a total wave
function provides implicitly all relevant information about
the behaviour of a physical system. Hence, if it is exactly
solvable for a given potential, the wave function can describe
such a system completely. Until now, many efforts have been
made to solve the stationary SE with anharmonic potentials
in three dimensions (3D) and two dimensions (2D) [2–7]
with many applications to molecular and chemical physics.
However, the study of SE with some of these potentials in
arbitrary dimension D is also solved in the following (cf.

[8] and the references therein). The study of bound states is
fundamental in the understanding of molecular spectrum of
a diatomic molecule and provides us with insight into the
physical problemunder consideration in quantummechanics
[9].

Recently, some authors have studied the bound states
of the 𝑙-wave equations with some typical potentials in
the presence of an equal scalar potential 𝑆(𝑟) and a vector
potential 𝑉(𝑟). These potentials include the harmonic oscil-
lator potential [10, 11], ring-shaped Kratzer-type potential
[12], pseudo-harmonic oscillator potential [13], double ring-
shaped harmonic oscillator potential [14], and ring-shaped
pseudo-harmonic oscillator potential [15–17].

It is well-known that the non-relativistic quantum
mechanics is an approximate theory of the relativistic one.
However, when a particle moves in a strong potential field,
the relativistic effects must be considered which give the
corrections for non-relativistic quantum mechanics [18].
Therefore, themotion of spin-0 and spin-1/2 particles satisfies
the KG and the Dirac equations, respectively. In particular,
solutions to relativistic equations play an important role in
many aspects of modern physics. For instance, the Dirac
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equation has been used to explain the antinucleon bound in
a nucleus [19], deformed nuclei [20], and super deformation
[21] and to establish an effective nuclear shell model scheme
[22–24], while the KG equation has been used in describing
a wide variety of phenomena, which include classical wave
systems, such as the displacement of a string attached to an
elastic bed [25] and quantum system based on scalar field
theories [26].

Recently, the Schrödinger equation is solved exactly for
its bound states (energy spectrum and wave functions) [27–
29] to study the spectral properties in a 2D charged particle
(electron or hole) confined by a harmonic oscillator in the
presence of external strong uniform magnetic field 󳨀→𝐵 along
the 𝑧 direction and Aharonov-Bohm (AB) flux field created
by a solenoid. The energy levels and the wave functions of
an electron confined by 2D harmonic and pseudo-harmonic
oscillators have been studied in presence of external fields [30,
31] using theNikiforov-Uvarov (NU)method. Overmore, it is
natural to study the relativistic effects of the externalmagnetic
and AB flux fields on the KG equation for pseudo-harmonic
oscillator potential, especially for a strong coupling by means
of the NU method [32]. The 2D solution of Schrödinger
equation for the Kratzer potential with and without the
presence of a constant magnetic field is studied within the
framework of the asymptotic iteration method [33]. The
energy eigenvalues are obtained analytically (numerically)
for the absence (presence) of uniform magnetic field case.
These results have been obtained by using different Larmor
frequencies (𝜔

𝐿
̸= 0) and potential parameters are compared

with the results in the absence of magnetic field case (𝜔
𝐿
=

0). Overmore, the spectral properties of the 2D Schrödinger
equation for the pseudo-harmonic-Coulomb-linear potential
are studied using the analytical iteration method [34]. Under
spin symmetry, the energy states and wave functions of the
Dirac equation for the Killingbeck (harmonic oscillator plus
Cornell) potential have been carried out using the wave func-
tion ansatz method [35]. The spin and pseudospin symmetry
inDirac equation have been studied in the Killingbeck poten-
tial within the context of quasi-exact solution [36]. Further,
the energy eigenvalues and normalized eigenfunctions of the
radial Schrödinger equation in𝑁-dimensional Hilbert space
for the quark-antiquark interaction Killingbeck potential
have been obtained using the power series technique via a
suitable choice of ansatz to the wave function [37, 38].

Very recently, we studied the scalar charged particle
exposed to relativistic scalar-vector Killingbeck potentials in
presence of magnetic and Aharonov-Bohm flux fields and
obtained its energy eigenvalues and wave functions using
the analytical exact iteration method [39]. Therefore, the
behavior of a spinless relativistic particle moving under the
Killingbeck potential in a static magnetic and AB flux fields
has not been investigated yet, and in thiswork,we aim to solve
the KG equation in 2D for equal mixture of scalar and vector
Killingbeck potentials with and without constant magnetic
and AB flux fields for the first time. We present the exact
energy eigenvalues and wave functions of the Killingbeck
potential for any 𝑛 and 𝑚 quantum numbers in a constant
magnetic field with the different Larmor frequencies using

the wave function ansatz method [36]. The non-relativistic
energy eigenvalues and wave functions of our solution are
presented by making an appropriate mapping of parameters.
Overmore, special cases of KG for equal scalar-vector Killing-
beck potentials are also presented in the presence (𝜔

𝐿
̸= 0,

𝜉 ̸= 0) and absence (𝜔
𝐿
= 0, 𝜉 = 0) of uniform fields.

The structure of this paper is as follows. We study
effect of external uniform magnetic and AB flux fields on a
relativistic spinless particle (antiparticle) under equalmixture
of scalar and vector Killingbeck potentials in Section 2. We
discuss some special cases in Section 3. Finally, we give our
concluding remarks in Section 4.

2. The Klein-Gordon Atom

The Klein-Gordon atom for the spinless particle with mass
𝑚
𝑒
and charge −𝑒 moving in external electromagnetic field

and AB flux field given by potentials 𝑉(𝑟), 𝑆(𝑟) and 󳨀→𝐴 reads
[40, 41]

[𝑐
2
(
󳨀→
𝑝 +

𝑒

𝑐

󳨀→

𝐴)

2

− (𝐸 − 𝑉 (𝑟))
2
+ (𝑚
𝑒
𝑐
2
+ 𝑆 (𝑟))

2

]

× 𝜓 (𝑟, 𝜙) = 0.

(1)

The scalar and vector potentials are chosen in the following
form [27–30]:

𝑉
𝐾 (
𝑟) = 𝜆𝑟

2
+ 𝜎𝑟 −

𝜅

𝑟

,

󳨀→

𝐴 =

1

2

󳨀→

𝐵 ×
󳨀→
𝑟 +

ΦAB
2𝜋𝑟

̂
𝜙, (2)

where 𝑉
𝐾
(𝑟) is the Killingbeck potential, that is, harmonic

oscillator potential plus Cornell potential [35–38], which is
extensively used in particle physics [42, 43]. Moreover, the
vector potential in the symmetric gauge is defined by 󳨀→𝐴 =

󳨀→

𝐴
1
+

󳨀→

𝐴
2
such that 󳨀→∇ ×

󳨀→

𝐴
1
=

󳨀→

𝐵 and 󳨀→∇ ×

󳨀→

𝐴
2
= 0, where the

applied magnetic field 󳨀→𝐵 = (0, 0, 𝐵) is perpendicular to the
plane of transversal motion of the particle and 󳨀→𝐴

2
describes

the additional AB flux field ΦAB created by a solenoid in
cylindrical coordinates [32]. The wave function in (1) is
defined by

𝜓 (𝑟, 𝜙) =

1

√2𝜋

𝑒
𝑖𝑚𝜙𝑅 (𝑟)

√𝑟

, 𝑚 = 0, ±1, ±2, . . . , (3)

where 𝑚 is the eigenvalue of angular momentum. The
relationship between the attractive scalar and repulsive vector
potentials is given by 𝑆(𝑟) = 𝛽𝑉(𝑟), where −1 ≤ 𝛽 ≤

1 is arbitrary constant and hence the KG equation could
be reduced to a Schrödinger-type second-order differential
equation as follows:

[𝑐
2
(
󳨀→
𝑝 +

𝑒

𝑐

󳨀→

𝐴)

2

+ 2 (𝐸𝑉 (𝑟) + 𝑚𝑒
𝑐
2
𝑆 (𝑟))

+𝑆
2
(𝑟) − 𝑉

2
(𝑟) + 𝑚

2

𝑒
𝑐
4
− 𝐸
2
]𝜓 (𝑟, 𝜙) = 0.

(4)

Now, we will treat the bound-state solutions of the two cases
in (4) as follows.
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2.1. The Positive Energy Solution. The positive energy states
require that 𝑆(𝑟) = 𝑉(𝑟) (i.e., 𝛽 = 1 case) which, in the
non-relativistic limit, corresponds to the solution of the wave
equation:

{

1

2𝜇

[−𝑖ℎ

󳨀→

∇ +

𝑒

𝑐

(

𝐵𝑟

2

+

ΦAB
2𝜋𝑟

)
̂
𝜙]

2

+ 2𝑉
𝐾 (
𝑟) − 𝐸}

× 𝜓 (𝑟, 𝜙) = 0,

(5)

where𝜓(𝑟, 𝜙) stands for non-relativistic wave function.Thus,
the choice 𝑆(𝑟) = 𝑉(𝑟) produces a non-relativistic limit with a
potential function 2𝑉(𝑟) and not 𝑉(𝑟). Accordingly, it would
be natural to scale the potential term in (4) and (5) so that
in the non-relativistic limit the interaction potential becomes
𝑉(𝑟) not 2𝑉(𝑟).Thus, we need to recast (4) for the 𝑆(𝑟) = 𝑉(𝑟)

as [32, 39, 40, 44]

[𝑐
2
(−𝑖ℎ

󳨀→

∇ +

𝑒

𝑐

󳨀→

𝐴)

2

+ (𝐸 + 𝑚
𝑒
𝑐
2
)𝑉 (𝑟)]𝜓 (𝑟, 𝜙)

= (𝐸
2
− 𝑚
2

𝑒
𝑐
4
) 𝜓 (𝑟, 𝜙) ,

(6)

where

∇
2
=

1

𝜌

𝜕

𝜕𝜌

+

𝜕
2

𝜕𝜌
2
+

1

𝜌
2

𝜕
2

𝜕𝜙
2
+

𝜕
2

𝜕𝑧
2
, (7)

and in order to simplify (6), we introduce new parameters
𝛼
1
= 𝐸 +𝑚

𝑒
𝑐
2 and 𝛼

2
= 𝐸 −𝑚

𝑒
𝑐
2 so that it can be reduced to

the following form:

{𝑐
2
[−𝑖ℎ

󳨀→

∇ +

𝑒

𝑐

(

𝐵𝑟

2

+

ΦAB
2𝜋𝑟

)
̂
𝜙]

2

− 𝛼
1
(𝛼
2
− 𝑉
𝐾 (
𝑟))}

× 𝜓 (𝑟, 𝜙) = 0.

(8)

By inserting (2) and (3) into (8), we obtain

𝑑
2
𝑅 (𝑟)

𝑑𝑟
2

+

𝛼
1

ℎ
2
𝑐
2
[𝛼
2
− 𝑈eff (𝑟, 𝜔𝐿, 𝜉)] 𝑅 (𝑟) = 0, (9a)

𝑈eff (𝑟, 𝜔𝐿, 𝜉) = 𝑉
𝐾 (
𝑟) +

𝑚
2

𝑒
𝑐
2
𝜔
2

𝐿

𝛼
1

𝑟
2

+

ℎ
2
𝑐
2

𝛼
1

(𝑚
󸀠2
− 1/4)

𝑟
2

+

2ℎ𝜔
𝐿
𝑚
𝑒
𝑐
2

𝛼
1

𝑚
󸀠
,

(9b)

𝜔
𝐿
=

Ω

2

, Ω =

|𝑒| 𝐵

𝑚
𝑒
𝑐

, 𝑚
󸀠
= 𝑚 + 𝜉,

𝑚
󸀠
= 1, 2, . . . , 𝜉 =

ΦAB
Φ
0

,

(9c)

where the effective potentials depending on the magnitudes
of two fields strength with 𝜔

𝐿
and 𝑚

󸀠 are the Larmor
frequency and a new eigenvalue of angularmomentum (mag-
netic quantum number), respectively. It is worthy to mention
that the frequency Ω is called the cyclotron frequency [45].
This is the frequency of rotation corresponding to the classical

motion of a charged particle in a uniform magnetic field and
Ω/2 is the Larmor frequency in units of Hz [45]. Moreover,
we take 𝜉 as integer with the flux quantum Φ

0
= ℎ𝑐/𝑒. Here,

𝑉
𝐾
(𝑟) is a pure Killingbeck potential (2), the second term is

the harmonic oscillator-type potential, and the other terms
are the rotational potential creating the rotational energy
levels. Equations (9a), (9b), and (9c) can be alternatively
expressed as

𝑑
2
𝑅 (𝑟)

𝑑𝑟
2

+ (

𝐶
1

𝑟
2
+

𝐶
2

𝑟

− 𝐶
3
− 𝐶
4
𝑟 − 𝐶
5
𝑟
2
)𝑅 (𝑟) = 0, (10a)

𝐶
1
= −(𝑚

󸀠2
−

1

4

) , 𝐶
2
=

𝛼
1
𝜅

ℎ
2
𝑐
2
,

𝐶
3
=

2𝑚
𝑒
𝜔
𝐿
𝑚
󸀠

ℎ

−

𝛼
1
𝛼
2

ℎ
2
𝑐
2
,

(10b)

𝐶
4
=

𝛼
1
𝜎

ℎ
2
𝑐
2
, 𝐶

5
=

𝛼
1
𝜆

ℎ
2
𝑐
2
+ (

𝑚
𝑒
𝜔
𝐿

ℎ

)

2

, (10c)

with the asymptotic behaviors 𝑅(0) = 0 and 𝑅(∞) → 0. It
is interesting to look at the results obtained from (10a) for a
special case 𝐶

2
= 𝐶
4
= 0; that is, we have

𝑑
2
𝑅 (𝑟)

𝑑𝑟
2

+ (

𝐶
1

𝑟
2
− 𝐶
5
𝑟
2
)𝑅 (𝑟) = 𝐶

3
𝑅 (𝑟) , (11)

which corresponds to the differential equation of a harmonic
oscillator with a centrifugal term. It is a form similar to the
one given by (7) in [46]with the equivalence𝐶

1
→ −𝑙

󸀠
(𝑙
󸀠
+1),

𝐶
5
→ 𝛼
2 and𝐶

3
→ −𝜆

𝑛
(𝛼, 𝑙, and𝜆 are the parameters used

in [46]). So by putting the parameter values

𝑙
󸀠
= 𝑚
󸀠
−

1

2

, 𝛼 =
√
(𝐸 + 𝑚

𝑒
𝑐
2
) 𝜆

ℎ
2
𝑐
2

+ (

𝑚
𝑒
𝜔
𝐿

ℎ

)

2

,

𝜆
𝑛
=

𝐸
2
− 𝑚
2

𝑒
𝑐
4

ℎ
2
𝑐
2

−

2𝑚
𝑒
𝜔
𝐿
𝑚
󸀠

ℎ

(12)

into (14) of [45], we obtain the energy equation as

𝐸
2
− 𝑚
2

𝑒
𝑐
4
= 2𝑚
𝑒
𝑐
2
ℎ𝜔
𝐿
𝑚
󸀠

+ 2ℎ𝑐
2
(2𝑛 + 𝑚

󸀠
+ 1)

×
√
(𝐸 + 𝑚

𝑒
𝑐
2
) 𝜆

𝑐
2

+ (𝑚
𝑒
𝜔
𝐿
)
2
.

(13)

Now, we find a solution to (10a) by making the following
choice of the wave function [37, 38, 47, 48]:

𝑅
𝑛𝑚 (

𝑟) = exp(1
2

𝑝𝑟
2
+ 𝑞𝑟)

∞

∑

𝑛=0

𝑎
𝑛
𝑟
𝑛+𝛿

, (14)

where 𝑝 and 𝑞 are parameters whose values are to be
determined in terms of the potential parameters 𝜆, 𝜎, and 𝜅.
Substituting (14) into (10a), we obtain the series [36]
∞

∑

𝑛=0

𝑎
𝑛
𝑆
𝑛
𝑟
𝑛+𝛿−2

+

∞

∑

𝑛=1

𝑎
𝑛−1

𝑇
𝑛−1

𝑟
𝑛+𝛿−2

+

∞

∑

𝑛=2

𝑎
𝑛−2

𝑊
𝑛−2

𝑟
𝑛+𝛿−2

= 0,

𝑝
2
= 𝐶
5
, 2𝑝𝑞 = 𝐶

4
,

(15)
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with
𝑆
𝑛
= (𝑛 + 𝛿) (𝑛 + 𝛿 − 1) + 𝐶1

,

𝑇
𝑛−1

= 2𝑞 (𝑛 + 𝛿 − 1) + 𝐶2
,

𝑊
𝑛−2

= 𝑞
2
+ 2𝑝(𝑛 + 𝛿 −

3

2

) − 𝐶
3
,

(16)

where the two parameters 𝑝 and 𝑞 are determined in order
for the radial wave functions 𝑅

𝑛𝑚
(𝑟) to be finite everywhere

and vanish at 𝑟 = 0 and as 𝑟 → ∞. To obtain the recurrence
relation which can connect various expansion coefficients 𝑎

𝑛
,

we make identical powers of 𝑟 in (15), that is, equate the
coefficients of 𝑟𝑛+𝛿−2 to zero. Thus, the relations become

𝑎
0
[𝛿 (𝛿 − 1) + 𝐶1

] = 0 󳨐⇒ 𝛿
2
+ 𝐶
1
= 𝛿,

𝑎
0

̸= 0 󳨐⇒ 𝛿 = ±𝑚
󸀠
+

1

2

,

𝑎
1
= −

(2𝑞𝛿 + 𝐶
2
)

2𝛿

𝑎
0
,

𝑎
2
= −

[𝑝 (2𝛿 + 1) + 𝑞
2
− 𝐶
3
] 𝑎
0
+ [2𝑞 (𝛿 + 1) + 𝐶2

] 𝑎
1

2 (2𝛿 + 1)

,

𝑎
3
= −(

(2𝑝𝑞 − 𝐶
4
) 𝑎
0
+ [𝑝 (2𝛿 + 3) + 𝑞

2
− 𝐶
3
] 𝑎
1

6 (𝛿 + 1)

+

[2𝑞 (𝛿 + 2) + 𝐶2
] 𝑎
2

6 (𝛿 + 1)

) ,

...

𝑎
𝑛
= −(

(𝑝
2
− 𝐶
5
) 𝑎
𝑛−4

+ (2𝑝𝑞 − 𝐶
4
) 𝑎
𝑛−3

𝑛 (2𝛿 + 𝑛 − 1)

+

[𝑝 (2𝛿 + 2𝑛 − 3) + 𝑞
2
− 𝐶
3
] 𝑎
𝑛−2

𝑛 (2𝛿 + 𝑛 − 1)

+

[2𝑞 (𝛿 + 𝑛 − 1) + 𝐶2
] 𝑎
𝑛−1

𝑛 (2𝛿 + 𝑛 − 1)

) ,

(17)

where 𝑛 = 0, 1, 2, . . ., with 𝑎
0

̸= 0. Here, the positive sign of
parameter 𝛿 = 𝑚

󸀠
+ 1/2 has been selected. The power series

for large values of 𝛿 or𝑚󸀠 is convergent. For convenience, we
take the ratio of two successive terms, that is, 𝑎

𝑛+1
/𝑎
𝑛
, which

becomes
𝑎
1

𝑎
0

= −(𝑞 +

𝐶
2

2𝛿

) 󳨀→ −𝑞 when 𝛿 󳨀→ ∞

𝑎
2

𝑎
0

=

𝑞
2
(𝛿 + 𝐶

2
/2𝑞) [𝛿 + 𝐶

2
/2𝑞 + 1]

𝛿 (2𝛿 + 1)

−

[𝑝 (2𝛿 + 1) + 𝑞
2
− 𝐶
3
]

2 (2𝛿 + 1)

󳨀→

𝑞
2
− 𝑝

2

when 𝛿 󳨀→ ∞.

(18)

It is apparent from the above relations that the power series
converges to zero when 𝛿 → ∞. Hence, the series must
be truncated (bounded) for 𝑛 = 𝑛max. At this value of 𝑛, we
obtain the following equations:

𝑝 = ±
√
(𝐸 + 𝑚

𝑒
𝑐
2
) 𝜆

ℎ
2
𝑐
2

+ (

𝑚
𝑒
𝜔
𝐿

ℎ

)

2

󳨐⇒ 𝑝 = −
√
(𝐸 + 𝑚

𝑒
𝑐
2
) 𝜆

ℎ
2
𝑐
2

+ (

𝑚
𝑒
𝜔
𝐿

ℎ

)

2

, 𝑝 ̸= 0,

(19a)

2𝑝𝑞 = 𝐶
4

󳨐⇒ 𝑞 = −

(𝐸 + 𝑚
𝑒
𝑐
2
) 𝜎

2ℎ
2
𝑐
2√((𝐸 + 𝑚

𝑒
𝑐
2
) 𝜆/ℎ
2
𝑐
2
) + (𝑚

𝑒
𝜔
𝐿
/ℎ)
2

,

(19b)

(𝐸 + 𝑚
𝑒
𝑐
2
) 𝜅

ℎ
2
𝑐
2

= −2𝑞 (𝑛 + 𝑚
󸀠
−

1

2

) ,
(19c)

(𝐸 + 𝑚
𝑒
𝑐
2
) (𝐸 − 𝑚

𝑒
𝑐
2
)

ℎ
2
𝑐
2

=

2𝑚
𝑒
𝜔
𝐿
𝑚
󸀠

ℎ

+ 2
√
(𝐸 + 𝑚

𝑒
𝑐
2
) 𝜆

ℎ
2
𝑐
2

+ (

𝑚
𝑒
𝜔
𝐿

ℎ

)

2

× (𝑚
󸀠
+ 𝑛 − 1) − 𝑞

2
,

(19d)

where the negative sign of the coefficient 𝑝 has been chosen
in (19a). It is worth noting that the potential parameter𝜆must
be positive when 𝜔

𝐿
= 0. Hence, (19c) gives a restriction on

the potential parameters 𝜆, 𝜎, and 𝜅 as follows:

𝜎 =

𝜅

(𝑛 + 𝑚
󸀠
− 1/2)

√
(𝐸 + 𝑚

𝑒
𝑐
2
) 𝜆

ℎ
2
𝑐
2

+ (

𝑚
𝑒
𝜔
𝐿

ℎ

)

2

,
(20)

and it follows that (19d) gives the energy formula as

𝐸
2
− 𝑚
2

𝑒
𝑐
4
= 2𝑚
𝑒
𝑐
2
ℎ𝜔
𝐿
𝑚
󸀠
+ 2ℎ
2
𝑐
2
(𝑛 + 𝑚

󸀠
− 1)

×
√
(𝐸 + 𝑚

𝑒
𝑐
2
) 𝜆

ℎ
2
𝑐
2

+ (

𝑚
𝑒
𝜔
𝐿

ℎ

)

2

−

(𝐸 + 𝑚
𝑒
𝑐
2
)

2

𝜅
2

4ℎ
2
𝑐
2
(𝑛 + 𝑚

󸀠
− 1/2)

2
,

(21)

where 𝑛 = 0, 1, 2, . . .. We may find a solution to the
above transcendental equation as 𝐸 = 𝐸

(+)

KG = 𝐸
𝑛𝑚
󸀠(𝜔
𝐿
, 𝜉).

Overmore, the wave function (14) with the help of (17), (19a),
and (19b) becomes
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𝜓
(+)

𝑛,𝑚
(𝑟, 𝜙) = 𝐶

𝑛,𝑚

1

√2𝜋

𝑒
𝑖𝑚𝜙

𝑟
𝑚+𝜉

𝑒
−(1/2)√(𝐸+𝑚

𝑒
𝑐
2
)𝜆/ℎ
2
𝑐
2
+(𝑚
𝑒
𝜔
𝐿
/ℎ)
2
[𝑟
2
+((𝐸+𝑚

𝑒
𝑐
2
)𝜎/((𝐸+𝑚

𝑒
𝑐
2
)𝑑
2
+ℎ
2
𝑐
2
(𝑚
𝑒
𝜔
𝐿
/ℎ)
2
))𝑟]

𝑛max

∑

𝑛=0

𝑎
𝑛
𝑟
𝑛
,

(22a)

𝑎
1
= −𝑎
0
[𝑞 +

(𝐸 + 𝑚
𝑒
𝑐
2
) 𝜅

2ℎ
2
𝑐
2
(𝑚
󸀠
+ 1/2)

] , (22b)

𝑎
2
= −

1

2

𝑎
0
[𝑝 − 𝑞

2
−

𝑚
𝑒
𝜔
𝐿
𝑚
󸀠

ℎ (𝑚
󸀠
+ 1)

−

(𝐸 + 𝑚
𝑒
𝑐
2
) 𝜅

ℎ
2
𝑐
2
(𝑚
󸀠
+ 1/2)

(𝑞 +

(𝐸 + 𝑚
𝑒
𝑐
2
) 𝜅

4ℎ
2
𝑐
2
(𝑚
󸀠
+ 1)

)] , (22c)

where 𝐶
𝑛,𝑚

is the normalization constant.
In the non-relativistic limit, when 𝐸 + 𝑚

𝑒
𝑐
2

→ 2𝜇,
𝐸 + 𝑚

𝑒
𝑐
2
→ 𝐸
𝑛𝑚
󸀠 and 𝑐 = 1, (21) and (22a) give the energy

formula

𝐸
𝑛𝑚
󸀠 (𝜔
𝐿
, 𝜉) = ℎ𝜔

𝐿
𝑚
󸀠
+ ℎ (𝑛 + 𝑚

󸀠
− 1)

× √

2𝜆

𝜇

+ 𝜔
2

𝐿
−

𝜇𝜅
2

2ℎ
2
(𝑛 + 𝑚

󸀠
− 1/2)

2
,

(23)

and wave function

𝜓
(+)

𝑛,𝑚
(𝑟, 𝜙) = 𝐶

𝑛,𝑚

1

√2𝜋

𝑒
𝑖𝑚𝜙

𝑟
𝑚+𝜉

× 𝑒
−(𝜇/2ℎ)√2𝜆/𝜇+𝜔

2

𝐿
[𝑟
2
+(2𝜎/𝜇(2𝑑

2
/𝜇+𝜔
2

𝐿
))𝑟]

𝑛max

∑

𝑛=0

𝑎
𝑛
𝑟
𝑛
,

(24)

respectively, for the Schrödinger-Killingbeck system with the
following restriction on the potential parameters 𝜆, 𝜎, and 𝜅
given by

𝜎 =

𝜇𝜅

ℎ (𝑛 + 𝑚
󸀠
− 1/2)

√

2𝜆

𝜇

+ 𝜔
2

𝐿
. (25)

Notice that the present model has been solved in 2D space
with an external uniform magnetic field since it is perpen-
dicular to the plane, where the vector and scalare Cornell
potentials have the dimensions of 𝑟 = 𝜌 and 𝜙; that is,
𝑉 = 𝑆 = 𝑉(𝜌, 𝜙) [32]. However, without the magnetic field,
the model can be solved in any desired dimensional space
by considering the change 𝑚 → 𝑙 + (𝐷 − 2)/2 [49, 50],
where𝐷 refers to spatial dimension and also the existence of
interdimensional degeneracy.

As shown in Figure 1(a) and (9b), the effective potential
function changes in shape when the magnetic field strength

increases, say 𝜔
𝐿
= 8 and in absence of AB flux field. The

energy levels are raised when the strength of the magnetic
field increases and in absence of AB flux field 𝜉 = 0. We
see that the effective potential changes gradually from the
pure pseudo-harmonic oscillator potential, when 𝜔

𝐿
= 0, to

a pure harmonic oscillator type behavior in short potential
range when𝜔

𝐿
= 8. In Figure 1(b), the effective potential (9b)

which is pseudo-harmonic oscillator when 𝜔
𝐿
= 0 becomes

sensitive to the increasing AB flux field 𝜉 = 8 in the short
range region; that is, 0 < 𝑟 < 4 a.u.

2.2. The Bound States for Negative Energy. In this case of
𝑆(𝑟) = −𝑉(𝑟), the first inspection of (4) shows that the
following changes 𝑉(𝑟) → −𝑉(𝑟), (i.e., 𝜆 → −𝜆, 𝜎 → −𝜎,
𝜅 → −𝜅), 𝜓(+)

𝑛,𝑚
(𝑟, 𝜙) → 𝜓

(−)

𝑛,𝑚
(𝑟, 𝜙) and 𝐸 → −𝐸 give the

negative energy solution for antiparticles as

𝐸
2
− 𝑚
2

𝑒
𝑐
4
− 2𝑚
𝑒
𝑐
2
ℎ𝜔
𝐿
𝑚
󸀠

= 2ℎ
2
𝑐
2
(𝑛 + 𝑚

󸀠
− 1)

√
(𝐸 − 𝑚

𝑒
𝑐
2
) 𝜆

ℎ
2
𝑐
2

+ (

𝑚
𝑒
𝜔
𝐿

ℎ

)

2

−

(𝐸 − 𝑚
𝑒
𝑐
2
)

2

𝜅
2

4ℎ
2
𝑐
2
(𝑛 + 𝑚

󸀠
− 1/2)

2
,

(26)

with restriction on potential parameters

𝜎 =

𝜅

(𝑛 + 𝑚
󸀠
− 1/2)

√
(𝐸 − 𝑚

𝑒
𝑐
2
) 𝜆

ℎ
2
𝑐
2

+ (

𝑚
𝑒
𝜔
𝐿

ℎ

)

2

.
(27)

We may find solution to the above transcendental equation
as 𝐸 = 𝐸

(−)

𝐾𝐺
= 𝐸
𝑛𝑚
󸀠(𝜔
𝐿
, 𝜉). Overmore, the wave function for

antiparticle reads
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Figure 1: The KG effective potential function for (a) 𝜔
𝐿
= 0, 1, 5, 8 and with 𝜉 = 0. (b) 𝜉 = 0, 1, 5, 8 and with 𝜔

𝐿
= 0 (colour online). Here,

𝑚
𝑒
= ℎ = 𝑐 = 1.

𝜓
(−)

𝑛,𝑚
(𝑟, 𝜙) = 𝐷

𝑛,𝑚

1

√2𝜋

𝑒
𝑖𝑚𝜙

𝑟
𝑚+𝜉

𝑒
−(1/2)√(𝐸−𝑚

𝑒
𝑐
2
)𝜆/ℎ
2
𝑐
2
+(𝑚
𝑒
𝜔
𝐿
/ℎ)
2
[𝑟
2
+((𝐸−𝑚

𝑒
𝑐
2
)𝜎/((𝐸−𝑚

𝑒
𝑐
2
)𝑑
2
+ℎ
2
𝑐
2
(𝑚
𝑒
𝜔
𝐿
/ℎ)
2
))𝑟]

𝑛max

∑

𝑛=0

𝑎
𝑛
𝑟
𝑛
, (28)

𝑎
1
= −𝑎
0
[𝑞 +

(𝐸 − 𝑚
𝑒
𝑐
2
) 𝜅

2ℎ
2
𝑐
2
(𝑚
󸀠
+ 1/2)

] , (29)

𝑎
2
= −

1

2

𝑎
0
[𝑝 − 𝑞

2
−

𝑚
𝑒
𝜔
𝐿
𝑚
󸀠

ℎ (𝑚
󸀠
+ 1)

−

(𝐸 − 𝑚
𝑒
𝑐
2
) 𝜅

ℎ
2
𝑐
2
(𝑚
󸀠
+ 1/2)

(𝑞 +

(𝐸 − 𝑚
𝑒
𝑐
2
) 𝜅

4ℎ
2
𝑐
2
(𝑚
󸀠
+ 1)

)] , (30)

where𝐷
𝑛,𝑚

is the normalization constant.

3. Discussions

In this section, we discuss some special cases of interest from
our general solution.

(i) If we set 𝜎 = 𝜅 = 0, the effective Killingbeck potential
turns to effective harmonic oscillator potential in relativistic
case as

𝑈eff (𝑟, 𝜔𝐿, 𝜉) = 𝜆𝑟
2
+

𝑚
2

𝑒
𝑐
2
𝜔
2

𝐿

(𝐸 + 𝑚
𝑒
𝑐
2
)

𝑟
2

+

ℎ
2
𝑐
2

(𝐸 + 𝑚
𝑒
𝑐
2
)

(𝑚
󸀠2
− 1/4)

𝑟
2

+

2ℎ𝜔
𝐿
𝑚
𝑒
𝑐
2
𝑚
󸀠

(𝐸 + 𝑚
𝑒
𝑐
2
)

, 𝜆 =

1

2

𝜇𝜔
2
.

(31)

The bound state solutions (with the change 𝑛 = 2(𝑛
𝑟
+ 1)) are

[32, 36]

𝐸
2
− 𝑚
2

𝑒
𝑐
4
= 2𝑚
𝑒
𝑐
2
ℎ𝜔
𝐿
𝑚
󸀠
+ 4ℎ𝑐
2
(𝑛
𝑟
+

𝑚
󸀠
+ 1

2

)

×
√
(𝐸 + 𝑚

𝑒
𝑐
2
) 𝜆

𝑐
2

+ (𝑚
𝑒
𝜔
𝐿
)
2
,

(32)

𝜓
(+)

𝑛
𝑟
,𝑚
(𝑟, 𝜙) = 𝐴

𝑛
𝑟
,𝑚

1

√2𝜋

𝑒
𝑖𝑚𝜙

𝑟
𝑚+𝜉

× 𝑒
−(1/2)√(𝐸+𝑚

𝑒
𝑐
2
)𝜆/ℎ
2
𝑐
2
+(𝑚
𝑒
𝜔
𝐿
/ℎ)
2
𝑟
2

𝑛max

∑

𝑛=0

𝑎
𝑛
𝑟
2(𝑛
𝑟
+1)
,

(33a)

𝑎
1
= 0,

𝑎
2
=

1

2

𝑎
0
[

[

√
(𝐸 + 𝑚

𝑒
𝑐
2
) 𝜆

ℎ
2
𝑐
2

+ (

𝑚
𝑒
𝜔
𝐿

ℎ

)

2

+

𝑚
𝑒
𝜔
𝐿
𝑚
󸀠

ℎ (𝑚
󸀠
+ 1)

]

]

,

(33b)
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where 𝐴
𝑛
𝑟
,𝑚

is the normalization constant. On the other
hand, the nonrelativistic effective harmonic oscillator poten-
tial

𝑈eff (𝑟, 𝜔𝐿, 𝜉) = 𝜆𝑟
2
+

1

2

𝜔
2

𝐿
𝑟
2
+

(𝑚
󸀠2
− 1/4) ℎ

2

2𝑚
𝑒
𝑟
2

+ ℎ𝜔
𝐿
𝑚
󸀠

(34)

has bound states as [32]

𝐸
𝑛𝑚
󸀠 (𝜔
𝐿
, 𝜉) = ℎ𝜔

𝐿
𝑚
󸀠

+ 2ℎΩ
󸀠
(𝑛
𝑟
+

󵄨
󵄨
󵄨
󵄨
󵄨
𝑚
󸀠󵄨󵄨
󵄨
󵄨
󵄨
+ 1

2

) , Ω
󸀠
= √𝜔

2

𝐿
+ 𝜔
2
,

(35)

𝜓
(+)

𝑛
𝑟
,𝑚
(𝑟, 𝜙) = 𝐶

𝑛,𝑚

1

√2𝜋

𝑒
𝑖𝑚𝜙

𝑟
𝑚+𝜉

𝑒
−(𝜇/2ℎ)Ω

󸀠
𝑟
2

×

𝑛max

∑

𝑛=0

𝑎
𝑛
𝑟
2(𝑛
𝑟
+1)
, 𝑛
𝑟
= 0, 1, 2, . . . ,

=

1

√2𝜋

𝑒
𝑖𝑚𝜙

√
2𝑏
𝑚
󸀠
+1
𝑛!

(𝑛 + 𝑚
󸀠
)!

𝑟
𝑚
󸀠

𝑒
−𝑏𝑟
2
/2
𝐿
(𝑚
󸀠
)

𝑛
(𝑏𝑟
2
) ,

𝑏 =

𝜇

ℎ

Ω

󸀠

,

(36a)

𝑎
1
= 0, 𝑎

2
=

𝜇

2ℎ

Ω
󸀠
𝑎
0
, 𝑎
0

̸= 0. (36b)

(ii) Setting 𝜆 = 𝜎 = 0 in (21), the killingbeck potential
turns to the Coulomb potential case (i.e., 𝑉(𝑟) = −𝐴/𝑟 and
𝑛 = 𝑛
𝑟
+ 1). Thus, we obtain the relativistic energy formula

𝐸
2
− 𝑚
2

𝑒
𝑐
4
= 2𝑚
𝑒
𝑐
2
(𝑛
𝑟
+ 2𝑚
󸀠
) ℎ𝜔
𝐿

−

(𝐸 + 𝑚
𝑒
𝑐
2
)

2

𝜅
2

4ℎ
2
𝑐
2
(𝑛
𝑟
+ 𝑚
󸀠
+ 1/2)

2
, 𝜅 = 𝑍𝑒

2
,

(37)

and the wave function

𝜓
(+)

𝑛
𝑟
,𝑚
(𝑟, 𝜙) = 𝐶

𝑛
𝑟
,𝑚

1

√2𝜋

𝑒
𝑖𝑚𝜙

𝑟
𝑚+𝜉

𝑒
−(𝑚
𝑒
𝜔
𝐿
)/2ℎ𝑟
2

×

𝑛max

∑

𝑛=0

𝑎
𝑛
𝑟
𝑛
𝑟
+1
,

(38a)

𝑎
1
= −

(𝐸 + 𝑚
𝑒
𝑐
2
) 𝜅

2ℎ
2
𝑐
2
(𝑚
󸀠
+ 1/2)

𝑎
0
, (38b)

𝑎
2
= −

1

2

[

[

𝑚
𝑒
𝜔
𝐿

ℎ

−

𝑚
𝑒
𝜔
𝐿
𝑚
󸀠

ℎ (𝑚
󸀠
+ 1)

−

(𝐸 + 𝑚
𝑒
𝑐
2
)

2

𝜅
2

4ℎ
4
𝑐
4
(𝑚
󸀠
+ 1) (𝑚

󸀠
+ 1/2)

]

]

𝑎
0
.

(38c)

Overmore, in the nonrelativistic limit, we have

𝐸 = ℎ𝜔
𝐿
𝑚
󸀠
+ ℎ (𝑛

𝑟
+ 𝑚
󸀠
) 𝜔
𝐿
−

𝑚
𝑒
𝑍
2
𝑒
4

2ℎ
2
(𝑛
𝑟
+ 𝑚
󸀠
+ 1/2)

2
, (39)

and the wave function becomes

𝜓
(+)

𝑛
𝑟
,𝑚
(𝑟, 𝜙) = 𝐶

𝑛
𝑟
,𝑚

1

√2𝜋

𝑒
𝑖𝑚𝜙

𝑟
𝑚+𝜉

𝑒
−(𝜇𝜔
𝐿
/2ℎ)𝑟
2

𝑛max

∑

𝑛=0

𝑎
𝑛
𝑟
𝑛
𝑟
+1
,

(40a)

𝑎
1
= −

𝑚
𝑒
𝐴

ℎ
2
(𝑚
󸀠
+ 1/2)

𝑎
0
, (40b)

𝑎
2
= −

1

2

[

𝜇𝜔
𝐿

ℎ

−

𝜇𝜔
𝐿
𝑚
󸀠

ℎ (𝑚
󸀠
+ 1)

−

𝜇
2
𝑍
2
𝑒
4

ℎ
4
(𝑚
󸀠
+ 1) (𝑚

󸀠
+ 1/2)

] 𝑎
0
.

(40c)

Notice that in the absence of external fields 𝜔
𝐿
= 𝜉 = 0,

the problem can be solved in any dimension. Thus, applying
the transformation |𝑚| → 𝑙 + 1/2, our previous results are
reduced to the well-known three-dimensional bound state
solutions for the harmonic oscillator and the hydrogen-like
atoms in the Coulomb fields [40]:

𝐸
±
= ±𝑚
𝑒
𝑐
2[
[

[

1 +

2ℎ𝑐

𝑚
𝑒
𝑐
2
(2𝑛
𝑟
+ 𝑙 +

3

2

)
√

(𝐸 + 𝑚
𝑒
𝑐
2
) 𝜆

𝑚
2

𝑒
𝑐
4

]
]

]

1/2

,

𝐸
±
= ±𝑚
𝑒
𝑐
2
[1 −

𝑍
2
𝑒
4

4ℎ
2
𝑐
2
(𝑛
𝑟
+ 𝑙 + 1)

2
(1 +

𝐸

𝑚
𝑒
𝑐
2
)

2

]

1/2

,

(41)

respectively. According to (41), the energy spectrum can be
found for the scalar particle and antiparticle.

In Figure 2(a), we plot the effective potential for the case
of low vibrational (𝑛 = 0, 1, 2, 3) and rotational (𝑚 = 1)

levels for various Larmor frequencies 𝜔
𝐿

= 0, 1, 5, 8 and
𝜉 = 0 case. As shown in Figure 2(a) and (31), the effective
potential function changes in shape as well as the bound state
energy eigenvalues increase when 𝜔

𝐿
= 8. It is shown that the

energy levels are raised when the strength of the magnetic
field increases and in the absence of AB flux field. It is also
obvious that the effective potential changes gradually from
the pure pseudo-harmonic oscillator potential, which is a
nonmagnetic (𝜔

𝐿
= 0) and AB flux (𝜉 = 0) fields case, to

a pure harmonic oscillator type behavior in short potential
range when the strength of the applied magnetic field is
increased to 𝜔

𝐿
= 8. If we consider a strong magnetic field

case 𝜔
𝐿
= 8 which has the shape of pure harmonic oscillator

potential function, the energy difference between adjacent
energy levels is nearly equal which is a known characteristic
of the pure harmonic oscillator potential. In Figure 2(b), we
plot the effective potential (34) in the absence of themagnetic
field and in the presence of AB flux field in the short range
region.

In Tables 1 and 2, we show the effect of magnetic field
and AB flux field, respectively, on the low vibrational 𝑛
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Figure 2: The Schrödinger effective potential function and corresponding bound state energy levels (𝐸
𝑛𝑚
) in low vibrational (𝑛 = 0, 1, 2, 3)

and rotational (𝑚 = 1) levels for (a) 𝜔
𝐿
= 0, 1, 5, 8 with 𝜉 = 0. (b) 𝜉 = 0, 1, 5, 8 and with 𝜔

𝐿
= 0 (color online). Here, 𝜇 = ℎ = 1.

and rotational 𝑚 relativistic energy states of the harmonic
oscillator potential. As shown in Table 1, when the magnetic
field is not applied and without AB flux field (𝜔

𝐿
= 0,

𝜉 = 0), the spacing between the energy levels of the effective
potential is narrow and decreases with increasing 𝑛. But
when the magnetic field strength increases, the energy levels
of the effective potential increase and the spacings between
states also increase. In Table 2, when the AB flux field is
applied and without magnetic field, the energy states become
degenerate for various values of 𝑛 and 𝑚 and for various
AB flux field strength values. In Tables 3 and 4, we show
the effect of magnetic field and AB flux field, respectively,
on the low vibrational 𝑛 and rotational 𝑚 nonrelativistic
energy states of the harmonic oscillator potential. As shown
in Table 3, when themagnetic field is not applied and without
AB flux field (𝜔

𝐿
= 0, 𝜉 = 0), the energy states are equally

spaced (the pure harmonic oscillator case). But when the
magnetic field strength is raised, the energy levels of the
effective potential increase and the spacings between states
also increase. In Table 4, when the AB flux field is applied and
without magnetic field, the energy states become degenerate
and equally spaced for various values of 𝑛 and 𝑚 and for
various AB flux field strength values.

4. Concluding Remarks

To sum up, in this paper, we have studied the solution
of two-dimensional KG and Schrödinger equations with
the Killingbeck potential for low vibrational and rotational
energy levels without and with a constant magnetic field
having arbitrary Larmor frequeny and AB flux field. We
have applied the wave function ansatz method for 𝜔

𝐿
̸= 0

(with magnetic field) and 𝜉 ̸= 0 (with AB flux field) to
obtain analytical expressions, in closed form, for bound
state energies and wave functions of the spinless relativistic
particle subject to a Killingbeck interaction expressed in
terms of external uniform magnetic and AB flux fields in
any vibrational 𝑛 and rotational 𝑚 states. The above results
show that the problems of relativistic quantum mechanics
can be also solved exactly as in the non-relativistic ones.
We considered the solution of both positive (particle) and
negative (antiparticle) KG energy states. It is noticed that the
solution with equal mixture of scalar-vector potentials can be
easily reduced into the well-known Schrödinger solution for
a particle with an interaction potential field and a free field,
respectively. We have also studied the bound-state solutions
for some special cases including the non-relativistic limits
(Schrödinger equation for harmonic oscillator and Coulomb
potentials under external magnetic and AB flux fields) and
also the KG equation for harmonic oscillator and Coulomb
interactions.The results show that the splitting is not constant
and is mainly dependent on the strength of the external
magnetic field and AB flux field. In order to show the effect
of constant magnetic and AB flux fields on the vibrational
and rotational energy levels of the harmonic oscillator, we
plot the effective potential and corresponding energy levels
with increasing Larmor frequency and flux field for special
potential parameters.Wehave seen that the effective potential
function and corresponding energy levels are raised in energy
when magnetic and AB flux field strengths increase. The
effective potential function behavior gradually changes from
the pure pseudo-harmonic oscillator to a pure harmonic
oscillator shape in short potential range as the magnetic and
AB flux fields strengths increase.
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Table 1: The KG energy eigenvalues (𝐸
𝑛𝑚

in atomic units) of the harmonic oscillator potential for various 𝜔
𝐿
values and 𝜉 = 0. Here, ℎ = 𝑐 =

𝑚
𝑒
= 𝑘 = 1.

𝑚 𝑛

𝐸
𝑛𝑚

𝜔
𝐿
= 0 𝜔

𝐿
= 1 𝜔

𝐿
= 2 𝜔

𝐿
= 3 𝜔

𝐿
= 4 𝜔

𝐿
= 5 𝜔

𝐿
= 6 𝜔

𝐿
= 7 𝜔

𝐿
= 8

0

0 1.83929 2.04353 2.40325 2.75615 3.08137 3.38066 3.65815 3.91752 4.16166
1 3.09625 3.4289 4.03986 4.65113 5.21808 5.74094 6.22602 6.67941 7.10609
2 4.12383 4.51488 5.26359 6.03138 6.75146 7.4193 8.04087 8.62301 9.17158
3 5.03104 5.45806 6.30283 7.18744 8.02542 8.80667 9.53605 10.2205 10.8663

1

0 2.50976 3.16597 3.89307 4.55265 5.14478 5.68284 6.17802 6.63858 7.0706
1 3.62919 4.27262 5.12444 5.93706 6.68087 7.36315 7.99437 8.58337 9.13707
2 4.58916 5.22885 6.16824 7.09549 7.95634 8.7516 9.49036 10.1815 10.8323
3 5.45354 6.09216 7.09891 8.11893 9.0768 9.96689 10.7966 11.5745 12.3081

Table 2: The KG energy eigenvalues (𝐸
𝑛𝑚

in atomic units) of the harmonic oscillator potential for various 𝜉 values and 𝜔
𝐿
= 0.

𝑚 𝑛

𝐸
𝑛𝑚

𝜉 = 0 𝜉 = 1 𝜉 = 2 𝜉 = 3 𝜉 = 4 𝜉 = 5 𝜉 = 6 𝜉 = 7 𝜉 = 8

0

0 1.83929 2.50976 3.09625 3.62919 4.12383 4.58916 5.03104 5.45354 5.85966
1 3.09625 3.62919 4.12383 4.58916 5.03104 5.45354 5.85966 6.25166 6.6313
2 4.12383 4.58916 5.03104 5.45354 5.85966 6.25166 6.63137.0 7.0 7.35892
3 5.03104 5.45354 5.85966 6.25166 6.6313 7.0 7.35892 7.70901 8.05108

1

0 2.50976 3.09625 3.62919 4.12383 4.58916 5.03104 5.45354 5.85966 6.25166
1 3.62919 4.12383 4.58916 5.03104 5.45354 5.85966 6.25166 6.6313 7.0
2 4.58916 5.03104 5.45354 5.85966 6.25166 6.6313 7.0 7.35892 7.70901
3 5.45354 5.85966 6.25166 6.6313 7.0 7.35892 7.70901 8.05108 8.38582

Table 3: The nonrelativistic energy eigenvalues (𝐸
𝑛𝑚

in atomic units) of the harmonic oscillator potential for various 𝜔
𝐿
values and 𝜉 = 0.

𝑚 𝑛

𝐸
𝑛𝑚

𝜔
𝐿
= 0 𝜔

𝐿
= 1 𝜔

𝐿
= 2 𝜔

𝐿
= 3 𝜔

𝐿
= 4 𝜔

𝐿
= 5 𝜔

𝐿
= 6 𝜔

𝐿
= 7 𝜔

𝐿
= 8

0

0 1.0 1.41421 2.23607 3.16228 4.12311 5.09902 6.08276 7.07107 8.06226
1 3.0 4.24264 6.7082 9.48683 12.3693 15.2971 18.2483 21.2132 24.1868
2 5.0 7.07107 11.1803 15.8114 20.6155 25.4951 30.4138 35.3553 40.3113
3 7.0 9.89949 15.6525 22.1359 28.8617 35.6931 42.5793 49.4972 56.4358

1

0 2.0 3.82843 6.47214 9.32456 12.2462 15.198 18.1655 21.1421 24.1245
1 4.0 6.65685 10.9443 15.6491 20.4924 25.3961 30.3311 35.2843 40.249
2 6.0 9.48528 15.4164 21.9737 28.7386 35.5941 42.4966 49.4264 56.3735
3 8.0 12.3137 19.8885 28.2982 36.9848 45.7922 54.6621 63.5685 72.4981

Table 4: The nonrelativistic energy eigenvalues (𝐸
𝑛𝑚

in atomic units) of the harmonic oscillator potential for various 𝜉 values and 𝜔
𝐿
= 0.

𝑚 𝑛

𝐸
𝑛𝑚

𝜉 = 0 𝜉 = 1 𝜉 = 2 𝜉 = 3 𝜉 = 4 𝜉 = 5 𝜉 = 6 𝜉 = 7 𝜉 = 8

0

0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0
1 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0
2 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0
3 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0

1

0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
1 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0
2 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0
3 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0
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