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ABSTRACT Power system frequency plays a pivotal role in ensuring the security, adequacy, and integrity
of a power system. While some frequency response services are automatically delivered to maintain the
frequency within the stipulated limits, certain cases may require that system operators (SOs) manually
intervene—against the clock—to take the necessary preventive or corrective actions. As such, SOs can
be greatly aided by practical tools that afford them greater temporal leeway. To this end, we propose a
methodology to forecast the power system frequency in the subsequent minute. We perform an extensive
analysis so as to identify the factors that influence power system frequency. By effectively exploiting
the identified factors, we develop a forecasting methodology that harnesses the long short-term memory
model. We demonstrate the effectiveness of the proposed methodology on Great Britain transmission
system frequency data using comparative assessments with selected benchmarks based on various evaluation
metrics.

INDEX TERMS forecasting, frequency control, frequency response, long short-term memory (LSTM),
recurrent neural network (RNN)

I. INTRODUCTION

A large-scale power system is—for all intents and
purposes—a massive and highly complex machine,

with generators rotating in steady-state synchronism to sup-
ply electricity to meet the system load. The speed of this rota-
tion is referred to as frequency and measured in cycles/second
or Hertz (Hz).

We refer to the frequency at which a power system is
designed to operate as target frequency. While the target
frequency is 50 Hz in the larger part of the world including
continental Europe and Great Britain (GB), it is 60 Hz in
North America.

The reliability of a power system is described by two
fundamental concepts: power system security1 and power
system adequacy. Power system security is the ability of a
power system to withstand sudden disturbances. The fre-
quency of a power system is a key aspect that needs to
be monitored to ensure the security of a power system, as
large frequency excursions may result in equipment damages.

1Since 2001, the North American Electric Reliability Corporation has
been using the term operational reliability instead of security due to the
possible misinterpretations of the word security.

Power system adequacy is defined as the ability of a power
system to supply the aggregate electric power and energy
requirements at all times [1]. The frequency of a power
system has a vital role in power system adequacy, since large
frequency excursions may trigger under-frequency or over-
frequency relays that automatically interrupt loads and/or
require manual load shedding [2].

The frequency of a power system may change instanta-
neously based on the total power injection vis-à-vis with-
drawal in a power system. Power systems are continually
subject to imminent disturbances, such as sudden changes
in load, generator outages, and equipment failures, which
may bring about large frequency excursions. To ensure a
secure and reliable power system operation at all times,
various frequency response services are harnessed to keep the
frequency within the stipulated limits.

In the time frame of seconds, the frequency response
services are delivered mainly by governors and certain loads.
Generators are equipped with governors, which sense the
changes in speed of rotation and accordingly adjust the input
valve position to modulate the mechanical power output. If
the generators in a power system slow down due to declining
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Nomenclature
Rn set of real-valued n−dimensional column vectors σ(·) logistic sigmoid function
Rm×n set of m−by−n real-valued matrices tanh(·) hyperbolic tangent function
T length of input sequence, look-back window � Hadamard product
M number of input features ` = 1, ..., T index of an LSTM sequence
B number of LSTM blocks time step
L learning rate t index of a forecast
N number of training samples time period
ft ∈ RT vector of frequency measurements for the previous (x`)

T
`=1

:= (x1, ...,x`, ...,xT ) LSTM input sequence
T time periods from time period t x` ∈ RM input vector provided to the

f̃t ∈ RT vector of values obtained after the application of LSTM network in time step `
min-max scaling to each corresponding element of ft (c`)

T
`=1

:= (c1, ..., c`, ...,xT ) sequence of LSTM network
pt ∈ RT vector of power system load in the previous T memory cell states
p̃t ∈ RT vector of values obtained after the application of c` ∈ RB vector of memory cell states

min-max scaling to each corresponding element of pt in time step `
ht the hour of the day of the forecast time period t (κ`)

T
`=1

:= (κ1, ...,κ`, ...,κT ) LSTM output sequence
h̃t ∈ R24 one-hot encoding representation of ht κ` ∈ RB vector of LSTM block outputs
dt the day of the week of the forecast time period t in time step `
d̃t ∈ R7 one-hot encoding representation of dt Wxi,Wxϕ,Wxc,Wxo ∈ RB×M input weight matrices
i subscript that denotes the input gate of an LSTM block Wκi,Wκϕ,Wκc,Wκo ∈ RB×B recurrent weight matrices
ϕ subscript that denotes the forget gate of an LSTM block wci,wcϕ,wco ∈ RB peephole weight vectors
c subscript that denotes the memory cell of an LSTM block bi, bϕ, bc, , bo ∈ RB bias vectors
o subscript that denotes the output gate of an LSTM block Xt := [x1, ...,x`, ...,xT ]T ∈ RT ×M LSTM network input matrix
(·)T transposition for the forecast time period t

frequency, governors ensure that more energy is supplied to
the prime movers of the generators, thereby counteracting
frequency decline [3]. Further, rotating and inductive loads
automatically consume less power as frequency decreases,
and so analogously restrain frequency excursions [4]. While
these frequency response services may arrest frequency in-
crease or decline, it is required to utilize frequency response
services with longer time frames to restore the frequency in
the event of a large frequency excursion [5].

The frequency response services delivered in the time
scale of minutes involve automatic generation control and the
manual actions of system operators (SOs), including phone
calls to generators and purchases and sales of electricity
[5]. In the event of a large frequency excursion, an SO may
further need to perform reserve deployment or take corrective
actions, such as manual load shedding, to ensure that the
system transitions to a restorative state from an emergency
state [3], [6].

SOs perform such actions in a fire-fighting mentality so as
to forestall the onset of cascading outages. As such, time is of
cardinal importance to SOs, and SOs can be greatly aided by
a tool that forecasts the frequency in the subsequent minute.

In this article, we propose such a methodology to forecast
the power system frequency in the subsequent minute. The
proposed methodology is based on long short-term memory
(LSTM), which is an artificial recurrent neural network (RNN)
model with the salient capability to capture long-term tempo-
ral dependencies [7]. To design the proposed methodology,
we conduct a thorough assessment of the factors that influ-
ence power system frequency.

We design our model generic enough to permit its applica-
tion to any power system. This notwithstanding, a specific
application of the designed model would be remiss, if it

were to disregard the salient characteristics of the system
to which it is applied. On the grounds that we illustrate
the application of the proposed methodology to forecast the
GB power system frequency, we pay special attention to the
frequency limits and frequency response services in GB. We
further investigate the influence of system load and system
inertia on frequency excursions and analyze the variation
of system load and system inertia over time so as to gain
insights into the underlying phenomena that affect power
system frequency. These insights are explicitly leveraged in
the design of the proposed forecasting methodology.

It is worth noting that we specifically aim at forecasting the
frequency in the subsequent time minute, because the discus-
sion above made clear that the frequency response services
effective in the time frame of seconds are delivered in an au-
tomatic way. On the flip side, the manual interventions of SOs
are typically exercised in the time frame of minutes. As such,
it makes sense to develop a tool that forecasts the frequency
in the subsequent minute. SOs can capitalize on such a tool to
judiciously decide on and effectuate the necessary course of
actions with an extra minute at their disposal. In the literature,
forecasting with a lead time of between a few seconds and
one hour is referred to as very short-term forecasting [8].
Nevertheless, the proposed approach can be easily extended
to perform forecasts with different lead times.

A. RELATED WORK
In the literature, very few studies have been conducted to
forecast power system frequency. In [9], an auto-regressive
integrated moving average model has been proposed to fore-
cast power system frequency. In contrast to our approach,
[9] forecasts the frequency with a 15-minute lead time, does
not take into account the influence of relevant exogenous
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variables on frequency variation, and harnesses statistical
methods rather than RNNs. While [10] and [11] utilize artifi-
cial neural networks to forecast power system frequency, they
do not address the influence of system load or system inertia
on frequency response and only consider historical values.
We further note the work conducted in [12], which investi-
gates the frequency response services in GB and provides a
comparative analysis of different forecasting approaches to
forecast the frequency-corrected demand of GB.

A line of research similar to forecasting power system
frequency is forecasting power system imbalance, that is,
difference between system demand and supply. Quantile
Random Forecasts are utilized in [13] to forecast the power
system imbalance over the next two hours, where historical
imbalances and temporal information are incorporated as
features. In [14], artificial neural networks are used to fore-
cast daily imbalance medians. Hourly imbalances have been
forecast in [15] using random forests, where the proposed
methodology includes a wide variety of features, such as
wind forecast, load forecast, and temperature.

B. CONTRIBUTIONS AND STRUCTURE OF THE
ARTICLE
The general contributions and novel aspects of this article are
as follows:

1) We develop a novel LSTM-based methodology to fore-
cast power system frequency2. We demonstrate the
effectiveness of the proposed methodology on real-
world GB power system frequency data using various
benchmarks and evaluation metrics. Given that only a
handful of studies focused on power system frequency
forecasting thus far, the present article may serve as a
jumping-off point for future studies in this field.

2) We provide valuable insights into the influence of
system load and system inertia—as well as their vari-
ations over different time horizons—on power system
frequency. We effectively exploit the gained insights
to select the relevant features of the designed LSTM
network. As such, unlike the existing methods in the
literature that solely consider historical frequency, we
additionally capitalize on exogenous variables in our
forecasting methodology.

3) Our study presents a novel application area for LSTM
networks. While LSTM networks have found a wide
range of applications—load forecasting [17], speech
recognition [18], handwriting recognition [19], and
music composition [20] to name but a few—this article
serves as the first study that utilizes LSTM networks to
forecast power system frequency.

4) We investigate the influence of hyperparameters and
conduct an analysis of the impact of number of LSTM
blocks, look-back window, and learning rate on fore-
casting performance, which serves as a useful guide-
line for their efficient tuning.

2The source code and simulation scripts are available at [16].

5) SOs can utilize the developed methodology as a prac-
tical tool to assess whether their manual intervention
may be required in the subsequent minute to keep the
frequency within the stipulated limits. As such, the de-
veloped methodology makes a dent in the development
of a decision support tool that can provide additional
temporal leeway to SOs.

The remainder of the article consists of four sections. In Sec-
tion II, we investigate the factors that influence power system
frequency and identify the relevant features of the proposed
forecasting methodology. We briefly describe LSTM in Sec-
tion III and present the proposed forecasting methodology.
In Section IV, we illustrate the application of the proposed
methodology to forecast the GB power system frequency in
the subsequent minute and discuss the results. We present
concluding remarks and discuss the scope of further work in
Section V.

II. FREQUENCY RESPONSE SERVICES
We devote this section to the discussion of the steps under-
taken so as to pinpoint the pertinent features of a method-
ology to forecast the frequency of a power system. Since
we illustrate the application of the proposed frequency fore-
casting methodology in Section IV on the GB transmission
system, we pay special attention to study the key details on
the frequency limits and frequency response services in GB.

We start out by the investigation of the factors that influ-
ence the power system frequency. The frequency of a power
system may change around the clock based on the total power
injection vis-à-vis withdrawal in a power system. In fact, if
the total power injection to a power system is greater (resp.
less) than the total power withdrawal from a power system,
then the power system frequency increases (resp. decreases).
While generator outputs and inter-regional power imports
contribute to the power injection to a system, the power
withdrawal from a system can be ascribed to system load,
inter-regional power exports as well as losses [5], [21].

The frequency of a power system is typically subject to
various statutory and operational limits. In GB, while the
statutory limits stipulate that the frequency must be kept
between 49.5 Hz and 50.5 Hz, the operational limits are
stricter and state that the frequency must be between 49.8 Hz
and 50.2 Hz [22]. National Grid Electricity System Operator
(NGESO)—the entity responsible for the around-the-clock
power balance in the GB transmission system—maintains the
frequency within the stipulated limits by leveraging various
frequency response services, viz.: primary response, sec-
ondary response, and high response, as depicted in Fig. 1 [4].
These frequency response services are rendered over various
time frames so as to attenuate frequency excursions and
bring frequency toward the target frequency. While primary
response and secondary response are delivered to increase the
frequency by an automatic increase in generation or decrease
in load, high response is delivered to decrease the frequency
by an automatic decrease in generation or increase in load
[23].
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FIGURE 1. Time frames of the frequency response services in GB

Central to the discussion of frequency excursion is the
frequency response characteristic, or β, defined by the North
American Electric Reliability Corporation (NERC) as “the
total of all initial responses to a frequency excursion” [5].
β represents the actual initial MW contribution deployed to
stabilize frequency following a disturbance in MW/0.1Hz and
has a negative sign [6]. A disturbance with a specific MW
size causes a larger frequency excursion in the time periods
of lower β than those of higher β. As such, it would behoove
us to closely examine the factors that influence β and draw
on these factors in the design of the proposed methodology.

TABLE 1. Frequency Response Characteristics and Loads of
Interconnections in North America

Interconnection mean β (MW/0.1Hz) net energy for load (TWh)

Eastern -2,411 3,182.5

Western -1,789 877.2

Texas -940 376.4

Quebec -862 188.5

One such factor is system load: β rises as system load
increases [5]. To elucidate the relationship between system
load and β, we probe the β values for four Interconnections
in North America, viz: Eastern Interconnection, Western
Interconnection, Texas Interconnection, and Quebec Inter-
connection. Each of the four Interconnections operates as a
frequency-independent island and has a distinct frequency
response characteristic. We present in Table 1 the mean β
values for the four Interconnections along with their net
energy for load values in 2018 [24], [25]. The reported β
values bring out the general trend that the magnitude of β
increases with system load. Specifically, while a 0.02-Hz
deviation in frequency prompts a 482-MW response in the
Eastern Interconnection, it elicits a 172-MW response in the
Quebec Interconnection.

Further, β is favorably impacted by the system inertia,
which depends on the total energy stored in the rotating
masses of a system, such as synchronous generators and
synchronous electric motors. β attains higher values in the
time periods of higher system inertia than those of lower
system inertia [5]. The governor response is a major con-
tributor to frequency response characteristic, which involves
the adjustment of the generator output based on a ratio that
depends on the deviation of the frequency from the target
frequency. This ratio is referred to as speed regulation and

quantifies the percentage change in frequency that causes
the generator output to change from 0% to 100% so as to
counteract frequency deviation [26]. This notwithstanding,
the ability of a generator to deliver governor response at
any moment hinges on the capacity at which it operates. In
the event of a frequency decline, a generator must have the
capability to increase its output so as to remedy the decline
in frequency.

In addition to synchronous generators, the inertia of loads
such as synchronous electric motors contributes to frequency
response characteristic. As the frequency falls below the
target frequency, electric motors slow down and consume
less power, thereby restraining the frequency decline. The de-
crease in motor load takes effect immediately after a decline
in frequency and typically, for every 1% decline in frequency,
the motor load decreases by 3% [27].
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FIGURE 2. Number of frequency excursions greater than 28 mHz in the
Eastern Interconnection by the month of the year and the day of the week,
reconstructed from [5]

The empirical studies corroborate the tight coupling be-
tween the magnitude of frequency excursions, β, and system
load and inertia. We observe from Fig. 2 that the number
of frequency excursions greater than 28 mHz in the Eastern
Interconnection is lower in summer and higher on the week-
end. These observations jibe with the fact that the system
load—ergo the synchronous generation and system inertia—
are higher in summer and on the weekdays, thereby yielding
higher β values. Further, these observations reinforce the
need that the proposed methodology effectively capture in-
tertemporal relationships and beget the idea that the proposed
methodology can be greatly aided by the incorporation of the
system load and the temporal information of the forecast time
period as features.

III. FREQUENCY FORECASTING METHODOLOGY
The analysis in Section II highlights the key factors that
influence power system frequency and punctuates the ne-
cessity of the consideration of time in the development of
a methodology to forecast power system frequency. Indeed,
a major requirement of such a methodology is the ability
to effectively grasp the intertemporal relationships among
data points. To this end, we harness the LSTM model, whose
salient capability is to learn long-term temporal dependen-
cies.
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A. LONG SHORT-TERM MEMORY MODEL
We devote this subsection to the delineation of the LSTM
model. Fig. 3 depicts the LSTM block employed in our model.

weighted sum over all inputs

logistic sigmoid function

forget
gate

input 
gate

output
gate

hyperbolic tangent function

Hadamard product

FIGURE 3. Graphical depiction of the LSTM block

An LSTM block includes three gates: the input gate, the
forget gate, and the output gate, which control the informa-
tion flow of an LSTM block. A salient feature of an LSTM
block is the memory cell, which enables an LSTM block to
remember important information over time, subject to the
regulation of the LSTM gates [7].

We next describe analytically the flow of information in
an LSTM network and the operation of the LSTM gates. We
consider the input sequence (x`)

T
`=1 := (x1, ...,x`, ...,xT ).

Each element of the sequence (x`)T`=1 is anM−dimensional
vector, whereM is the number of input features. We define
by (κ`)

T
`=1 := (κ1, ...,κ`, ...,κT ) the output sequence, and

by (c`)
T
`=1 := (c1, ..., c`, ...,xT ) the sequence of memory

cell states corresponding to the input sequence (x`)T`=1. Each
element of (c`)T`=1 and (κ`)

T
`=1 is a B−dimensional vector,

where B is the number of LSTM blocks [7].
The forward pass of an LSTM network can be represented

by iterating the equations (1)-(5) for ` = 1, . . . , T .

i` = σ
(
W xix` +Wκiκ`−1 +wci � c`−1 + bi

)
, (1)

ϕ` = σ
(
W xϕx` +Wκϕκ`−1 +wcϕ � c`−1 + bϕ

)
, (2)

c` = ϕ` � c`−1 + i` � tanh
(
W xcx` +Wκcκ`−1 + bc

)
, (3)

o` = σ
(
W xox` +Wκoκ`−1 +wco � c` + bo

)
, (4)

κ` = o` � tanh
(
c`
)
, (5)

where the W and w terms represent the weights and the
b terms represent the biases [7], [18], [28]. Further, σ(·)
denotes the logistic sigmoid function, tanh(·) the hyperbolic
tangent function, and � the Hadamard product.

The operation of the input gate is expressed by (1), which
certifies that the input gate evaluates a wide range of infor-
mation, both from the previous time step and the current time
step, to decide on the extent to which the input in the current
step is incorporated to the LSTM network. The input gate is
provided with the input in time step `, the memory cell state
in time step `−1, and the LSTM block output in time step `−1
that go through a hyperbolic tangent function to generate a
value between zero and one. Higher input gate values ensure
that the input is more heavily incorporated to the memory
cell state and the LSTM block output calculation in time step
` [17].

A key architectural element of the LSTM network in terms
of propagating information across time steps is the forget
gate, which signifies the influence of the memory cell state in
time step `− 1 on the memory cell state and the LSTM block
output calculation in time step `, as expressed in (2). The
forget gate attains a value between zero and one; the closer
is the value of the forget gate to zero, the more liable is the
memory cell state in `− 1 to be forgotten [28].

The memory cell state, in conjunction with the operation
of the gates, spearheads the storage of valuable information
in an LSTM network. To compute the memory cell state in
time step `, the input and forget gate values in time step `
are jointly evaluated with the memory cell state and output in
time step `− 1, as expressed by (3). The memory cell state is
utilized by the output gate, which further evaluates the input
in time step ` and the LSTM block output in time step ` − 1
to generate a value between zero and one, as represented by
(4). Finally, the output gate value and the memory cell state
in time step ` are assessed in (5) to compute the LSTM block
output, which attains a value between −1 and 1 due to the
utilization of the hyperbolic tangent function.

The description of the LSTM model presented in this sub-
section spells out the extensive interrelationships among the
input, memory cell state, and output of different time steps
as per the regulation of the LSTM gates. Next, we present the
specific details as to the utilization of the LSTM model in the
proposed forecasting methodology.

min-max
scaler

one-hot
encoder

concate-
nation

...

...

...

...

LSTM
layer

LSTM
layer

ft

pt

ht

dt

f̃t

p̃t

h̃t

d̃t

X
ŷt

T steps T steps

FIGURE 4. Graphical depiction of the proposed forecasting methodology
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B. PROPOSED METHODOLOGY
The proposed methodology harnesses an LSTM network that
has four input features: the frequency measurements for
the previous T time periods, the power system load in the
previous T time periods, the day of the week of the forecast
time period, and the hour of the day of the forecast time
period. The term T denotes the so-called look-back window.
Since LSTM networks are sensitive to the scale of the input
data, we start out by preprocessing the data of the input
features.

We denote by ft ∈ RT the vector of frequency measure-
ments for the previous T time periods, where the subscript t
denotes the forecast time period. The elements of ft largely
hover around 50 Hz and so we apply min-max scaling to
scale each element of ft to the range [−1, 1]. We define by
f̃t ∈ RT the vector of values obtained after the application
of min-max scaling to each corresponding element of ft. Let
pt ∈ RT denote the column vector of power system load
in the previous T time periods. We similarly apply min-max
scaling to scale each element of pt to the range [−1, 1] and
denote by p̃t ∈ RT the vector of values obtained after min-
max scaling. Let ht denote the hour of the day and dt denote
the day of the week of the forecast time period t. For instance,
if the frequency is forecast for a time period from 11:00 a.m.
up to but not including 12:00 p.m of a Tuesday, then ht = 12
and dt = 2.

We use one-hot encoding to express ht and dt. One-hot
encoding refers to the representation of a variable that can
take M categorical values by a vector in the M -dimensional
Euclidean space, where only the jth element of the vector
corresponding to the category j is one and the remaining
elements of the vector are zero. We express ht and dt in
one-hot encoding by the column vectors h̃t ∈ R24 and
d̃t ∈ R7, respectively. We construct the matrix H̃t :=[
h̃t, · · · , h̃t

]T ∈ RT ×24 where each row of the matrix
H̃t is (h̃t)

T. Analogously, we construct the matrix D̃t :=[
d̃t, · · · , d̃t

]T ∈ RT ×7.
We define by X :=

[
f̃t, p̃t, H̃t, D̃t

]
∈ RT ×33 the input

matrix of the proposed forecasting methodology. Each row of
the matrixX is input sequentially in T steps to the proposed
neural network, whose construction is described next.

We utilize LSTM blocks to form an LSTM layer and denote
by B the number of LSTM blocks in each LSTM layer. Owing
to the sequential nature of LSTMs, we may stack one or
multiple LSTM layers to construct an LSTM network. We
elaborate on the process to tune the network hyperparameters
in Section IV. We feed the output of the LSTM blocks
of the topmost layer to a conventional feedforward neural
network with a single neuron, whose output is the power
system frequency forecast for the subsequent time period. We
provide the graphical depiction of the proposed forecasting
methodology in Fig. 4.

We denote by ŷt the power system frequency forecast for
the subsequent time period t. Let yt denote the actual power
system frequency measurement for the time period t. We

train the constructed neural network withN training samples
to minimize the loss function:

T +N∑
t=T +1

(
yt − ŷt

)2
. (6)

We denote by L the learning rate of the optimizer with which
we train the constructed neural network. The selection of
the optimizer and the assignment of specific values to L are
discussed in Section IV.

IV. CASE STUDY AND RESULTS
We illustrate the application of the proposed methodology
to forecast the GB transmission system frequency in the
subsequent time period.

A. DATASET
The original dataset [29] contains historical frequency mea-
surements collected by the NGESO at one-second resolution
and we take the measurements collected in two time windows
so as to form two separate datasets for our experiments. We
first consider the frequency measurements collected from
August 11, 2017 to October 9, 2017 and apply downsampling
by a factor of 60 to obtain a dataset at one-minute resolution,
which we refer to as Dataset I. We split Dataset I into training
(70%), validation (15%), and test (15%) sets.

To ascertain the generality of the model, we study its
performance to forecast the power system frequency in an-
other year. To this end, we consider the GB transmission
system frequency measurements collected from July 2, 2018
to July 10, 2018 and apply downsampling by a factor of 60
to obtain a dataset at one-minute resolution, which we refer
to as Dataset II. We utilize Dataset II solely as a test set. We
further use the GB transmission system demand data [30] for
the time periods covered by the time windows of Datasets I
and II.

B. BENCHMARKS
Due to the scarcity of existing methods in the literature
to forecast the power system frequency, we investigate dif-
ferent RNN models and empirical benchmarks with which
we compare our proposed methodology. To this end, we
harness the simple recurrent network (SRN) model, which is
a rudimentary RNN architecture void of the gate structures
of more complex RNN models, such as the LSTM model. We
further utilize the gated recurrent unit (GRU) model, which
is an RNN model furnished with forget and reset gates. We
present the details of the operation and internal architecture
of the SRN and GRU models in Appendix A.

It is often customary to compare very short-term forecasts
with empirical benchmarks [8]. For this purpose, we use
the naïve persistence model (NPM), which forecasts that
the value measured for the current time period will also be
observed in the subsequent time period. We further utilize
the statistical mean model (SMM), which generates a forecast
that is equal to the statistical mean of the historical measure-
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ments collected in the same hour of the day and on the same
day of the week of the forecast time period.

C. EXPERIMENTAL RESULTS
We utilize Tensorflow [31] and Keras [32] to train, validate,
and test the constructed neural network. We use the validation
set to tune the hyperparameters and settle on the architecture
with 1 LSTM layer comprising 48 LSTM blocks, i.e., B =
48. We select T = 3 and use the Adam [33] optimizer with
L = 3 (10−4). We similarly use the validation set to tune the
hyperparameters of the GRU and SRN models and decide on
1 layer comprising 48 neurons for the GRU model and 1 layer
comprising 48 neurons for the SRN model.

We provide in Table 2 the mean squared error (MSE), the
mean absolute error (MAE), and the mean absolute percent-
age error (MAPE) on Dataset I test set and Dataset II of the
proposed model (PM) as well as those of the GRU model, the
SRN model, and the empirical benchmarks NPM and SMM.
Each “mean” (resp. “std”) column indicates the unweighted
average (resp. standard deviation) of all forecast errors based
on the corresponding metric.

The results show that, on both test sets, the proposed model
yields lower mean errors than do the benchmark models
based on all metrics. Specifically, the mean errors on Dataset
II attest to the capability of the proposed methodology to
generate successful forecasts for a year different from that
for which it is trained. We further note that, in each but one
test, the standard deviation of the forecast errors obtained via
the proposed model is lower than that of the other bench-
mark models, which indicates that the forecast errors of the
proposed model are more clustered around the mean values
and less spread out compared with the benchmark models.
On the heels of the proposed model is the GRU model,
which produces lower mean errors than do the remaining
benchmark models based on all metrics. In fact, the standard
deviation of the GRU model forecast errors on Dataset I test
set based on the MSE metric is also lower than that of the
proposed model. These results pinpoint the capability of the
GRU model to effectively learn temporal relationships. While
the SRN model mostly yields lower mean errors compared
with the empirical benchmarks, it results in higher mean
errors compared with the proposed model and the GRU
model. Such results are representative of the shortcomings
of the SRN model in learning long-term dependencies.

Figs. 5, 6, and 7 present the GB transmission system
frequency forecasts for a representative interval in Dataset
I training set, Dataset I test set, and Dataset II, respectively,
along with the actual corresponding GB transmission system
frequency measurements. Figs. 5-7 visually verify that the
proposed forecasting methodology is able to generate fore-
casts that follow the general trend of the actual frequency
measurements.

D. INFLUENCE OF THE HYPERPARAMETERS
We delve into the influence of B, T , and L on the fore-
casting performance. To this end, we probe the influence of
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FIGURE 5. Forecast and measured frequency for the interval 5:14 a.m.-5:29
a.m. on August 13, 2017 on Dataset I training set
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FIGURE 6. Forecast and measured frequency for the interval 12:04
a.m.-12:19 a.m. on October 2, 2017 on Dataset I test set
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FIGURE 7. Forecast and measured frequency for the interval 8:51 p.m.-9:06
p.m. on July 5, 2018 on Dataset II

VOLUME 4, 2016 7



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3013165, IEEE Access

Yurdakul et al.: Very Short-Term Power System Frequency Forecasting

TABLE 2. Forecasting Performances

model

MSE MAE MAPE

Dataset I test set Dataset II Dataset I test set Dataset II Dataset I test set Dataset II

mean (%) std (%) mean (%) std (%) mean (%) std (%) mean (%) std (%) mean (%) std (%) mean (%) std (%)

PM 0.12038 0.25410 0.15030 0.29104 2.61378 2.28178 2.89446 2.57918 5.22767 4.56283 5.78866 5.15766

GRU 0.12278 0.25280 0.15093 0.29152 2.65569 2.28605 2.90049 2.58475 5.31159 4.57141 5.80092 5.16926

SRN 0.12366 0.25319 0.15268 0.28951 2.66651 2.29247 2.93139 2.58350 5.33345 4.58495 5.86318 5.16787

NPM 0.13532 0.36003 0.16612 0.34973 2.70257 2.49551 2.95907 2.80278 5.40517 4.99003 5.91809 5.60541

SMM 0.46118 0.64188 0.50500 0.64527 5.47453 4.01845 5.85340 4.02960 10.94900 8.03323 11.70590 8.05572

each hyperparameter individually, while keeping the value
of the remaining two hyperparameters constant at the values
described in the previous subsection, i.e., B = 48, T = 3,
and L = 3 (10−4). Since it is impractical to traverse the
entire hyperparameter space, we investigate a finite set of
values for each hyperparameter. We conduct seven exper-
iments for each investigated value of each hyperparame-
ter so as to take into the account the influence of the
random initialization of the neural network weights. We
conduct experiments with the following number of LSTM
blocks in each layer: B = 6, 12, 24, 48, 72, 96, 128.
The look-back window values with which we perform ex-
periments are: T = 1, 2, 3, 6, 12, 30. We further per-
form experiments with the following learning rates: L =
10−4, 3 (10−4),

√
10 (10−4), 10−3,

√
10 (10−3), 10−2.

Figs. 8, 9, and 10 illustrate the influence of B, T , and L,
respectively, on the performance of the forecasts on Dataset
I validation set. The solid lines in Figs. 8-10 indicate the
mean MSE of the seven experiments conducted for each in-
vestigated hyperparameter value. Further, the shaded regions
around the solid lines depict one standard deviation around
the mean, computed similarly from the performed seven
experiments for each investigated hyperparameter value.

The influence of B on the forecasting performance is
illustrated in Fig. 8. The results show that as B increases
from 6 to 48, the mean MSE value decreases, which may be
attributed to the improved capability of the neural network to
grasp the underlying structure. Nevertheless, the assignment
of increasingly large values to B hurts the forecasting perfor-
mance.

We present in Fig. 9 the influence of T on the forecasting
performance. Clearly, T is a key determinant of forecasting
performance. We observe that as T increases from 1 to 3,
the MSE decreases, which demonstrates the advantage of
explicitly providing multiple historical values. On the flip
side, very large T values hurt the forecasting performance,
which can be ascribed to the fact that as T increases, the
complexity of the input data also increases. Fig. 10 illustrates
that the learning rate L has a vital role on the forecasting
performance. Among the investigated values, the learning
rate of L = 3 (10−4) yields the lowest mean MSE and
especially high L values result in markedly high MSE.

6 12 24 48 72 96 128
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FIGURE 8. Influence of the number of LSTM blocks in each layer on
forecasting performance
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FIGURE 9. Influence of the look-back window on forecasting performance

E. INFLUENCE OF THE FREQUENCY MEASUREMENT
ERRORS
The analyses conducted so far in this section relied on the
premise that the frequency measurements utilized in training,
validating, and testing the proposed methodology were void
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FIGURE 10. Influence of the learning rate on forecasting performance

of any errors. The application of the proposed methodology
in a real-life environment, however, may entail the utilization
of data that contain frequency measurement errors. For this
purpose, we devote this subsection to the investigation of
the influence of frequency measurement errors on the per-
formance of the proposed methodology, as well as that of the
benchmark models.

The IEEE Standard for Synchrophasor Measurements for
Power Systems, IEEE Std C37.118.1, spells out requirements
for steady-state frequency measurements and specifies the
maximum frequency measurement error as 0.005 Hz [34].
To explicitly take into account the influence of measurement
errors on the proposed methodology, we model the measure-
ment errors by a Gaussian random variable with mean 0 and
standard deviation 1.667(10−3), i.e., N

(
0, 1.667(10−3)

)
.

Such a measurement error model assigns a probability of
0.9973 (resp. 0.0027) to the event that the measurement error
is less (resp. greater) than or equal to 0.005 Hz.

We follow the approach described in [35] to incorporate
the frequency measurement errors to the proposed methodol-
ogy. To this end, we augment Dataset I training and validation
sets with data obtained by adding an error term that follows
the distribution N

(
0, (1.667)10−3

)
to each measurement

reported in Dataset I training and validation sets. We refer
to the resulting datasets as augmented Dataset I training set
and augmented Dataset I validation set.

By explicitly including data with, as well as without,
error terms in the augmented Dataset I training set, we
aim to ensure that the proposed methodology is resilient to
measurement errors. We recognize that, in the event of the
deployment of the proposed methodology in the control room
of an SO, the proposed methodology may be provided with
measurements containing errors. As such, if the proposed
methodology were to generate poor forecasts in the presence
of errors, its feasibility would be severely hampered.

We train the model with the loss function (6) using the 2N
samples of the augmented Dataset I training set.We similarly
follow the approach in [35] to evaluate the performance of

the models. We modify the two test sets by adding an error
term that follows the distribution N

(
0, (1.667)10−3

)
to each

measurement in Dataset I test set and Dataset II and refer
to the resulting test sets as modified Dataset I test set and
modified Dataset II, respectively. The utilization of these test
sets enables us to assess and compare the ramifications of
the measurement errors on the performance of each model.
We test the performance of each model on modified Dataset
I test set and modified Dataset II based on the MSE, MAE,
and MAPE metrics and tabulate the results in Table 3. For
the proposed methodology, we further report in Table 3 the
percentage changes in the forecast error values due to the
inclusion of measurement errors.

In line with our expectations, we remark upon the slight
increase in forecast errors of the proposed methodology
with the incorporation of the measurement errors. The re-
sults further illustrate that the proposed model yields lower
mean forecast errors than do the benchmark models on both
modified Dataset I test set and modified Dataset II based
on all metrics. In a similar vein, the standard deviation of
the forecast errors obtained by the proposed methodology is
mostly lower than that of the benchmark models. On these
grounds, we maintain that the proposed methodology, by and
large, performs well in the presence of errors and may lend
itself as a powerful tool for SOs in real-life applications.

F. COMPUTATIONAL PERFORMANCE
The capability of the proposed forecasting methodology to
assist SOs in a real-life environment is contingent upon its
computation time. For this purpose, we measure the com-
putation time of the proposed forecasting methodology in
generating a forecast for the subsequent minute.

We observe that it takes 1.2303 milliseconds (ms) for
the proposed methodology to generate a single forecast on
Intel(R) Xeon(R) CPU E5-2699A v4 @ 2.40 GHz with 768
GB RAM. We further test the performance of the proposed
methodology on a personal computer with a four-core AMD
Ryzen 5 3500U with Radeon Vega Mobile Gfx and 16 GB
RAM and obtain a computation time of 1.4679 ms. In light
of the fact that the proposed methodology aims to provide
SOs with a frequency forecast for the subsequent minute, a
computation time in the time frame of milliseconds renders
the proposed tool feasible in real-life applications.

V. CONCLUSION
In this article, we propose a methodology to forecast the
frequency of a power system in the subsequent minute. The
proposed methodology can aid the SOs in the assessment of
whether their manual intervention will be required to main-
tain the frequency within the stipulated limits in the subse-
quent minute. Since such manual interventions are typically
exercised in a race against time, the proposed methodology
can provide the SOs with an additional leeway of one minute
for them to decide on and take the necessary course of
actions. We illustrate the application of the proposed method-
ology on the GB power system frequency data. The results
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TABLE 3. Forecasting Performances in the Presence of Frequency Measurement Errors

model

MSE MAE MAPE

modified Dataset I
modified Dataset II

modified Dataset I
modified Dataset II

modified Dataset I
modified Dataset II

test set test set test set

mean (%) std (%) mean (%) std (%) mean (%) std (%) mean (%) std (%) mean (%) std (%) mean (%) std (%)

PM 0.12091 0.25909 0.15127 0.29294 2.61952 2.28674 2.90733 2.58342 5.2391 4.5726 5.81442 5.16617

% change 0.44065 1.96461 0.64301 0.65224 0.21947 0.21736 0.44469 0.16446 0.21886 0.21507 0.44496 0.16509

GRU 0.12388 0.25365 0.15246 0.29382 2.66639 2.29739 2.91798 2.59441 5.33279 4.59359 5.83592 5.18866

SRN 0.12517 0.25276 0.15290 0.28803 2.68086 2.30876 2.95273 2.56351 5.36214 4.61750 5.90580 5.12764

NPM 0.13562 0.36016 0.16624 0.34972 2.70580 2.49820 2.96266 2.80121 5.41164 4.99542 5.92526 5.60228

SMM 0.46128 0.64191 0.50481 0.64520 5.47544 4.01843 5.85214 4.02911 10.95083 8.03318 11.70336 8.05471

attest to the superiority of the performance of the proposed
methodology over that of selected benchmarks based on var-
ious evaluation metrics. Our extensive investigations provide
valuable insights into the influence of the number of LSTM
blocks in each layer, look-back window, and learning rate
on forecasting performance. The proposed methodology’s
forecasting performance in the presence of measurements
errors, coupled with its computation time in the time frame of
milliseconds, certifies its feasibility in real-life applications.

While the proposed methodology has been demonstrated
on the GB transmission system, it can be easily extended
to any transmission system independent of its scale. Our
analysis in Section II makes clear that tailoring the proposed
methodology for a specific system calls for a detailed analysis
of the frequency response services effective in that system
jointly with the time frames over which they are delivered.
The thorough examination of the system load, as well as its
diurnal, weekly, and seasonal variation, is further warranted
and needed due to the influence of system load on frequency
response characteristic. One must also make a conscientious
effort to take into account the electricity generation mix so as
to investigate the inherent inertia of the system. Finally, the
findings of these studies need to be effectively exploited in
the adaptation of the input features of the proposed model.

A natural extension of the presented work is to forecast
the power system frequency over a time period of multiple
minutes. Another area for further research is to forecast an
imminent frequency anomaly, i.e., the event that the fre-
quency will attain a value outside a range of pre-specified
limits.

APPENDIX A SIMPLE RECURRENT NETWORK AND
GATED RECURRENT UNIT ARCHITECTURES
We devote this appendix to the discussion of the simple recur-
rent network (SRN) model and the gated recurrent unit (GRU)
model, which are leveraged in Section IV as benchmarks
in the performance evaluation of the proposed LSTM-based
forecasting methodology.

The SRN model is an RNN architecture equipped with a
rudimentary recurrent connection. While the recurrent con-
nection enables an SRN network to pass information over
time, the SRN model lacks the gate structures inherent in

more sophisticated RNN architectures, such as the LSTM
model. Due to its primitive recurrent connection, the SRN
model prefers more recently provided data over data provided
earlier. As such, the gradients associated with data observed
further in the past, as important as they may be, are liable
to vanish quickly—a phenomenon known as the vanishing
gradient problem [36]. We provide the graphical depiction of
the SRN model in Fig. 11.

weighted sum over all inputs hyperbolic tangent function

FIGURE 11. Graphical depiction of the SRN model

We consider the input sequence (x`)T`=1 := (x1, ...,x`, ...
,xT ) of length T . Each element of the sequence (x`)

T
`=1 is

anM-dimensional vector, whereM is the number of input
features. The forward pass of an SRN model can be expressed
by the following equation for ` = 1, . . . , T :

κ` = tanh
(
W xκx` +W κκκ`−1 + bκ

)
, (7)

where the W terms represent the weight matrices, the b
term the bias vector, κ` the output in time step `, and
tanh(·) the hyperbolic tangent function [37], [38]. Equation
(7) illustrates that the output of the SRN model in time step `
is jointly influenced by the input in time step ` and the output
in time step ` − 1, which permits the SRN model to carry
information across time steps.

We next turn to the description of the GRU model, which
is an RNN architecture that has more internal structural
elements—and so has the capability to garner more underly-
ing temporal information—than does the SRN model. Similar
to the LSTM model, the GRU model is equipped with gates,
viz.: update gate and reset gate, which control the flow of
information among time steps and the integration of the input
at each time step. Despite its less intricate internal structure
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compared with the LSTM model, the GRU model is widely
touted as performing on par with the LSTM model [39]. We
present the internal architecture of the GRU model in Fig. 12.

We next analytically describe the internal operation of the
GRU model. We denote the update gate and reset gate of the
GRU model by u and r, respectively. We denote by (x`)

T
`=1

the input sequence and state the forward pass of a GRU
network for ` = 1, . . . , T as follows:

u` = σ
(
W xux` +W κuκ`−1 + bu

)
, (8)

r` = σ
(
W xrx` +W κrκ`−1 + br

)
, (9)

κ′` = tanh
(
W xκ′x` +W κκ′(r` � κ`−1) + bκ′

)
, (10)

κ` =
(
u` � κ′`

)
+
(
(1− u`)� κ`−1

)
, (11)

where theW terms represent the weight matrices, the b terms
the bias vectors, κ` the output in time step `, σ(·) the logistic
sigmoid function, tanh(·) the hyperbolic tangent function,
and � the Hadamard product [39], [40].

update
gate

reset
gate

weighted sum over all inputs

logistic sigmoid function hyperbolic tangent function

Hadamard product

FIGURE 12. Graphical depiction of the GRU model

The update gate controls the integration of the information
from time step `−1 and the input in time step `, to the compu-
tations in time step `, as expressed by (8). The hallmark of the
update gate is its ability to explicitly ensure the propagation
of information across time steps, thereby availing the GRU
model to overcome the vanishing gradient problem. [40]. The
operation of the reset gate is expressed by (9). The objective
of the reset gate is to adjust the incorporation of information
from time step `−1 while evaluating the input in time step `.
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