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We describe in detail the quantum tunneling of massive particles from Kerr black hole by using complex
trajectories, which are solutions to Hamilton’s equations of motion with imaginary proper time. The
trajectories are smooth and cover the inner and outer horizon regions. Following the worldline approach,
we compute the energy flux at the event horizon as a summation over these complex trajectories. The
density of states is given with the aid of Carter’s constant, and it is shown to be linear in momenta in the
leading order, as long as the phase portrait of the system stays uniform. Under this assumption, we obtain
the thermal spectrum ∼ðTþ

HÞ4.
DOI: 10.1103/PhysRevD.98.045019

I. INTRODUCTION

Since Hawking’s original paper, emission of particles
from the black hole event horizon has been a striking
prediction of quantum mechanics [1]. Tunneling interpre-
tation of Hawking radiation was made transparent by
Parikh and Wilczek’s approach, in which the imaginary
part of the action was calculated by using radial null
geodesics [2]. Hawking’s original result for the tunneling
exponent has also been obtained by using the solutions of
the Hamilton Jacobi equation and by the complex path
approach in various black hole backgrounds [3,4]. A
comprehensive review of the emission mechanism and
its relation to black hole thermodynamics can be found in
Refs. [5,6]. The purpose of this paper is to reproduce the
emission spectrum of massive particles from the Kerr black
hole by using the worldline approach to quantum tunneling.
The worldline formalism has been extensively discussed in
the literature and has been successfully applied to the
analogous vacuum decay phenomenon, the Schwinger
effect [7–12]. In the semiclassical worldline approach,
the imaginary part of the action is given by the closed,
classical trajectory configurations of the system. These
trajectories usually appear as the solutions to the Euclidean
classical equations of motion, in which time is imaginary:
x0 → x0E ¼ ix0. But for relativistic systems, in which orbits
are parametrized by a proper time parameter, a more natural
prescription is to seek for the tunneling orbits with

imaginary proper time: u → iu ¼ s, as proposed by
Rubakov et al. [13]. Thus, we look for the closed tunneling
orbits in the Kerr geometry via complexified Hamilton
equations of motion in the form

i
dpμ

ds
¼ −

∂H
∂xμ ; i

dxμ

ds
¼ ∂H

∂pμ
;

where the Hamiltonian is H ¼ 1=2gμνpμpν. The factor of i
above makes the closed worldlines essentially complex. An
important aspect of complex worldlines is that they
smoothly pass from the outer to inner horizon region.
Worldlines are quasiperiodic off the equator or when pθ is
nonvanishing. The ratio of the periods T̃=T1, where T̃ is the
closure period and T1 is the first period, gives the winding
number. This number generically shows the number of
times that a given trajectory encircles the horizon. As we
will discuss in the next section, the classical action,H
pr _rds, weighted by the factor T1=T̃ reproduces the

Hawking temperature, Tþ
H, which is uniform over the

horizon area.
In processes in which vacuum breaks down under the

influence of an external field, the main technical challenge
is to compute the imaginary part of the vacuum-to-vacuum
transition amplitude. A particularly appealing aspect of the
worldline approach is that vacuum-to-vacuum amplitude is
naturally related to the closed orbits because it involves a
trace. In fact, the total decay rate corresponds to a
summation over all possible closed trajectory configura-
tions of the system, not just to a single trajectory. An
important consequence of this fact is that path summation
over a dense set of tunneling orbits naturally allows us to
define the emittance of a black hole at the horizon. In
calculating the energy flux emitted at the horizon, Carter’s
constant, C, plays a special role: by using the definition of
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C, the integral over pθ and θ can be integrated to give the
density of states for fixed energy, ω, and angular momen-
tum, j. Based on the assumptions that we explain in
Sec. III, energy flux can be obtained in the closed form
in the limit of vanishing C, and it is shown to be propor-
tional to ðTþ

HÞ4 in the leading order.
The plan of the paper is as follows. In Sec. II, we briefly

recall the worldline formalism and perform the semiclass-
ical expansion of the path integral in the phase space,
around the complex geodesics. We explain how the com-
plex geodesics appear and construct the integration cycles
that give the tunneling exponent. In Sec III, we analyze the
emittance of a black hole as a summation over complex
geodesics and calculate the power output at the event
horizon in the limit of the vanishing Carter constant, and the
final section contains our conclusions.

II. WORLDLINE FORMALISM

Following Schwinger’s prescription [14], we consider
the vacuum decay amplitude given by the imaginary part of
the effective action in the background metric ð−;þ;þ;þÞ:

P ¼ 1 − e−2ImΓeff=ℏ ≈
2

ℏ
ImΓeff : ð1Þ

The effective action for the Klein-Gordon field is defined as
(henceforth, we set ℏ ¼ G ¼ c ¼ 1)

Γscalar
eff ¼ i ln det ½D2

μ −m2� ¼ itr ln ½D2
μ −m2�; ð2Þ

where D2
μ ¼ gμν∇μ∇ν and tr denotes the trace. The integral

representation of Γscalar
eff is given with the aid of Schwinger

parameter, T,

Γscalar
eff ¼ −i

Z
∞

0

dT
T

tre−i
1
2
ðD2

μ−m2ÞT: ð3Þ

A similar definition for the spinor effective action can be
given via the tetrad formalism [15]. Since the only differ-
ence between the scalar and spinor spectrum of the emitted
particles is the spin statistics of the tunneling amplitude, we
concentrate here on the scalar case. Effective action has the
usual path integral interpretation when the trace is per-
formed over the closed trajectory configurations,

Γscalar
eff ¼ −i

Z
∞

0

dT
T

ei
1
2
m2T

Z ffiffiffiffiffiffi
−g

p
d4xð0Þ

×
Z
xð0Þ¼xðTÞ

D4xe−iS½x�; ð4Þ

where S is the classical action for the particle following the
trajectory xμðuÞ with a propagation period T:

S½xμðuÞ;T� ¼ 1

2

Z
T

0

gμνðxðuÞÞ
dxμ

du
dxν

du
du: ð5Þ

For the evaluation of the path integral, we resort to the well-
known stationary phase approximation. In this approxima-
tion, the dominant contribution to the path integral comes
from the stationary points of the action, S½xμðuÞ;T�. These
points are the solutions to the geodesic equation,

d2xλ

du2
þ Γλ

μν
dxμ

du
dxν

du
¼ 0; ð6Þ

where u is the affine evolution parameter. Equation (6) has
a first integral: L ¼ constant. This constant is fixed by also
making a saddle-point approximation to T integral in (4),
giving

m2

2
−
∂S
∂T ¼ 0: ð7Þ

We identify the period satisfying the stationarity condition
above as the classical (fundamental) period, which we
denote by Tc. Using the Hamilton Jacobi equation, we write
the stationarity condition in the configuration space as

m2 þ gμν
dxμ

du
dxν

du
¼ 0; ð8Þ

which identifies the normalization of the affine parameter:
u ¼ τ=m, where τ is the proper time. The constraint given
by (8) shows that the particle is restricted to move on a
constant energy surface defined by E ¼ m2. With these
observations, the semiclassical form of the effective action
can be given as

Γscalar
eff ≈ ei

1
2
m2Tc

Z ffiffiffiffiffiffi
−g

p
Pe−iS½x;Tc�d4x: ð9Þ

Note that the integration cycle for the action has not been
specified yet. With S½xμðuÞ;T� evaluated on the classical
trajectory, all the terms arising from the second-order
contribution are combined in the prefactor:

P ¼ −i
e−impπ=2

Tc

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det

∂pμðxð0ÞÞ
∂xνðTÞ

s !
T¼Tc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

j∂2Δ=∂T2
cj

s
;

Δ ¼ 1

2
ðim2Tc − iS½xμðuÞ;Tc�Þ: ð10Þ

The Van Vleck determinant and the last term above encode
the fluctuations that are given by the variation of the initial
momenta with respect to the end points of the trajectory,
ultimately giving the density of the trajectories emerging
from the same neighborhood with different momenta. The
Morse index, mp, is the integer accounting for the number
of negative eigenvalues of the determinant. Given the form
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classical period satisfying the stationarity condition, effec-
tive action in (9) in fact yields the momentum integrated
spectrum of tunneling particles. To see this, one may
convert the path integral in (4) to phase-space path integral
via Legendre transform and perform the momentum inte-
grals by the virtue of integrability. In the next section, we
will articulate on this point by using the analytic results
from the Schwinger effect.

A. Need for complex worldlines

The worldline approach was initially suggested for QED
vacuum instability in constant electric field [16]. In
Ref. [7], the formalism was extended to inhomogeneous
fields. The specification of the closed orbits was discussed
by Rubakov et al. [13], who pointed out that classical
trajectories living in the negative mass squared regions of
the configuration space signal the tunneling instability.
Recalling the scaling relation between u and τ, one may
refer such trajectories as the tunneling orbits parametrized
by the imaginary affine parameter. For the deformation
u → is, in nonderivative couplings, the classical equations
of motion acquire a sign change,

d2xμ

du2
¼ −

∂VðxÞ
∂xμ →

d2xμ

ds2
¼ þ ∂VðxÞ

∂xμ ; ð11Þ

where for the gauge coupling of the QED case the defor-
mation introduces a factor of i into the equations of motion.

d2xμ

du2
¼ eFμνðxÞ dxν

du
→

d2xμ

ds2
¼ −ieFμνðxÞ dxν

ds
: ð12Þ

With the factor i in front, the above equations become
complex, so their solutions generically become complex as
well. To illustrate this, in the following, we briefly recall the
use of complex worldlines in the Schwinger effect and
show how the prefactor contribution in (9) can equivalently
be given by summing over the initial momenta of the orbits.
We will concentrate on the scalar QED; the generalization
to spinor case is straightforward.

1. Schwinger effect

Upon deformation u → is, the stationarity condition in
the QED case becomes −_xμðsÞ_xμðsÞ þm2 ¼ 0. Here, xμðsÞ
is the solution of (12). The form of the effective action
given by (4) remains the same, except gμν is the Minkowski
metric, ð−;þ;þ;þÞ, and the covariant derivative repre-
sents the minimal coupling with the background gauge
field: ∇μ ¼ ∂μ − iqAμ. The classical action, S½xμðsÞ; T�, is
given by

S½xμðsÞ;T� ¼ −i
Z

T

0

�
1

2

dxμ
ds

dxμ

ds
− iq

dxμ
ds

AμðxðsÞÞ
�
ds:

ð13Þ

Following Ref. [7] closely, we will work with time-
dependent Sauter pulse given along the x1 direction:
A1ðx0Þ ¼ E0=k tanh kx0. For this potential, equations of
motion can be integrated for the vanishing momenta,
yielding the solutions

x0clðsÞ ¼
i
k
arcsin

�
γffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ γ2
p sin

�
mk

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p
s

γ

��

x1clðsÞ ¼
1

k
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ γ2
p arcsinh

�
γ cos

�
mk

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p
s

γ

��
; ð14Þ

where γ ¼ mk=ðqE0Þ is the adiabaticity parameter and the
classical period is simply Tc ¼ 2πγ=ðmk

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p
Þ. Using

the above solutions, the tunneling amplitude reads

exp ½Δðxcl; TcÞ� ¼ exp

�
−
m2π

qE0

�
2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p ��
; ð15Þ

which reduces to Schwinger’s result in the constant field
limit, γ → 0. Returning back to the prefactor expression
(10), we see that the second-order contribution arising from
T integral can be readily calculated once the exponent is
specified in terms of the classical period, Tc. The remaining
determinant factor depends on the zero modes of the
secondary action, δ2S. The calculation of zero modes
has been carried out in Ref. [7], and we give the details
for integrating them out in the Appendix. Here, we give the
final result for the path integral, which upon including the
Morse index and the normalization factors, leads to

ImΓscalar
eff

V
¼ 1

8π3
ð1þ γ2Þ5=4ðqE0Þ5=2

mk

× exp
�
−
m2π

qE0

�
2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p ��
: ð16Þ

One may reach the above result by integrating the
tunneling amplitude over the initial momenta of tunneling
orbits. The contribution coming from zero modes is
encoded by the momentum integrals. This is in fact
expected because zero modes are associated with the
continuous symmetries of the action. To account for the
initial momenta, we convert the path integral into a phase-
space path integral,

Γscalar
eff ¼ −i

Z
∞

0

dT
T

ei
1
2
m2T

Z ffiffiffiffiffiffi
−g

p
d4x

Z
xð0Þ¼xðTÞ

D4x

×
Z

D4pe−i
R

T

0
ðpμ

dxμ
du−HÞdu; ð17Þ

where Lagrangian and Hamiltonian densities are related
by H ¼ pμ

dxμ
du − L. Hamilton’s characteristic function

W½xμðuÞ; E� ¼ R T0 pμ _xμdu is referred to as the classical
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action of a particle moving on the constant energy
surface in the phase space. It is related to the action via
the Legendre transform W½xμðuÞ; E� ¼ S½xμðuÞ;T� − ET,
which immediately yields the relations ∂S

∂T ¼ E and
∂W
∂E ¼ −T. Noting that the gauge potential depends only
on time, all the spatial components of the path integral
above can be performed, producing delta functions over the
spatial momenta. Thus, the momenta are conserved, and
the functional integrals over the conserved momenta reduce
to ordinary momentum integrals:

R
Dp1Dp2Dp3 →

1
8π3

R
dp1dp2dp3. The stationary points of the phase-space

path integral satisfy

ðeþ ifÞ dpμ

ds
¼ −

∂H
∂xμ ; ðeþ ifÞ dx

μ

ds
¼ ∂H

∂pμ
; ð18Þ

where we have used u → s ¼ ðeþ ifÞu. With e and f are
real, such a deformation reflects the reparametrization
freedom of the affine parameter; in other words, we are
free to choose the direction in which we integrate the
equations of motion in the complex plane. The correspond-
ing integral motion,H ¼ constant, is fixed via the constant
energy surface in the phase space:

m2 þ gμνpμpν ¼ 0: ð19Þ

Note that when the external field is nonuniform the period
of the orbits on the constraint surface couples with the
momenta, Tc ≔ Tcðpi;mÞ, and because the characteristic
function W½x0ðsÞ;m2� depends only on the momenta, the
correction terms brought by the deformation of the period
and the Van Vleck determinant are encoded by the

momentum integrals, weighted by eiW½xμðsÞ;m2�. Taking this
into account and including the Morse index, we may write

Γscalar
eff ≈ −iV

Z
dp1dp2dp3

×
Z
xð0Þ¼xðTcÞ

ffiffiffiffiffiffi
−g

p dx0

Tc
e−imp=2e−i

R
Tc
0

p0
dx0
ds ds: ð20Þ

Here, we left Tc in the exponent to emphasize the fact that
characteristic function is to be evaluated on the phase-space
orbit over the full closure period. Periodic orbits of (18) can
be found upon appropriately specifying the initial con-
ditions. Bounded orbits are generically located in the
vicinity of the critical points, where the one form p0dx0 ≡
p0 _x0ds vanishes. In one-dimensional problems, the loca-
tions of the critical points can easily be extracted from (19)
by specifying p0 as a function of the conserved momenta
and the external parameters. Here, for the time-dependent
potentials, critical points are located on the complex x0

plane, generally in the form of complex conjugate pairs.
The dominant contribution to path integral in the weak field
limit, E0 ≪ m2 and γ ≪ 1, is given by the complex
trajectory lying in the neighborhood of the critical point
pair, which is closest to the real axis (see Fig. 1).
Before proceeding with the momentum integrals, the

remaining piece of (20) to look at is the integral over the
initial points of the trajectory. Generically, all the points
located on the closed trajectory contribute to the volume
integral. This simply reflects the freedom in choosing the
starting point on the trajectory when evaluating the action.
It is obvious that W½xμðsÞ;m2� does not depend on the
particular choice of xμð0Þ since it remains invariant under

FIG. 1. Complex flow for the Sauter potential (E0 ¼ 1=10; k ¼ 1=10; m ¼ 1, and f ¼ 1). On the left, the complex trajectories with
vanishing conserved momenta form a symmetric flow with respect to the imaginary axis. The classical solution given by (14)
corresponds to the innermost orbit passing through the origin. The conjugate (critical) points are marked by the dots on the trajectory.
The value of the action remains uniform on each trajectory marked by the same color. The families of orbits enveloped by the outermost
trajectories are separated by the poles located at x0 ¼ inπ=k; n ∈ Z. On the right, the longitudinal momentum is p ¼ 1=10, and as a
result, the orbit flow gets deformed.
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proper time translations along the trajectory. But because of
this translational freedom, the volume element contains a
multiplicity factor given by the path length of the trajectory.
This multiplicity factor cancels against the 1=Tc factor
appearing in (20), therefore normalizing the volume inte-
gral. As a result, the path integral over a single trajectory
becomes

Γscalar
eff ≈ −i

V
8π3

Z
dp1dp2dp3e−imp=2e−i

R
Tc
0

p0
dx0
ds ds: ð21Þ

To show that above expression indeed leads to (16), the
remaining task is to specify the characteristic function on
the classical orbits with nonvanishing momenta. The
analytical form of the orbits in (14) for arbitrary momenta
is unknown, but the form of the characteristic function
evaluated over the closure period can be deduced by noting
the equivalent representation of the effective action [17]

ImΓscalar
eff ¼ −

V
8π3

Z
d3p log ð1 − wðpÞÞ; ð22Þ

where wðpÞ is the backward scattering amplitude, obtained
by solving for the asymptotic solutions of

∂2
0φðx0Þ þ p2

0ðx0Þφ ¼ 0;

p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

2 þ p2
3 þ ðp1 − qA1ðx0ÞÞ2

q
: ð23Þ

The amplitude φðx0Þ is the temporal component of the
wave function of a scalar particle propagating in a time-
dependent electric field. The spatial components are just the
free particle solutions due to the translational invariance
and have been integrated out. The initial and final vacuum
states are, respectively, given by the boundary conditions

lim
x0→−∞

φðx0Þ→eip
−
0 ; lim

x0→−∞
p0ðx0Þ¼p−

0

lim
x0→∞

φðx0Þ→c1ðpÞeipþ
0 þc2ðpÞe−ipþ

0 ; lim
x0→∞

p0ðx0Þ¼pþ
0 ;

ð24Þ

with the unitarity condition, jc1ðpÞj2 − jc2ðpÞj2 ¼ 1. The
above scattering problem for the Sauter potential is exactly
solvable. The momentum dependence of the scattering
amplitude is given by

wðpÞ¼ jc2ðpÞj2
jc1ðpÞj2

¼ coshπ
k ðiκþp−

0 −pþ
0 Þcoshπ

k ðiκ−p−
0 þpþ

0 Þ
coshπ

k ðiκþp−
0 þpþ

0 Þcoshπ
k ðiκ−p−

0 −pþ
0 Þ

; ð25Þ

where κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − 4q2E2

0=k
2

p
. In the weak field limit and for

γ ≪ 1, the scattering amplitude becomes [18]

wðpÞ ≈ exp

�
−
π

k

�
pþ
0 þ p−

0 −
2qE0

k

��
: ð26Þ

The exponent above is precisely Hamilton’s characteristic
function evaluated on the classical trajectory with non-
vanishing momenta. This could be verified by direct
numerical integration or computing the characteristic
function as a Cauchy integral with the contour chosen as
the classical trajectory. We may now evaluate (21) by using
(26) and noting that the Morse index for the classical
trajectory is 2 (see the Appendix). By expanding the
exponent in the limit pi=m → 0 and up to quadratic order
in momenta, the path summation turns into Gaussian
integrals

Γscalar
eff ≈ i

V
8π3

exp

�
−
m2π

qE0

�
2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p ��

×
Z

dp1 exp

�
−p2

1

πγ3

mkð1þ γ2Þ3=2
�

×

�Z
dp exp

�
−p2

πγ

mkð1þ γ2Þ
��

2

: ð27Þ

The resultant integrals over the transverse momenta pro-
duce the free particle prefactor, 1=2πTc. The remaining
integral over p1 encodes the collective contribution of the
Van Vleck determinant in the x0 − x1 plane and also the
leading term coming from the T integral. By performing the
integration over p1, it is easy to see that (27) indeed
matches with (16).

2. Hawking radiation

Returning to our case in curved background, we see that
it is favorable to perform the path summation over the
phase space. Owing to the axisymmetry of the Kerr metric,
the spatial path integrals over t and ϕ in (17) can be done,
producing the delta functions for the momenta, pt and pϕ.
Thus, −pt ¼ ω and pϕ ¼ j are conserved and functional
integrals over conserved momenta reduce to ordinary
momentum integrals as before:

R
DpϕDpt →

R
dωdj

[19]. Using the WKB ansatz on the remaining phase-space
path integrals, the imaginary part of the vacuum-to-vacuum
transition amplitude reads (henceforth, we drop the sub-
script on Tc)

ImΓscalar
eff ≈N

Z
dωdjdpθ

Z ffiffiffiffiffiffi
−g

p
d4xe−i

R
T

0
pr _rdue−i

R
T

0
pθ

_θdu;

ð28Þ

where we have absorbed the phase-space normalization and
the sign factors arising from the Morse index into the
prefactor N . The appearance of the measure, dpθ, is
necessary because path summation is to be performed over
the initial values of pθ resulting in the bounded motion.
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In addition, it ensures that the phase-space volume has the
correct form that is preserved by the Hamiltonian flow. To
evaluate (28), we need to specify the integration cycles for
the action, which in turn should give the tunneling
exponent over the horizon area. As we will demonstrate,
on the integration cycles, Hamilton’s characteristic function
does not depend on the value of pθ. This has an important
consequence. It is well known that Kerr metric is classically
an integrable system, in which there are as many constants
of motion in involution as the number of the coordinates. In
the usual phase-space coordinates, the integrability is
reflected in the existence of Carter’s constant, which can
be stated as a constraint between the momenta and θ,

C ¼ p2
θ þ cos2θ

�
−a2ðω2 −m2Þ þ j2

sin2θ

�
; ð29Þ

where a is the rotation parameter of black hole. The
important message here is the following. By observing
the pθ independence of the tunneling exponent and using
the above constraint, pθ in (28) can be integrated out when
summing over a family of tunneling cycles, for which the
value of C remains fixed. We will use this fact later in order
to give an analytic expression for the emittance of black
hole at the event horizon,

σ≈N 4πMrþ

Z
dωdjdpθ

Z
dθsinθe−i

R
T

0
pr _rdue−i

R
T

0
pθ

_θdu;

ð30Þ

which we define as the total tunneling rate at the outer
horizon per unit time. Here, the extra factors come from the
reduced metric determinant and the angular integration. It is
important to note that the path summation above does not
take into account the greybody contribution. Tunneling flux
by definition accounts for the density of the emitted
particles at the vicinity of the horizon. The further damping
of the tunneling amplitude by the gravitational potential
must be accounted for by the additional cycles that extend
to the region far away from the horizon. Formally, this
means (30) must include the radial coordinate, extending
from rþ all the way to the infinity. Another subtle point is
that the flux in (30) is defined in the continuum limit. In the
standard computations of the flux, all the modes except the
energy are quantized via the eigenvalues of the separation
constant, λlj, that appears in the wave equation [20–22].
Heuristically speaking, the continuum limit of angular
momentum modes here is encoded by Carter’s constant

such that λlj→
continuum

C þ j2 [23].
Where are the tunneling orbits? The expression (30)

makes the tacit assumption that the initial points of the
tunneling orbits must lie arbitrarily close to the event
horizon. To see this, it is illustrative to consider the radial
action in (30) as a Cauchy integral. The tunneling exponent

is then given by the residues of the classical action at the
event horizons. Recalling the Hamilton-Jacobi formalism,
the integration contour for the residue is adopted as a small
circle in the complex r plane, encircling the pole at the
horizon. In the worldline framework, such a choice is not
given a priori; rather, it is constructed by using the closed
orbits from the Hamiltonian flow. But the construction is
not arbitrary; as we will explicitly show, the integration
cycles giving the tunneling exponent precisely correspond
to the paths on which one performs the analytic continu-
ation of the modes across the horizon. In view of this fact,
the tunneling exponent in fact emerges as a relative phase
difference across the event horizon, as illustrated by the
Damour-Ruffini method [24]. To reach this result, we must
first fix the domain of integration cycles by using the
constant energy surface defined by

m2

ðcþ idÞ2 þ gμνpμpν ¼ 0: ð31Þ

The above equation, depending on the values of c and d,
fixes the location of critical points where the one-form
p1;2
r _rds≡ p1;2

r dr vanishes. Here, p1;2
r denote the algebraic

solutions of (19). The important observation is that
bounded orbits of the Hamiltonian reside in the vicinity
of the critical points, and therefore the relative location of
critical points with respect to event horizons is crucial. For
c ¼ 0 and d ∈ R, the two critical points of pr are
generically located on the real axis, in between the event
horizons. This configuration supports bounded complex
orbits that smoothly fill the regions located in between and
outside the horizons. As we will demonstrate, the phase
difference across the horizons is encoded by these orbits.
To find the orbits, we fix e ¼ 0 and the magnitude of f to
unity in (18). The sign of f will be specified depending on
whether the trajectory starts inside or outside the horizon.

B. Hamiltonian flow for complex worldlines

Spheroidal coordinates, in which the axisymmetry of
Kerr geometry becomes apparent, is convenient for the
integration of (18). These include Boyer-Lindquist (BL),
Kerr, Painleve-Kerr [25], and Doran coordinate systems
[26]. The Hamiltonian flow in these coordinate systems
forms a smooth family of nested integral curves, encom-
passing the inner and outer horizon regions, and they are
almost identical to one other. The findings reported here are
based on BL and Kerr coordinates, which are computa-
tionally less demanding, but the identical results for
the tunneling amplitude can easily be generated for any
other choice of spheroidal coordinates. We begin by
analyzing the flow of radial geodesics. For this, we set
pθð0Þ ¼ 0; θð0Þ ¼ π=2. The initial condition for radial
momentum is given by the solutions, p1;2

r .
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1. BL coordinates

The radial dependence of p1
r in BL coordinates is plotted

in Fig. 2. The other solution, p2
r , just differs by a minus

sign: p1
r ¼ −p2

r . The poles of p1
r are located at the event

horizons: r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
. As discussed earlier, the

points where pr _r becomes zero are the critical points,
which coincide here with the zeros of p1

r . The locations of
the poles and the critical points are important for the
Hamiltonian flow: poles repel the neighboring trajectories,
whereas critical points behave as attractors. The reason that
geodesic flow remains almost identical for the choice of
BL, Kerr, Doran, and Painleve-Kerr coordinates is because
in these coordinates the distribution and the number of
poles and zeros remain the same. In spheroidal coordinates,
there are four critical points on the complex plane. For fixed
a and M and also for fixed mass m=d, the locations of the
critical points vary as a function momenta and θ. Two of
these points remain in the negative r plane, on the real axis
or appear as complex conjugates of one other. For c ¼ 0

and d ∈ R, the remaining pair of critical points, r�cr, is
generically located in between the two event horizons, on
the real axis, or as complex conjugates. Exception to this
comes from the extremely high-momenta region where the
energy of the tunneling particle by far exceeds the chosen
mass scale, m=d, or where the angular momentum takes
values in the deep superradiant regime. Here, if the two
pairs of critical points are separated well enough, the latter
pair of critical points, r�cr, gives rise to bounded orbits
encoding phase discontinuities across the event horizons.
To see this, onemay fix the initial momenta and obtain the

geodesic flowby varying rð0Þ on the real axis, from the inner
horizon to outer horizon region. Figure 2 shows the geodesic
congruence belonging to rðsÞ in the complex domain. In the
subregions denoted by the shaded areas, the value of the

action,Wr ¼ −i
R
T
0 pr _rds, remains uniform. While passing

the event horizons, the value ofWr makes a jump because of
the phase difference brought by the pole of pr. The same
phase difference also occurs for the points r�c , which are
conjugate to event horizons, r�. Conjugate points mark
the initial points for which radial component of the
trajectory over the half-period coincides with the horizon:
r�c ðT=2Þ ¼ r�. For instance, if rð0Þ approaches rþc from the
left (right), the trajectory will cross the real axis just outside
(inside) the outer horizon. The radial momentum, p1

r , over
the half-period ismapped into the other solutionp2

r (and vice
versa): p1

rðT=2; rðT=2ÞÞ ¼ p2
rð0; rðT=2ÞÞ. Because of this,

the values of p1
rðs; rðsÞÞ across the initial points rð0Þ ¼

r�c � ϵðϵ ≪ 1Þ are separated by the poles ofp2
r over the half-

period; therefore,Wr converges to different values across the
conjugate points as well.
Integration cycles.—The tunneling exponent is given by

the total phase difference across the horizons. By looking at
the Hamiltonian flow, the phase difference can readily be
seen to beW1

r −W2
r at the outer horizon. Formally, one may

obtain this result by combining the trajectories located on
both sides of the outer horizon and use them as integration
contours for the action. The combined integration cycle
consists of the trajectory, rðsÞ, located just outside the
horizon with s ¼ iu; ðf ¼ 1Þ and the trajectory just inside
the horizon with s ¼ −iu; ðf ¼ −1Þ. The classical action
evaluated on this cycle in effect gives the residue located at
rþ. We should, however, mention that W1

r −W2
r corre-

sponds to the tunneling exponent, apart from the fact that it
gives half of the correct result. This is related to the factor 2
ambiguity that arises in several methods (see Ref. [27] and
the references therein). Here, in the worldline approach, it
only shows up in BL coordinates but can be resolved by the
following observation. Note that in the beginning we

FIG. 2. The radial momentum with real (blue) and imaginary (yellow) parts (left). The dots indicate the location of event horizons.
Note that the imaginary part vanishes at the critical points (see the text). The parameters are chosen as M ¼ 105; a ¼ 9.7 × 104;
m ¼ 1;ω ¼ 5 × 10−2; j ¼ 10−2; θð0Þ ¼ π=2; pθð0Þ ¼ 0, and d ¼ 1. On the right is the schematic representation of the Hamiltonian
flow formed by complex geodesics. The geodesics cover an elliptical area, where each shaded region designates the family of the
worldlines for which the value of Wr remains uniform. The discontinuities in the classical action yield the tunneling exponents for the
inner and outer horizons, and in BL coordinates, they occur when passing across the event horizons and the conjugate points.
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defined the tunneling exponent as the total phase differ-
ence, which is in fact brought by the poles of the solutions
p1;2
r . In BL coordinates, both solutions have poles located

at the horizons, and thus the contribution coming from the
cycle in which prð0Þ ¼ p2

r should also add up to this phase
difference. As a result, the correct tunneling exponent is
indeed given by 2W1

r − 2W2
r. The tunneling amplitude is

accordingly given by

e2W
1
r−2W2

r ¼ e−jω−jΩþj=Tþ
H ; W1

r −W2
r < 0; ð32Þ

where the angular velocity,Ωþ, and the temperature, Tþ
H, of

the outer event horizon are defined as

Ωþ ¼ a
a2 þ r2þ

; Tþ
H ¼ rþ − r−

4πðr2þ þ a2Þ :

The tunneling exponent in (32) is given as an absolute value
for the following reason: as one keeps ω constant and
increases j, the critical point rþcr moves toward rþ, and at
the onset of superradiance (j ¼ ω=Ωþ), rþcr coincides with
the horizon rþ. From this point on, a further increase in
angular momentum makes rþcr move back from rþ toward
r < rþ. The crucial point is that when passing into the
superradiant regime Wr does not reverse the sign on the
cycle; in other words, the tunneling exponent still remains
negative: 2W1

r − 2W2
r ¼ −jω − jΩþj=Tþ

H. It is obvious that
for the modes ω > jΩþ the emission probability is expo-
nentially suppressed. The weight factor is given by the
repeated traversals of the same trajectory,

X∞
n¼1

e
− n
Tþ
H
ðω−jΩþÞ ¼ 1

eðω−jΩþÞ=Tþ
H − 1

; ð33Þ

which is neglected in the path summation for brevity. For
superradiant modes, if the tunnelling exponent indeed
becomes positive, the expansion in (33) does not converge,

and we would have difficulty in interpreting (30) as a
finite sum. In fact, with the weight factor chosen as
1=ðeðω−jΩþÞ=Tþ

H − 1Þ, there is nothing to stop momentum
integrals in (30) from growing quartically, when ω < Ωþj.
In the remainder of this analysis, we assume the tunneling
exponent remains negative in the superradiant regime.
The integration cycle for the inner horizon is given in a

similar manner. The only difference is that on the trajectory
lying just outside the inner horizon we choose s ¼ iu,
while on the inner trajectory, we have s ¼ −iu so that
W2

r −W3
r < 0. This leads to

e2W
2
r−2W3

r ¼ e−jω−jΩ−j=T−
H

Ω− ¼ a
a2 þ r2−

; T−
H ¼ rþ − r−

4πðr2− þ a2Þ : ð34Þ

Note that the value of Wr on both cycles is reparametriza-
tion invariant because it is given as a residue of the
one-form.

2. Kerr coordinates

The passage from BL coordinates to Kerr coordinates is
given via singular coordinate transformation:

dt̄ ¼ dtþ a2 þ r2

a2 − 2Mrþ r2
dr;

dϕ̄ ¼ dϕþ a
a2 − 2Mrþ r2

dr: ð35Þ

This transformation maps p1;2
r in BL coordinates to p̄1;2

r in
Kerr coordinates and leaves the remaining momenta
unchanged. Figure 3 shows the radial dependence of
p̄1;2
r : the first solution, p̄1

r , stays regular at the horizons,
whereas p̄2

r remains singular. As a result, the value of the
action W̄r remains uniform across the horizons when
p̄r ¼ p̄1

r , and it remains uniform across the conjugate

FIG. 3. The radial dependence of the solutions p̄1;2
r in Kerr coordinates with real (blue) and imaginary (yellow) parts. The first solution

on the left stays regular at the horizons. The parameters are chosen as M ¼ 105; a ¼ 9.7 × 104; m ¼ 1;ω ¼ 5 × 10−2;
j ¼ 10−2; θð0Þ ¼ π=2; pθð0Þ ¼ 0, and d ¼ 1.
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points when p̄r ¼ p̄2
r . Therefore, the phase difference can

be obtained by only considering the trajectories, the initial
momentum of which is given as prð0Þ ¼ p̄2

r . Note that
these observations remain valid in Doran and Painleve-Kerr
coordinates as well.
The integration cycle is given in a similar fashion as

before: the trajectory to the right of the outer horizon
flows clockwise (s ¼ iu), whereas the inner trajectory
flows counterclockwise (s ¼ −iu). The resultant contour
encircles the outer horizon clockwise and yields the value
of the classical action as W̄1

r − W̄2
r . The integration cycle

for the inner horizon is chosen similarly. The only differ-
ence is that the trajectory flows counterclockwise
(s ¼ −iu) outside the inner horizon, whereas the inner
trajectory flows clockwise (s ¼ iu). This cycle encircles the
horizon clockwise as before and yields W̄3

r − W̄2
r .

Accordingly, the tunneling amplitude is given by

eW̄
1
r−W̄2

r ¼ e−jω−jΩþj=Tþ
H ; W̄1

r − W̄2
r < 0

eW̄
3
r−W̄2

r ¼ e−jω−jΩ−j=T−
H ; W̄3

r − W̄2
r < 0: ð36Þ

Note that the factor of 2 problem in regular coordinates
disappears. All the relevant phase change is encoded by the
poles of p̄2

r , and in fact, the coordinate transformation in
(35) doubles the value of the radial momentum at both
horizons: limr→r�jp̄2

r=p
1;2
r j ¼ 2.

Analytic continuation.—Here, we show that the integra-
tion cycles specified above are in fact the key ingredients in
the analytic continuation of the modes across the horizons.
We believe establishing this connection is particularly
illustrative for putting the complex worldline picture
together with the approach of Damour and Ruffini and also
with the path integral derivation of black hole radiance given
by Hartle and Hawking, who have also made use of the
complex paths parametrized by the imaginary affine param-
eter [28]. To start, we consider the overlap of the modes
located just to the left and to the right of the conjugate point,

hψðrþc − ϵÞjψðrþc þ ϵÞi ≈ exp

�
−i
Z

rþc þϵ

rþc −ϵ
prdr

�
; ð37Þ

where one may choose the integration contour as an
infinitesimal arc joining the left and right neighborhoods
of rþc by a suitable choice of e and f. On such a contour, the
magnitude of the above amplitude can be taken as unity since
radial momentum remains regular. The basic premise here is
thatψðrþc þ ϵÞ can be rewritten as the analytical continuation
of the mode located just inside the outer horizon:

jψðrþc þ ϵÞi ¼ exp

�
−i
Z

T=2

0

pr _rds

�
−
jψðrþ − ϵÞi: ð38Þ

Here, the subscript − shows that the integration path is
chosen as the complex orbit, starting at the left of the outer

horizon and ending at rþc þ ϵ (see Fig. 4). Similarly, we
have

hψðrþc − ϵÞj ¼ hψðrþ þ ϵÞj exp
�
i
Z

T=2

0

pr _rds

�
þ
; ð39Þ

where we have used the orbit starting just outside the
horizon and ending at rþc − ϵ. To determine the direction of
the flow, the sign of f must be chosen in accordance with
the exponential dominancy of the solutions and the sign
convention employed. For this, we first note that the
amplitude of the modes populated inside the horizon is
exponentially larger than the amplitude tunneling out and
because of this hψðrþ þ ϵÞjψðrþ − ϵÞi is exponentially
small (subdominant). Taking this into account and recalling
that the amplitude in (37) is order of unity, the combined
phase factor coming from (38) and (39) must be exponen-
tially large (dominant); in other words, the resultant
exponent must be positive. Note that the total phase over
the full period was previously given as W̃1

r − W̃2
r , which is

negative for f ¼ 1. Here, the sign in front of the phases is
reversed, so in order for the total exponent be positive, we
should take f as 1. This corresponds to choosing the
integration paths as the lower segments of the complex
orbits, oriented clockwise. In computing the conjugate
amplitude, hψðrþc þ ϵÞjψðrþc − ϵÞi, the signs of the expo-
nents are reversed; therefore, we should pick f ¼ −1 for
the exponential dominance. Accordingly, the integration
paths are counterclockwise and given by the upper seg-
ments of the orbits. Here, we can make the equivalent
choice and fix f ¼ 1 such that flow is given by the upper
segments but clockwise. This way, the resultant phase
factor is given in terms of the inner and outer orbits with a
full period. In view of these observations, we can express
the flux density at the outer horizon as

FIG. 4. Hamiltonian flow in Kerr coordinates with prð0Þ ¼ p̄2
r .

As in BL coordinates, the shaded areas are composed of radial
geodesics lying in the regions designated by r� and r�c . Unlike in
BL coordinates, the discontinuities in the action either occur
across the horizons [when prð0Þ ¼ p̄2

r] or across the conjugate
points [when prð0Þ ¼ p̄1

r ].
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jhψðrþ − ϵÞjψðrþ þ ϵÞij2 exp
�
i
Z

T

0

pr _rds

�
þ

× exp

�
−i
Z

T

0

pr _rds

�
−
≈ 1; ð40Þ

where the minus sign in front of the second exponent can be
eliminated in favor of the choice f ¼ −1. Upon collecting
the phase factors on the right-hand side, it is easy to see that
the exponential part of the flux density across the horizon is
indeed given by the integration cycle of the previous
section.
Quasiperiodic trajectories.—Off the equator and/or for

pθð0Þ ≠ 0, trajectories that cover the horizon area have two
periods: the closure period, T̃, indicating the proper time-
scale needed for the trajectory to return to its starting point,
and a shorter period, T1, representing the timescale for the
radial part of the trajectory to make a single round trip
across the horizon, without having the whole trajectory to
return to its initial point. For instance, for θð0Þ ¼ π=2� ϵ
and pθð0Þ ¼ 0, the trajectories have a very large closure
period, T̃, whereas the first period, T1 stays close to the
period of the purely radial trajectory. In the case in which
the closure period is finite, the trajectory is said to be
multiply periodic or multiperiodic; otherwise, the rest of the
bounded motion is predominantly quasiperiodic, where
trajectories keep tracing regions that are infinitesimally
close to their starting points but fail to close on themselves.
The cycles that yield the tunneling amplitude are chosen in

the same way as before, but the evaluation of the classical
action using quasiperiodic trajectories must be handled with
care. This is because the straightforward replacement of the
period, T, by the closure period, T̃, leads to an undesirable
limiting behavior for the tunneling amplitude: thevalue of the
action, WrðT̃Þ ¼ −i

R
T̃
0 pr _rds grows with increasing T̃, but

T̃ effectively goes to infinity as θ approaches to π=2, and so

does WrðT̃Þ over the chosen cycle. This is also true for the
case in which θð0Þ ¼ π=2 and pθð0Þ smoothly approaches
zero. To remedy this, tunneling treatment of quasiperiodic
trajectories should take the first period, T1, into account. To
incorporate T1 into this picture, we go back to Eq. (2) and
rewrite the effective action as

Γscalar
eff ¼ itr ln ½D2

μ −m2�

¼ −i
Z

∞

0

dT1

T1

tre−i
1
2
ðD2

μ−m2ÞT1 ; ð41Þ

where the Schwinger parameter is chosen as the first period
[29]. The exponent in (41) can be recast in a form that
includes the closure period such that

Γscalar
eff ¼ −i

Z
∞

0

dT1

T1

tre−i
1
2

T1
T̃
ðD2

μ−m2ÞT̃ : ð42Þ

Here, it is understood that the ordering parameter is chosen as
the closure period and the trace is to be performed over the
space of classical, bounded trajectories for which the ratio
T1=T̃ is constant. With this in mind, the semiclassical
approximation for the path integral proceeds in the usual
way. The resulting change in the path summation given by
(30) is that now classical action is weighted by the factor,
T1=T̃:

σ ≈N 4πMrþ

Z
dωdjdpθ

Z
dθ sin θe−i

T1
T̃

R
T̃

0
pr _rds: ð43Þ

Here, the angular part of the action,Wθ¼−iT1=T̃
R
T̃
0 pθ

_θds,
does not contribute to the path summation because its value
remains uniform across both horizons and therefore vanishes
on every tunneling cycle. It is worth noting that Wθ on the
trajectory can in fact be specified as a function of Carter’s

FIG. 5. A complex multiperiodic trajectory on the complex r plane (left, unscaled) and θ plane (right) with the winding number,
T̃=T1 ¼ 6. The radial part of the trajectory makes two traversals until the angular part completes the full rotation. The parameters are
chosen as M ¼ 105; a ¼ 9.7 × 104; m ¼ 1;ω ¼ 10−3; j ¼ 97; θð0Þ ¼ 33698π=100000; pθð0Þ ¼ 0, and d ¼ 1.
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constant. Its value remains the same for all the initial valuesof
θð0Þ and pθð0Þ, such that the value of C remains fixed and
vanishes as C → 0.
For multiperiodic trajectories, the factor T̃=T1 is the

winding number (see Fig. 5), which is defined as the ratio
of the radial action evaluated on the cycle to the tunneling
exponents given in (32) and (34). The appearance of T1=T̃
ensures that the Hawking temperature remains uniform over
the horizon area. The fact that the tunneling exponent
remains the same over the horizon is well known and can
be inferred from the fact that the location of r� does not
depend on θ, but in the worldline method, it follows from a
simple reasoning about the limiting behavior of the tunneling
amplitude. Here, it is important to note that the averaging of
classical action with respect to the periods should not only
apply to multiperiodic trajectories, the closure period of
which is finite, but it must also be extended to include
quasiperiodic trajectories, for which T̃ effectively goes to
infinity. Otherwise, the tunneling interpretation via orbits
would only apply to a countable set of points over the horizon
area. This is because the initial conditions for multiperiodic
trajectories constitute a set of measure zero in the phase
space, or, more simply put, the majority of the initial
conditions gives rise to quasiperiodic orbits. To formally
include quasiperiodic orbits in the tunneling picture, the
exponent must be evaluated in the limit T̃ → ∞. In practical
terms, this means the radial action must be integrated on the
quasiperiodic orbits for large enough s so that the imaginary
part of the exponent arising from quasiperiodic oscillations
around the initial point of the trajectory averages out to zero.
The remaining part of the exponent is purely real and
precisely corresponds to the tunneling exponent. In the
averaging process, the factor T̃=T1 can be deduced by
counting the number of times that pr _r grows to its large
values in the vicinity of the event horizon.

III. GEODESIC PORTRAIT
AND EMITTED POWER

In the resulting picture, the horizon area is covered by a
dense set of quasiperiodic tunneling orbits. The orbits with
same value of C and conserved momenta form a circular
band of trajectories over the horizon, within the angular
interval, ðθi; θfÞ, and with the corresponding momenta:
ðpθi ¼ 0; pθfÞ. The distribution is symmetric with respect
to the equator due to axisymmetry. However, such parti-
tioning of the orbits is not unique because the value of C
depends on the chosen value of d. Under different scalings,
one has the relations

d02C0 ≃ d002C00; d0p0
θf
≃ d00p00

θf
; ð44Þ

whereas the angular interval for the partition remains intact
to very good approximation, θ0i ≈ θ00i ; θ

0
f ≈ θ00f, provided that

the inequality

a2m2=d2 ≫ a2ω2 − j2=sin2θ ð45Þ

holds for the chosen value of d. In fact, the angular interval
sensitively depends on the ratio a=M. Trajectories within
this interval form an equivalence class represented by the
scaling relations above. For large momenta saturating (45),
the angular interval becomes sensitive to the value of
momenta. This is because bounded motion depends sensi-
tively on the location of critical points, which in turn have a
sensitive dependence on the momenta and θ. For instance,
the critical points, r�cr, get closer, merge, and recede from
one other as complex conjugate pairs as the energy of the
tunneling particle increases. Recalling that critical points
behave as attractors, the above situation implies that
periodic trajectories that lie outside the horizon start
migrating inside the horizon with the increasing energy.
In the regime where ω > m=d, there is no periodic
trajectory crossing the real line outside the horizon.
A simple way to avoid this difficulty is to scale m=d as
a function of momenta such that the location of rþcr remains
fixed at a small but arbitrary distance, λ, from the horizon.
This requires solving rþcrðC;ω; j; m=dÞ ¼ rþ − λ, where pθ

and θ dependence of rþcr is encoded by C. Remarkably, this
equation can be solved in both BL and Kerr coordinates for
the vanishing C, yielding

m2=d2 ≈
2M2ðω − jΩþÞ2
λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p ; ð46Þ

where OðλÞ and higher-order terms in the numerator are
neglected. Note that scaling made in (46) also fixes the
location of r−cr to a very good approximation. This means
the location of poles and critical points becomes frozen in
the momenta, enabling summation over the periodic
tunneling cycles up to an arbitrary cutoff. With this in
mind, we may now write the emittance by using (46) and
Carter’s constant, leading to

σ≈N 4πMrþlim
C→0

Z
dωdj

Z
dθ sinθ

×

�
Cþ cos2θ

�
2M2ðω− jΩþÞ2
λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2−a2

p a2þa2ω2−
j2

sin2θ

��
1=2

× e
−jω−Ωþjj

Tþ
H ; ð47Þ

which represents a degraded path summation in the sense
that pθ integration is performed in the limit of vanishing C
only. In this limit, the corresponding integration region for
θ now includes the equator with θi ¼ α; θf ¼ π − α. As λ is
small enough, Eq. (45) holds; therefore, the numerical
value of α is not sensitive to the value of the momenta. For
instance, for a=M ¼ 0.97, α saturates the limit: ∼36π=100
for the decreasing values of λ. Assuming that the integra-
tion interval is sufficiently far away from the poles, the first
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term inside the square root in (47) dominates, enabling us to
safely neglect the remaining terms. Upon performance of
the θ integral in the limit C → 0, one has

σ≈N
4
ffiffiffi
2

p
πM2rþacos2αffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2−a2

pp Z
dωdje

−jω−jΩþj
Tþ
H jω− jΩþj: ð48Þ

The factor multiplying the tunneling amplitude has a
natural interpretation as the density of states, originating
from Carter’s constant. Consequently, the energy radiated
per unit time, per unit area at the horizon can be given in
analogy with the standard blackbody radiation

P≈N
aM cosαffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2−a2

pp Z
ωdωdje

−jω−jΩþj
Tþ
H jω− jΩþj; ð49Þ

where the total area is taken to be the area of the circular
band with vanishing C. The above expression is suitable for
integration in the deep subradiant and superradiant regimes
[for a greater accuracy, including the modes ω ∼ Ωþj, one
should include higher-order terms in λ in (46)]. Now, to
illustrate the blackbody character of the emitted radiation,
we integrate the modes in the subradiant and superradiant
regimes up to some cutoff in energy and angular momen-
tum, respectively. In the subradiant regime, we denote the
integration interval for j by ð0;ωρÞ, where ρ is a constant
that must satisfy ρΩþ ≪ 1 and has the dimension of length.
Since there is no canonical choice for ρ, we will leave it
unspecified. The integration over j, followed by the
integration of ω over the region ð0;ωcÞ, where ωc desig-
nates the unspecified cutoff, ultimately yields the power
radiated per unit area as

Psub ≈N
aM cos αffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

pp 3ρð2 − ρΩþÞðTþ
HÞ4

ð−1þ ρΩþÞ2
: ð50Þ

The next-order terms neglected in the above expression are
all suppressed exponentially ∼Oðe−ωc=T

þ
HÞ. The integration

of superradiant modes is carried out in a similar manner
except that the order of integration is reversed. In speci-
fying the upper limit for ω, we use the same parameter ρ as
before. Since ρ has the dimension of length and j is
unitless, we identify jρΩ2þ as the end point of ω integration.
Integrating over momenta with the cutoff, jc, yields

Psup ≈N
aM cos αffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

pp 3ρ2ΩþðTþ
HÞ4

ð−1þ ρΩþÞ2
; ð51Þ

where the neglected terms are of the order ∼Oðe−jcΩþ=Tþ
HÞ.

Adding the two terms together, the total flux reads

Ptot ≈N
aM cos αffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

pp 6ρðTþ
HÞ4

ð−1þ ρΩþÞ2
: ð52Þ

The path summation for C ≠ 0 is more involved, and we
will not attempt to obtain a closed-form expression here,
but the approach is identical to the C ¼ 0 case. The
difference is that the magnitude of λ now fixes the scale
of C and pθ through

pθ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C þ cos2θ

�
a2m2

d2ðω; j; C; λÞ þ a2ω2 −
j2

sin2θ

�s
: ð53Þ

As before, d2ðω; j; C; λÞ is the solution of rþcrðC;ω; j; dÞ ¼
rþ − λ. To specify the band, ðθi; θfÞ, one first picks an
initial point θi for the chosen value of the conserved
momenta and λ. The corresponding value of C is given
by (53), where pθi is required to vanish. The final point θf,
beyond which the trajectories for the given value of C
become unbound, can be obtained by direct integration of
the orbits. The orbits covering the horizon can be organized
into bands labeled by C by repeating this procedure for
different values of θi. The emergent qualitative property of
such partitioning is that the thicknesses of the bands
decrease as θi gets closer to the poles. At the poles, the
worldline prescription fails to give bounded trajectories for
the nonvanishing angular momentum because Carter’s
constant in spheroidal coordinates diverges. The end result
of the path summation for a chosen partition can be shown
to depend only on the initial and final angles, not on the
specific value that C takes, for the fact that C can
algebraically be related to the θi for the vanishing pθi .

IV. DISCUSSION

The main result behind (52) is that the spectrum is
predominantly in thermal character ∼ðTþ

HÞ4 as long as the
phase portrait of the system remains uniform. This means λ
appearing in (52) is much smaller than the horizon length
scale ∼M and its value approximately stays the same with
respect to the momenta. Here, λ can intuitively be viewed as
the tunneling/penetration depth because it gauges the
distance scale over which the radial action makes a phase
jump. At energies above some cutoff scale, the momentum
dependence of λ prompts nonlinearity in the density of
states, thus signaling deviations from the thermal spectrum.
The fact that deviations should occur may be seen in an
alternative way. Note that period of the radial orbit for the
vanishing momenta is simply T ¼ 2πMd=m. Because of
the scaling made in (46), the period of the orbits shrinks
down to arbitrarily small scales with the increasing energy
of the tunneling flux. This is reminiscent of the trans-
Planckian problem for the energetic modes, in which the
usual semiclassics break down and the backreaction on the
metric must be taken into account. In addition to these
observations, the fact that the prefactor depends on the
black hole parameters shows that the emitting body
deviates from a perfect blackbody, which is an idealization.
This observation remains valid even if we ignore the factor
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M=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

pp
, which was brought by the scaling argu-

ment that we made; the remaining factor of a in the
prefactor shows the influence of background geometry on
the density of states.
To conclude, we have shown that tunneling treatment of

massive particles from the Kerr event horizon can be given
by using complex geodesics. In fact, the use of such
complex trajectories becomes essential, if one wants to
capture the tunneling mechanism throughout the whole
horizon area via the orbit picture. In this process, the
averaging of the action with respect to the periods emerges
as the necessary ingredient enabling the tunneling exponent
to have the right limit when θ → π=2 and pθ → 0. As a
direct result of this manipulation, the value of −iT1=T̃Wr
on the cycle does not depend on the winding number. This
property indicates T�

H is invariant under modular trans-
formations that connect cycles with differing winding
numbers over the horizon or, simply put, the event horizon
is a uniform tunneling surface. An important aspect of
worldline formalism is that integration cycles automatically
give the tunneling probability for the inner horizon as well
as the outer horizon. But it is not obvious that one should
worry about the consequences of inner horizon tunneling. If
the semiclassical picture still remains valid there, one may
argue that the size of the inner horizon should undergo
fluctuations as a result of steady emission and reabsorption.
In the time-dependent picture, the rate of the fluctuations
evidently depends on T−

H, whereas the size of r− shrinks at
a rate determined by Tþ

H.
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APPENDIX: SCHWINGER EFFECT

Here, we give the details for the integration of the zero
modes. We begin by considering the tunneling exponent.
Recalling (13) and (14), the proper time integration of the
total exponent in (9) yields

Δ¼−m2s=2−
m2ð2þγ2Þs

2γ2
þ 2m
2γk

ArcTan

2
64Tan

h
ms

ffiffiffiffiffiffiffiffi
1þγ2

p
k

γ

i
ffiffiffiffiffiffiffiffiffiffiffiffi
1þγ2

p
3
75:

ðA1Þ
By taking into account the branch points at s ¼
ðπ=2þ2πnÞγ
mk

ffiffiffiffiffiffiffiffi
1þγ2

p ; n ∈ Z, we may take the limit s → Tc, giving

Δ ¼ −m2Tc=2þ
2πm
γk

−
mπð2þ γ2Þ
γk

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p : ðA2Þ

Note that here m2 and Tc are conjugate variables. This
mean the mass dependence of the second and third terms
above must be eliminated by using the definitions of γ and
Tc so that action S½xμðsÞ;T� is solely given in terms of Tc.
Doing so, we have

Δ ¼ −m2Tc=2 −
ðE0qTc − 2πÞ2

2Tck2
; ðA3Þ

which shows that on the saddle point ∂Δ=∂Tc vanishes
identically. The contribution coming from the second
variation can readily be calculated:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

j∂2Δ=∂T2
cj

s
¼ 2π

m
ffiffiffiffiffiffiffi
mk

p γ3=2

ð1þ γ2Þ3=4 : ðA4Þ

The Van Vleck determinant in (10) is taken into account
by considering the second-order fluctuations to the
action, S½xμðsÞ;Tc� ¼ S½xμclðsÞ;Tc� þ δ2S½xμclðsÞ;Tc�, which
is expanded around the classical trajectory such that xμðsÞ ¼
xμclðsÞ þ ημðsÞ. The secondary action, δ2S½xμclðsÞ;Tc�, can
readily be given as

δ2S½xμclðsÞ;Tc� ¼
Z

ημðsÞΛμνη
νðsÞds; ðA5Þ

where the fluctuation operator reads

Λμν ≡ −
d
ds

�
Pμν

d
ds

þQνμ

�
þ
�
Qμν

d
ds

þ Rμν

�
ðA6Þ

with

Pμν ¼
∂2L

∂ _xμ∂ _xν ; Qμν ¼
∂2L

∂xμ∂ _xν ; Rμν ¼
∂2L

∂xμ∂xν : ðA7Þ

The fluctuation fields η satisfy Morse’s boundary problem,
also known as the Jacobi equation [30]:

Λμνην ¼ λημ; ημð0Þ ¼ ημðTcÞ ¼ 0: ðA8Þ

Using a suitable orthonormal basis expansion, η ¼Pnanun,
one may perform the Fresnel integrals over an. Taking into
account the metric signature, the product of eigenvalues
resulting from integration in the x0 − x1 plane is normalized
according to [31]:

−
i

2πTc

����
Q

nλ
free
nQ

nλn

���� ¼ −
i

2πTc

����Y
n

λfreen

λn

����: ðA9Þ

The appearance of λfreen above can be viewed as the
normalization of themeasure dan. The overall normalization
factor ensures that the result of integration coincides with the
free particle prefactor in the vanishing field limit. With the
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Lagrangian given in (13), we may write the fluctuation
operator explicitly (μ, ν ¼ 0, 1, 2, 3):

Λμν ¼

0
BBBBB@

−i d2

ds2 − q_x1∂2
0A1 −q∂0A1

d
ds 0 0

q_x0∂2
0A1 þ q∂0A1

d
ds i d2

ds2 0 0

0 0 i d2

ds2 0

0 0 0 i d2

ds2

1
CCCCCA:

ðA10Þ

Note that above matrix is in block diagonal form. The path
integral can be factorized into two parts, in which the
determinant of the lowerblock is just the freeparticle prefactor,
encoding second-order fluctuations perpendicular to the
x0 − x1 plane. Then, we may write the total determinant as

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det

∂pμðxð0ÞÞ
∂xνðTÞ

s !
T¼Tc

¼ −
i

ð2πTcÞ2
����Y

n

λfreen

λn

����; ðA11Þ

where now the product term represents the determinant of the
reduced fluctuation operator, Λ̃μν; μ; ν ¼ 0, 1. To proceed,
we will make use of an important theorem from Ref. [32], in
which in the continuum limit the ratio of the eigenvalues is
given by

����Y
n

λfreen

λn

����≡
���� det ½η̃

ðνÞfree
μ ðsÞ�

det ½η̃ðνÞμ ðsÞ�

����
1=2

s¼Tc

ðA12Þ

such that η̃ðsÞ is the solution of the corresponding initial
value problem:

Λ̃μνη̃νðsÞ ¼ 0; η̃νμð0Þ ¼ 0; _̃ηνμð0Þ ¼ gμν: ðA13Þ

The zero modes that solve the free particle limit of the Jacobi
equations can be readily found, yielding a determinant factor
of iTc. Remarkably, for the nontrivial part, the algebraic
solutions satisfying the above initial conditions can also be
found by making use of the classical equations of motions,
ultimately yielding

η̃0 ¼ im

�
_x0clðsÞI1

_x1clðsÞI1 − I2

�
; η̃1 ¼ −

�
_x0clðsÞI2

_x1clðsÞI2 −m2I1

�
;

ðA14Þ

where

I1¼
Z

s

0

1

ð_x0clðs0ÞÞ2
ds0; I2¼

Z
s

0

_x1clðs0Þ
ð_x0clðs0ÞÞ2

ds0: ðA15Þ

Note that the determinant factor ðdet½η̃ðνÞμ ðsÞ�Þ−1=2 in (A12)
vanishes at the conjugate points, where _x0cl ¼ 0. These points
are located at x0clðTc=4Þ and x0clð3Tc=4Þ, coinciding with the
critical points of the action. The important thing to note here
is that because the determinant was given inside the absolute
value from the beginning the sign change of the radicand
must be accounted for by a overall factor of e−iπ=2 at each
conjugate point. The number of times the radicand changes
sign along the trajectory gives the Morse index of the
trajectory. Here, theMorse index is simply 2. Now, returning
back to (A12), the Van Vleck determinant can be given with
the aid of (A14) and (A15):

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det

∂pμðxð0ÞÞ
∂xνðTÞ

s !
T¼Tc

¼ −im2k
ð1þ γ2Þ2
16π4γ4

: ðA16Þ

The final piece of (9) to look at is the volume integral over the
initial points of the trajectory. Because the equations of
motion are invariant under proper time translations, each
point located on the trajectory is a legitimate starting point.
The important consequenceof this fact is that volume integral
contains a multiplicity factor given by the path length. This
becomes evident upon making the substitution dx0ð0Þ →
_x0ð0Þds and integrating over s, yielding imTc. The factor Tc
here cancels against the factor 1=Tc appearing in (10),
leaving an overall normalization factor of im for the zero
modes. Taking this normalization factor and theMorse index
into account and collecting all the terms in (A2), (A4), and
(A16) together, the imaginary part of the one-loop effective
action per unit volume leads to the result given by (16).
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