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Abstract
TEX, a well-known nitramine type explosive, has been subjected to centric perturbations by replacing its etheric (acetal) oxygens with
nitrogen atoms one by one. The structural features, stabilities and IR and UV-VIS spectra of new structures formed are investigated. For this
purpose, density functional theory has been employed at the B3LYP/6-31G (d,p) and B3LYP/6-311G(d) levels. In general the calculations
revealed that the oxygenenitrogen replacement resulted in more energetic but less sensitive structures than TEX.
Copyright © 2014, China Ordnance Society. Production and hosting by Elsevier B.V. All rights reserved.
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1. Introduction

TEX (4,10-Dinitro-2,6,8,12-tetraoxa-4,10-diazawurtzitane)
(see Fig. 1) has attracted attention in recent years as one of the
novel energetic materials [1]. It was first synthesized by Boyer
and coworkers [2]. Their synthesis started with form amide
and glyoxal and in a two-step synthesis involving a piperazine
derivative as an intermediary product, TEX is obtained. It is a
nitramine and additionally contains two embedded five-
membered cyclic dietheric (also can be considered as acetal)
structures resembling to 1,3-dioxalane.

TEX is much less sensitive to impact and friction stimuli as
compared to the well known explosives, RDX and HMX.
Moreover, it has high density (1.99 g/cm3), excellent thermal
stability (m.p > 240 �C) as well as its high detonation velocity
(VOD: 8665 m/s) and pressure (370 kbar) [1e7].

In the literature, based on density functional theory (DFT),
various computational works have piled up on TEX molecule
in order to predict some of its properties, such as the crystal
density [8], bond dissociation energies and impact sensitivity
[9], detonation velocity [10], sensitivity and performance
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relation [11]. One of the studies was about the influence of
RDX and HMX on the thermal stability of TEX [12]. DFT
calculations were employed in various modeling work which
involve TEX and other explosives [13e15]. The density
functional theory at the B3LYP/6-31 þ G(d,p) level of theory
was employed to calculate the heat of reactions of free dini-
tramidic acid (HN(NO2)2) with derivatives of 2,4-(R)-
2,6,8,12-tetraoxa-4,10-diazatetracyclo[5.5.0.05.903.11] dodec-
ane (R ¼ H, F, CH3, NO2(TEX)) [16]. Also, the heat of for-
mation (HOF) for a caged wurtzitane analog compound, 4,10-
dinitro-2,6,8,12-tetraoxa-4,10-diaza-tetracyclododecane
(TEX) was obtained by density functional theory (B3LYP
method with 6-31 þ G(d,p) basis set) [17].

In the present work, centric perturbations [18] have been
performed on the etheric (acetal) oxygen atoms present in the
structure of TEX by replacing them with nitrogen atoms
(considering isomeric structures) in order to get more nitrog-
enous materials which are thought to be candidates for
explosives.

2. Methods of calculation

All the theoretical methods were applied using the
restricted level of theory because all the structures are closed
shell systems (no radicals) [19]. The initial optimizations of
Elsevier B.V. All rights reserved.
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Fig. 1. Structures of the present concern.
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the structures leading to energy minima were achieved by
using MM2 method followed by semi-empirical PM3 self-
consistent fields molecular orbital (SCF-MO) method
[19,20]. Then, further structure optimizations were achieved
by using STO and RHF levels of theory (6-31G (d,p)) and
then within the framework of Density Functional Theory
(DFT, B3LYP) [20e22] at the levels of 6-31G(d,p) and
6-311G(d). All the presently considered structures are dealt
in their singlet states (restricted type calculations have been
done). Note that the exchange term of B3LYP consists of
hybrid HartreeeFock and local spin density (LSD) exchange
functions with Becke's gradient correlation to LSD exchange
[23]. The correlation term of B3LYP consists of the
Vosko, Wilk, Nusair (VWN3) local correlation functional
[24] and Lee, Yang, Parr (LYP) correlation correction func-
tional [25].

The normal mode analysis (at the same theoretical levels as
the optimizations) for each structure yielded no imaginary
frequencies, which indicates that each compound has at least a
local minimum on the potential energy surface. The total



Fig. 2. Bond lengths of the hydrogen depleted structures (B3LYP/6-31G(d,p), see Fig. 1 for the atoms in the structures).
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electronic energies were corrected for zero point vibrational
energies (ZPVE or ZPE). Aqueous energies are calculated by
the computer program based on CrammereTruhlar SM54
solvation method for water [26e28]. All these computations
were performed by using Spartan 06 package program at
standard conditions of 298.15 K and 1.00 atm [29].
Table 1

Various properties of the structures considered.

No Dipole moment/debye Area/10�20 m2 Volume/10�30 m3

1 2.95 202.81 185.86

2 3.40 206.35 189.03

3 3.14 206.33 188.04

4 4.01 206.12 189.02

5 3.98 209.66 192.08

6 4.35 212.88 195.31
3. Results and discussion
3.1. Structural features
Fig. 1 shows the structures of present concern which are
obtained by the replacement of etheric (acetal) oxygens of
TEX one by one with nitrogen atom. Consequently, the ni-
trogen and hydrogen numbers increase through structures
1e6. However, 2e4 are isomeric structures in which only the
locations of nitrogen atoms (each contains two more nitrogen
Table 2

Nitramine bond lengths (10�10 m, B3LYP/6-31G(d,p)).

TEX 1 2 3 4 5 6

1.421 1.415 1.409 1.414 1.404 1.403 1.402

1.421 1.419 1.414 1.414 1.417 1.412 1.402



Fig. 3. HOMO and NHOMO of TEX and 1.
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atoms compared to TEX) differ. In 2 both of the oxygen-
enitrogen replacements are in the same pentagonal moiety. In
3 and 4 the replacements are in different pentagons but the
nitrogen atoms are symmetrical in 4 (with respect to vertical
symmetry plane). Whereas in 3 the nitrogen atoms occupy
opposite corners in different pentagons. In 5 and 6 one and two
of the 5-membered rings is/are aminal(s), respectively.

Fig. 2 shows the bond lengths of structures. Table 1 in-
cludes some properties of the structures presently concerned.
Structure 6 has the highest dipole moment, area and volume
among the compounds, whereas 1 has the lowest. These
properties of the isomeric structures 2e4 fluctuate in value
depending on position of the nitrogen atoms and their sym-
metrical or unsymmetrical occurrences in the structures.

Table 2 displays the nitramine bond lengths in TEX and
structures 1e6. Both of the NeNO2 bond lengths are pair wise
equal in TEX, 3 and 6. The values for TEX are longer than the
nitramine bond lengths of the present perturbed structures
which implies that the NeNO2 bond dissociation energy of
TEX should be less than the respective energies of structures
1e6. Hence, they should be less sensitive than TEX. Note that
Table 3a

Various relative energies (kJ/mol) of the structures considered (B3LYP/6-

31G(d,p)).

No ZPE E corrected/(kJ$mol�1) Eaq corrected (kJ$mol�1)

1 464.71587 0 0

2 498.51011 52189.763 52194.58

3 498.93727 52189.521 52180.87

4 498.26109 52190.285 52192.48

5 533.01387 104378.358 104366.25

6 566.30943 156563.643 156555.64

E corrected of 1 in vacuum and water are �2711423.55 and �2711472.54 kJ/

mol, respectively.
NeN bond length in N,N-dimethylnitramine and TEX are
1.382 10�10 m [30] and 1.41 10�10 m [7], respectively. Vari-
ation of the nitramine bond lengths, even in the isomeric cases,
should be due to varying degree of conjugation involved in
NeNO2 moiety. It is dictated by structural variations and field
effects present in the structures. Fig. 3 shows the HOMO and
NHOMO (HOMO-1) of TEX and structure-1. In the later case
better conjugation is observed for the nitramine bond.
3.2. Energetics
Tables 3a and 3b show the zero point energy and the relative
corrected total energy values of the structures in the vacuum and
in water at the levels of B3LYP/6-31G(d,p) and B3LYP/6-
311G(d) levels, respectively. Although the number of nitrogen
and oxygen atoms are different, the stability order is
1 > 3>2 > 4>5 > 6 in the vacuum at the both levels of calcu-
lations. Hence, with the exception of 3 (or 2), the oxygen-
enitrogen replacement regularly decreases the stability. Note
2e4 are isomers having two oxygenenitrogen replacements.
Whereas in water the order is 1 > 3>4 > 2>5 > 6 (at the both
Table 3b

Various relative energies (kJ/mol) of the structures considered (B3LYP/6-

311(d)).

No ZPE E corrected/(kJ$mol�1) Eaq corrected/(kJ$mol�1)

1 464.3117 0 0

2 498.1839 52215.49 52213.28

3 498.4697 52215.17 52198.52

4 497.8568 52215.81 52210.48

5 532.8793 104429.71 104417.56

6 566.1618 156640.38 104450.84

E corrected of 1 in vacuum and water are �2712088.54 and �2712135.61 kJ/

mol, respectively.



Fig. 4. Relative energy per oxygenenitrogen replacement (kJ/mol). Upper

curve stands for aqueous conditions. Structure numbers are on the graph.

Based on B3LYP/6-31G(d,p) level of calculations.

Table 5

HOMO, LUMO energies (kJ/mol) and interfrontier energy gaps (D 3) (B3LYP/

6-31G(d,p)).

1 2 3 4 5 6

HOMO �740.93 �683.55 �706.19 �685.23 �662.09 �630.06

LUMO �200.53 �195.82 �183.70 �194.14 �179.20 �172.96

D 3 540.40 487.73 522.49 491.09 482.89 457.11

D 3¼ 3LUMO- 3HOMO.
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levels). It seems, in water, with the exception of 2, stability
decreases regularly as the number of oxygenenitrogen
replacement increases. Of the isomeric structures (2e4), 3 has
themaximum stability in the vacuum and in aqueous conditions.
All these results indicate that the effect of oxygenenitrogen
replacements is also position dependent. However, inspection of
the total energies of the structures reveals that generally as the
number of nitrogen atoms increases the stability decreases in
this particular cage system (see Fig. 4 too).

Fig. 4 shows the variation of relative energy (with respect to
TEX, see Fig. 3) per oxygenenitrogen replacement. From the
figure it is evident that all the present structures are more
energetic than TEX and in vacuum, and as the number of ni-
trogen atoms increases the stability decreases. Generally the
trend of relative energy increases having local maximas
(structures 2, 4,6) and local minimas (3 and 5). Since 2e4 are
isomeric structures, the most stable structure (3) among them
is obtained when the replacement takes place in the different
rings and on the opposite corners. In the aqueous conditions
the model (SM 54 [26,27])predicts that the oxygenenitrogen
replacement do not cause appreciable energy changes in
contrast to the vacuum conditions.
3.3. Spectra
Structures 1-6 show similar calculated IR spectra (B3LYP/
6-31G(d,p)) with some changes in the fingerprint region (a few
typical examples are shown in the supplement). The calculated
(B3LYP/6-31G(d,p)) UV-VIS spectra of TEX as well as the
structures 1e6 also can be found in the supplement. In all the
cases absorptions span in the UV region (extending at most to
350 nm).

Table 4 shows the lmax values of the structures whereas the
HOMO, LUMO energies and the interfrontier energy gaps (the
HOMO- LUMO energy difference, D 3) are displayed in Table
5. The data in the table reveal that the first centric perturbation,
leading to 1, results in the deepest HOMO and LUMO
Table 4

lmax (nm) values of the structures considered (B3LYP/6-31G(d,p)).

1 2 3 4 5 6

270.86 285.22 271.33 282.89 289.39 305.74

271.02 290.11
(frontier molecular orbitals, FMO) levels. The second pertur-
bation (structure-2) in the same ring causes elevation of the
FMO levels. The second perturbation in different rings and on
opposite corners (structure-3) lowers the HOMO but raises the
LUMO. Whereas the second centric perturbation in different
rings but in the symmetrical positions (structure-4) raises the
HOMO but lowers the LUMO. The third and fourth pertur-
bations cause steady elevation of FMOs.

4. Conclusion

Including the isomeric structures, six nitrogen analogs of
TEX have been subjected to computational treatment. The
structures considered are found to be more energetic than
TEX. However, the bond dissociation energies of the nitr-
amine bonds of them are expected to be less sensitive or
comparable to TEX based on the respective bond lengths.
Their electronic spectra happens in the UV region and similar
to TEX but having some bathochromic shift.

Appendix A. Supplementary data

Supplementary data related to this article can be found at
http://dx.doi.org/10.1016/j.dt.2014.07.001.
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