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Linearization instability of chiral gravity
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Carrying out an analysis of the constraints and their linearizations on a spacelike hypersurface, we show
that topologically massive gravity has a linearization instability at the chiral gravity limit about AdS;. We
also calculate the symplectic structure for all the known perturbative modes (including the log-mode) for
the linearized field equations and find it to be degenerate (noninvertible); hence, these modes do not
approximate exact solutions and so do not belong to the linearized phase space of the theory. Naive
perturbation theory fails: the linearized field equations are necessary but not sufficient in finding viable
linearized solutions. This has important consequences for both classical and possible quantum versions of

the theory.
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I. INTRODUCTION

Quantum gravity is elusive not mainly because we lack
computational tools, but because we do not know what to
compute and so how to define the theory for a generic
spacetime. One possible exception and a promising path is
the case of asymptotically anti—de Sitter (AdS) spacetimes
for which a dual quantum conformal field theory that lives
on the boundary of a bulk spacetime with gravity would
amount to a definition of quantum gravity. But, even for
this setting, we do not have a realistic four-dimensional
example. In three dimensions, the situation is slightly
better: the cosmological Einstein’s theory (with A < 0)
has a black hole solution [I] and possesses the right
boundary symmetries (a double copy of the centrally
extended Virasoro algebra [2]) for a unitary two-dimen-
sional conformal field theory. But as the theory has no local
dynamics (namely gravitons), it is not clear exactly how
much one can learn from this model as far as quantum
gravity is concerned. Having said that, even for this
ostensibly simple model, we still do not yet have a quantum
gravity theory. Recasting Einstein’s gravity in terms of a
solvable Chern-Simons gauge theory is a possible avenue
[3], but this only works for noninvertible dreibein which
cannot be coupled to generic matter.

A more realistic gravity in three dimensions is the
topologically massive gravity (TMG) [4] which has black
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hole solutions as well as a dynamical massive graviton.
But the apparent problem with TMG is that the bulk graviton
and the black hole cannot be made to have positive energy
generally. This obstruction to a viable classical and perhaps
quantum theory was observed to disappear in an important
work [5], where it was realized that at a “chiral point” defined
by a tuned topological mass in terms of the AdS radius, one of
the Virasoro algebras has a vanishing central charge (and so
admits a trivial unitary representation) and the other has a
positive nonzero central charge with unitary nontrivial
representations, the theory has a positive energy black hole
and zero energy bulk gravitons. This tuned version of TMG,
called “chiral gravity,” seems to be a viable candidate for a
well-behaved classical and quantum gravity.

One of the main objections raised against the chiral
gravity is that it possesses a negative energy perturbative
log-mode about the AdS vacuum which ruins the unitarity
of the putative boundary CFT [6]. Of course, if this is the
case, chiral gravity is not even viable at the classical level,
since it does not have a vacuum. It was argued in [7,8] that
chiral gravity could survive if the theory is linearization
unstable about its AdS solution. This means that there
would be perturbative modes which cannot be obtained
from any exact solution of the theory. In fact, these
arguments were supported with the computations given
in [9] where it was shown that the Taub charges which are
functionals quadratic in the perturbative modes that must
vanish identically due to background diffeomorphism
invariance, do not vanish for the log-mode that ruins the
chiral gravity. This means that the log-mode found from the
linearized field equations is an artifact of the linearized
equations and does not satisfy the global constraints
coming from the Bianchi identities.

In this work, we give a direct proof of the linearization
instability of chiral gravity in AdS using the constraint
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analysis of the full TMG equations defined on a spacelike
hypersurface. The crux of the argument that we shall lay
out below is the following: the linearized constraint
equations of TMG show that there are inconsistencies
exactly at the chiral point. Namely perturbed matter fields
do not determine the perturbations of the metric compo-
nents on the spacelike hypersurface and there are unphys-
ical constraints on matter perturbations besides the usual
covariant conservation.

To support our local analysis on the hypersurface, we
compute the symplectic structure (that carries all the
information about the phase space of the theory) for all
perturbative solutions of the linearized field equations and
find that the symplectic 2-form is degenerate and so
noninvertible; hence, these modes do not approximate
(i.e., they are not tangent to) actual nonlinear solutions.
The symplectic 2-form evaluated for the log-mode is time-
dependent (hence, not coordinate-invariant) and vanishes
at the initial value surface and grows unbounded in the
future.

To carry out the constraint analysis and their lineari-
zations (which will yield possible nearby solutions to
exact solution), we shall use the field equations instead of
the TMG action as the latter is not diffeomorphism
invariant which complicates the discussion via the intro-
duction of tensor densities (momenta) instead of tensors.
We shall also work in the metric formulation instead of
the first order one as there can be significant differences
between the two formulations. Before we indulge into the
analysis, let us note that the linearization instability that
arises in the perturbative treatment of nonlinear theories
and can be confused with dynamical or structural insta-
bility, as both are determined with the same linearization
techniques.The difference is important: the latter refers to
a real instability of a system such as the instability of the
vacuum in a theory with ghosts such as the R +,BR§,,
theory with f # 0, this is simply not physically accept-
able. On the other hand, linearization instability refers to
the failure of perturbation theory for a given background
solution and one should resort to another method to
proceed. From the point of view of the full solution space
of the theory, this means that this (possibly infinite
dimensional) space is not a smooth manifold but it has
conical singularities around certain solutions. Let us
expound on this a little bit.

II. LINEARIZATION INSTABILITY IN BRIEF

A nonlinear equation F(x) = 0 is said to be lineariza-
tion stable at a solution x; if every solution éx to the
linearized equation F’(x) - 6x = 0 is tangent to a curve of
solutions to the original nonlinear equation. In some
nonlinear theories, not all solutions to the linearized field
equations represent linearized versions of exact (non-
linear) solutions. As a common algebraic example, let us
consider the function F(x,y) = x(x> +y?) =0, where

x, y are real, exact solution space is one dimensional
given as (0,y), and the linearized solution space is also
one dimensional (0, 8y) as long as y # 0. But at exactly
the solution (0,0), the linearized solution space is two
dimensional (6x,d8y) and so there are clearly linerized
solutions with ox # 0, which do not come from the
linearization of any exact solution. The existence of such
spurious solutions depends on the particular theory at
hand and the background solution (with its symmetries
and topology) about which linearization is carried out. If
such so-called “nonintegrable” solutions exist, perturba-
tion theory in some directions of solution space fails and
we say that the theory is not linearization stable at a
nonlinear exact solution.

What we have just described is not an exotic phenome-
non: a priori no nonlinear theory is immune to linearization
instability: one must study the problem case by case. For
example, pure general relativity is linearization stable in
Minkowski spacetime (with a noncompact Cauchy surface)
[10]; hence, perturbation theory makes sense, but it is not
linearization stable on a background with compact Cauchy
surfaces that possesses at least one Killing symmetry [11]
which is the case when the Cauchy surface is a flat 3-torus
[12]: on T3 x R, at second order of the perturbation theory,
one must go back and readjust the first order perturbative
solution.

As gravity is our main interest here, let us consider
some nonlinear gravity field equations in a coordinate
chart as £, = 0, which admits g, as an exact solution, if
every solution h,,, of the linearized field equations £ 1) (9) -
h =0 is tangent to an exact solution g,,(4) such that

9(0) = g, and %| 1—0 = h,, then, according to our
definition above, the theory is linearization stable.
Otherwise it is linearization unstable. In general, we do
not have a theorem stating the necessary and sufficient
conditions for the linearization stability of a generic
gravity theory about a given exact solution. For a detailed
discussion on generic gravity models, see our recent work
[9]. But, as discussed in Sec. II of that work, defining the

d’g,,
a2

second order perturbation as
ing second order equation

1=0 = ky,, if the follow-

(&) () - [n.h] +(E)V(g) k=0, (1)

has a solution for k,, without a constraint on the linear
solution £, then the theory is linearization stable. Of
course, at this stage it is not clear that there will arise no
further constraints on the linear theory beyond the
second order perturbation theory. In fact, besides
Einstein’s theory, this problem has not been worked
out. But in Einstein’s gravity, as the constraint equations
are related to the zeros of the moment map, one knows
that there will be no further constraint for the linear
theory coming from higher order perturbation theory
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beyond the second order [13]. In Einstein’s gravity for
compact Cauchy surfaces without a boundary, the
necessary and sufficient conditions are known for
linearization stability [11,14-16].

In practice, it is very hard to show that (1) is satisfied
for all linearized solutions, therefore, one resorts to a
weaker condition by contracting that equation with a
Killing vector field and integrates over a hypersurface to
obtain Qrap[€] + Qapr|€] = 0 where the Taub charge [17]
is defined as'

Orunld] = [ @T/FBEN . (@
and the ADT charge [18,19] is defined as
Oronld] = [ LTFEEN k()

The latter can be expressed as a boundary integral. For the
case of compact Cauchy surfaces without a boundary,
Ospr =0, and hence one must have Qr,,, = 0 which
leads to the aforementioned quadratic integral constraint
on the linearized perturbation A, as the integral in (2)
should be zero. This is the case for Einstein’s gravity, for
example, on a flat 3-torus: Qr,,, does not vanish auto-
matically and so the first order perturbative result £ is
constrained. On the other hand, for extended gravity
theories (such as the theory we discuss here), Qapr
vanishes for a different reason, even for noncompact
surfaces, as in the case of AdS. The reason is that for
some tuned values of the parameters in the theory, the
contribution to the conserved charges from various tensors
cancel each other exactly, yielding nonvacuum solutions
that carry the (vanishing) charges of the vacuum. This is
the source of instability.

III. ADM DECOMPOSITION OF TMG

Before restricting to the chiral gravity limit, we first
study the full TMG field equations coupled with matter
fields as an initial value problem; hence, we take

1
Ew =G+ Agy +;C;w = KTy (4)

The ADM [20] decomposition of the metric reads

ds* = —(n* = mn')de* + 2ndtdx’ + y,;dx'dx!,  (5)

'As it appears in the second order perturbation theory, the Taub
charge is not a widely known quantity in physics, for a more
detailed account of it, we invite the reader to study the relevant
section of [9].

where (n, n;) are lapse and shift functions and y;; is the 2D
spatial metric. From now on, the Greek indices will run
over the full spacetime, while the Latin indices will run
over the hypersurface X, as 7,j... =1, 2. The spatial
indices will be raised and lowered by the 2D metric.
The extrinsic curvature (k;;) of the surface is given as
2nk;; :\'(,-j—ZD(n-), (6)

L L)

where D is the covariant derivative compatible with y;;
and y;; :== Oyy;; and the round brackets denote symmetri-
zation with a factor of 1/2. With the convention
R, = 0,06 — 0T + DI, =TI, one finds the
hypersurface components of the three-dimensional Ricci
tensor as

R; =R

i ki — 2k

1
+ (k —n Dk D 8 in— Zkk( ) ), (7)
n
where 2R, ; 1s the Ricci tensor of the hypersurface and
k = y"k;;. Similarly one finds the twice projection to the
normal of the surface as

i
nn —D;0;n -

ROO = (k —n Dk 2kijil’lk)

- nzk?j + ninj( ) Rl] + kklj - 2klkkf)

+ n(Dyd*n — k — n*Dyk + 20D, k7). (8)
On the other hand, projecting once to the surface and once
normal to the surface yields

Jo.
ROi:n—(k‘—l’l Dk Dal’l 2kk )
n

+ I (PR + ki — 2k k) +n(D,.k+Dmk;"). 9)

We also need the 3D scalar curvature in terms of the
hypersurface quantities which can be found as

2 . . 4
R:<2)R+k2—k%j+Z(k—|—nkt2j—DiD’n—n’D,-k). (10)
Given the Schouten tensor S, = R,
tensor is defined as

1
— 1 Rg,,, the Cotton

1
C = Eepaﬂ(gﬂpvasﬁp + gypvasﬁ,,), (11)

where e? is the totally antisymmetric tensor which splits
as " = Lemn — Ly=3emn where ¢ is the antisymmetric
symbol. Just as we have done the ADM decomposition of
the Ricci tensor, a rather lengthy computation yields the
following expressions, for the projections of the Cotton

tensor
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2nCy; = €"'ny(D,,S,; — ki (D, Ky — 0,k)) + em,-{smj — 1k} S, = SyDjn* — (9;n 4 n"k,;) (D ks, — 9,,k)

. R
=D, (n"S,; + n(D,k; — Djk)) + ky,; (Dkakn —k+n*Dki 4+ n (Z - k%s>> } +i< ], (12)
[
and and from &£y, we get the Hamiltonian constraint as
mn K i il
CiO = njCij _T(nAmm' — 1By, — Yin(cm + nEm)) (13) @ = F (TOO —2n Toi + 1 anU)
1
(@ 2 _ k2
and —|—2( R+ k* —ki; = 2A)
1 mn r k
COO = ninjcij —e™ (nniAmni - (nini - nZ)an a ;e (DmDrk" B kmSkn)’ (19)

- nn(cm + nEm))’ (14)
where we have defined the following tensors

Amni = DmSm' - kmi(Drk;l - ank)’
an = DmDrkil; - kfnSkn’

1
E, =2k, D,k — ZamR + K& (D, K — Oik),
Cm = GOD,kfn - S’,‘n(akn + I’lrkrk) - DkaOkn

R
- Dm (nszk]Tc) + kﬁzskrnr + amn (k%s - Z) .

Using the above decomposition, we can recast the ADM
form of the full TMG equations as

1 1

and
50,- = K7o; — VLJSU + n(Drk{ - a,k)

1
- 7 €mn<nAmni - nian - yin(cm + nEm)) (16)
u

and

. o 1
Eoo = k100 = 2n'E; —n'WE;j — An? — ;e’””nzan

. R
+n <Dk8kn —k+n*Dik+n <§ - kﬁs>). (17)

From &;, we get the momentum constraint as
®©; = k(7o — anij) = n(D,kj — 0;k)

1
+ ﬂemn(nian - nAmm' + 7incm + nyinEm) (18)

where in the last equation we made use of the explicit form
of R given in (10) which for TMG is R = 6A — 2kr. From
now on, for our purposes, it will suffice to work in the
Gaussian normal coordinates with n =1 and n; = 0 for
which k;; = %;‘/ij and the constraints reduce to

mn
€

E ( y imyik((2>Rk11 - ykpj/snyps - 7kn) - 2Dka7./kn)

1 @R

- gf’ij(f’ab}’ab}’ij +77) = Kzo0 + A = 5 (20)
and
€mi “kp . . ks . klyp-
5 (7 (2Dk7pm - Dm}/kp) +2D Yim = VmkY D 7171)
" L ks .o
Y (Fap? " Dnttin = 27 Do (V¥ 51)
. . . 1 . .
+ 2Dm7/in - 7mka7kn) + 5 (Dk}/ki - yabDiyab)
1
= KTOi + ZemanQ)Rni' (21)

Furthermore, taking a conformally flat 2D metric on X, we
have y;; = e?5,;, where ¢ = @(1,x;), k;; = 3¢y;; and the
2D Ricci tensor becomes

@R, = - % vije? (2D 0rp + 0rp0rp), (22)
whereas the 3D Ricci tensor reads
R;j = %yij <—Dkak€0 +@*+ - ;ak€0ak€0) (23)
and the 3D scalar curvature is

3 1
R =-D'Op + 54‘02 + 2 — 58k§0ak§0- (24)
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With all these results in hand, one can obtain from the
constraint equations the following relation

. 1 ca .
0ip =—J; + Z€mi(ﬂ8m<ﬂv (25)
where we have introduced the “source current” which, on
the hypersurface, reads

]i = 2KT0i —+ Eemiamfoo. (26)
M

Contracting (25) with the epsilon-tensor, one arrives at

Feoni(1+)
—€"0,p| 1 +——| =
@ 4?

—zfﬂe””'Jm +Ji. (27)
@

In the case of vacuum, 7, = 0, and so J; = 0, the unique
solution to (27) is of the form ¢, = ct, where c is a constant
which can be found from the trace equation that reads
R =6A. So ¢ = 2\/KE%, which is the de Sitter (dS)
solution and £ > 0 is its radius. Turning on a compactly
supported matter perturbation with 6z, # 0, one has 6J; #
0 and perturbing the constraint equations about ¢, as
@ = @o + 6@, we find a linearized constraint equation

1 1
,bt<1 +ﬂ22,ﬂz) €mi8m5¢ = <8l ‘I’Memiam)KéTUo

1
+ 2/4 (eim + _5mi) K570m’
ut

(28)

from which, for the dS case, one can solve the perturbation
(6¢) and hence the perturbed metric by integration in
terms of the perturbed matter fields on the hypersurface.
Hence, dS is linearization stable in TMG for any finite
value of u#. The other linearized constraints are compat-
ible with this solution. Our computation has been analytic
in Z; hence, we can do the following “Wick” rotation to
study the AdS case: x' — ix!, t — it, ¢ — it yielding A =

—# with the Gaussian normal form of the (signature

changed) metric ds*> = df* — e~/ (dx* + dx*). Then for
AdS, (28) becomes

1 ) L
H (1 - W) €"i0,0p = — (85 - E€ iam> KOT(p
1
- 2” <€im +— 6mi> K&'om
ut
(29)
and once again the perturbation theory is valid for generic

values of uZ in AdS as in the case of dS. But at the chiral
point, uZ = 1, the left-hand side vanishes identically and

there is an unphysical constraint on the matter perturba-
tions o7, and Oty in addition to their background
covariant conservation. Moreover, the metric perturbation
is not determined by the matter perturbation. What this
says is that in the chiral gravity limit of TMG, for AdS, the
exact AdS solution is linearization unstable. The above
computation has been a local one, and does not depend on
the fact that AdS does not have a Cauchy surface on which
one can define the initial value problem. AdS requires
initial and boundary values together, but what we have
computed is a necessary condition for such a formulation
(not a sufficient one) and AdS in chiral gravity does not
satisfy the necessary conditions for the initial-boundary
value problem.

IV. SYMPLECTIC STRUCTURE OF TMG

Let us give another argument for the linearization
instability of AdS making use of the symplectic structure
of TMG which was found in [21] following [22] as
W= [s dZa\/HJ “, where X is the hypersurface.  is a
closed (6w = 0) nondegenerate (except for gauge direc-
tions) 2-form for full TMG including chiral gravity. Here
the on-shell covariantly conserved symplectic current reads

1
T¢ = 8T, A (59”” +39"5In 9)
1
_ 5l—wlw A <5g“” + Eg“”5ln g)
1 1
4 — o (55‘/)6 A 89y, + zérﬂbﬁ A 5Fﬁop) . (30)
u

What is important to understand is that @ is a gauge invariant
object on the solution space, say Z, and also on the (more
relevant) quotient Z/Diff which is the phase space and
Diff is the group of diffeomorphisms. Therefore, even
without knowing the full space of solutions, by studying
the symplectic structure, one gains a lot of information for
both classical and quantum versions of the theory.
Perturbative solutions live in the tangent space of the phase
space and hence they are crucial in the discussion. We refer
the reader to [21] for a full discussion of this.

Let us show that for the linearized solutions of chiral
gravity given in [5] the symplectic 2-form is degenerate and
hence not invertible. In the global coordinates, the back-
ground metric reads

ds?> = £*(—cosh’pdz? + sinh’pdgp* + dp?), (31)

defining u=7+¢, v=1—¢, making use of the
SL(2,R) x SL(2,R), [5] found all the primary states
(but one) and their descendants. The primary solutions are

h/w = m{e—iAr—iSqﬁFW(p)}’ (32)

where the real part is taken and the background tensor
reads
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S 2i
1 2 sinhlZ/J
S iS
F;w(p) = f(p) 2 1 sinlh2p (33)
2i is 4
sinh2p  sinh2p sinh?2p

and f(p) = (coshp)~®sinh?>p, where A=h+h and

S = h — h. Components of the symplectic current for these
modes (for generic uZ) can be found as

(4= 82)(S+2uf)A

J' = sin (2A7+2S¢),
8ut (coshp)2(1+4) (247+250)
b _ 2coth’p :
S+2ut
jp:_(SA+4,ub”)c0thp+(A—Z)/Msinh2pjr’ (34)
A(S+2uf)

which yield a vanishing o at the chiral limit since for left,
right and massive modes we have S = 4 and the relevant
symplectic current J° vanishes identically, hence the
solution is not viable. Moreover, one can show that its
Taub charge diverges, while its ADT charge is for the
background Killing vector (—1,0,0) is

sin(zS) cos(2zS + At)
=-1 ARA+S§S-2
QapT m 4752 2A7 (2A + )
x e(2=8) (35)

which vanishes for the massive mode A =S5=2. In
addition to the above solutions, there is an additional
solution, the log-mode given in [6] which reads

- O O

0 1
hﬂD:fl(T’p) 0 1
1 0

v

—_4
sinh?2p uv

11
+f2(77p) 1 1 0 s (36)
0 0

where the two functions are given as

sinh p

filz.p) =

= cosh’y (zcos2u — sin 2u In cosh p),

f2(z,p) = —tanh?p(z sin 2u + cos 2u In cosh p).

The components of the symplectic current for this mode
read

1
T = 7((1 = uf) cosh 2p + 1)sech'%p,
U
2
J? = ——=1(1 — ut)sech®p,
ut

1
JP = ﬁtanhp sech®p(4(log? cosh p + 72) + log sech p),

(37)

which yield a linearly growing @ in 7 and vanishes on the
initial value surface. What all these say is that first order
perturbation theory simply fails in chiral gravity limit of
TMG. If the theory makes any sense at the classical and/or
quantum level one must resort to a new method to carry
out computations. This significantly affects its interpre-
tation in the context of AdS/CFT as the perturbed metric
couples to the energy-momentum tensor of the boundary
CFT. This, of course, does not say anything about the
solutions of the theory which are not globally AdS and
one might simply have to define the theory in a different
background.

V. CONCLUSIONS

The problem studied here is a frequently recurring one
[23], for example it also appears in critical gravity
[24,25]. Linearized solutions by definition satisfy the
linearized equations but this is not sufficient; they should
also satisfy a quadratic constraint to actually represent
linearized versions of exact solutions. This deep result
comes from the Bianchi identities and their linearizations
and it is connected to the conserved quantities. With the
observation of gravity waves, research in general rela-
tivity and its modifications, extensions has entered an
exciting era in which many theories might be possibly
tested. One major tool of computation in nonlinear
theories, such as gravity, is perturbation theory from
which one obtains a lot of information and the gravita-
tional wave physics is no exception as one uses the tools
of perturbation theory to obtain the wave profile far away
from the sources. Therefore, the issue of linearization
instability arises in any use of perturbation theory as the
examples provided here and before [9] show even for the
ostensibly safe case of spacetimes with noncompact
Cauchy surfaces.
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