PHYSICAL REVIEW D 97, 106022 (2018)

Supersymmetric solutions of A/ =(1,1) general massive supergravity

N.S. Deger,"”" Z. Nazari,>" and O. Sarioglu™*
lDepclrlment of Mathematics, Bogazici University, 34342 Bebek, Istanbul, Turkey
2Departmenz of Physics, Bogazici University, 34342 Bebek, Istanbul, Turkey
3Department of Physics, Middle East Technical University, 06800 Ankara, Turkey

® (Received 21 March 2018; published 29 May 2018)

We construct supersymmetric solutions of three-dimensional A" = (1, 1) general massive supergravity
(GMG). Solutions with a null Killing vector are, in general, pp-waves. We identify those that appear at
critical points of the model, some of which do not exist in A/ = (1, 1) new massive supergravity (NMG).
In the timelike case, we find that many solutions are common with NMG, but there is a new class that is
genuine to GMG, two members of which are stationary Lifshitz and timelike squashed AdS spacetimes. We
also show that in addition to the fully supersymmetric AdS vacuum, there is a second AdS background with
a nonzero vector field that preserves 1/4 supersymmetry.
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I. INTRODUCTION

Trying to understand quantum gravity in three-
dimensional rather than four-dimensional spacetime is a
technically more manageable problem. A reason for this is
that a three-dimensional gravity theory on anti-de Sitter
(AdS) space is dual to a two-dimensional conformal field
theory (CFT), and such CFTs are much better understood
compared to higher-dimensional ones. With this goal in
mind, topologically massive gravity (TMG) [1] has been
widely studied in recent years (see e.g., [2]), which is
obtained by adding the gravitational Chern-Simons term
to pure Einstein gravity with or without a cosmological
constant. This model is unitary and propagates a single
massive mode. Recently, a novel modification of this theory
was achieved where a particular four-derivative curvature
term was added to the TMG action, after which it remained
unitary and there were two massive graviton states.
Depending on whether the model contains the gravitational
Chern-Simons term or not, it is called general massive gravity
(GMG) or new massive gravity (NMG), respectively [3,4].

Since supersymmetry, in general, improves ultraviolet
behavior, it is natural to consider supersymmetric exten-
sions of these models, which was carried out in a series of
papers. The fact that the isometry group of AdS; can be
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written as SO(2,2)~SO(2,1) x SO(2,1) makes it
possible to have V' = (p, ¢) supergravities in three dimen-
sions [5] with either on-shell or off-shell formulations.
The off-shell N/ = 1 versions of the TMG [1] and GMG
[3.4] were constructed in [6,7] and [8,9], respectively.
The off-shell action of A/ =2 conformal supergravity
was obtained in [10], and the off-shell N' = (1,1) TMG
action was given in [11]. The most general off-shell
formulations for A/ = 2 supergravity were developed in
[12,13] in superspace, and the corresponding N' = 2 TMG
actions were given in [14], both in the superspace and the
component settings. The bosonic action and supersym-
metry transformations of off-shell A'=2 GMG were
obtained in [15]. A complete superspace action for off-
shell N =2 GMG was given in [16] using earlier results
in [13,14].

Identifying supersymmetric vacua of these theories is an
important problem, and in this paper, we will study
supersymmetric solutions of N = (1,1) GMG [15,16].
In [17] a general Killing spinor analysis was performed to
classify supersymmetric solutions of N = (1, 1) TMG, and
some particular warped AdS solutions were found. A big
advantage of working with off-shell supergravities is that
such an analysis remains valid for any extension of the
model; only field equations change. Later, supersymmetric
solutions of N' = (1, 1) NMG were examined in [18], and
it was found that some additional backgrounds are allowed
compared to A = (1,1) TMG, such as static Lifshitz
spacetime. We will show that for V' = (1, 1) GMG, even
more configurations appear, such as stationary Lifshitz
spacetime and a timelike warped AdS with no restriction on
the norm of the warping. The latter can be turned into a
black hole-like object when it is squashed after a proper
identification of a coordinate[19]. Moreover, we find that in
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addition to a maximally supersymmetric AdS vacuum,
there exists a 1/4 supersymmetric AdS vacuum too. As
usual, supersymmetric solutions can be grouped as null or
timelike with respect to the norm of a Killing vector that is
obtained as a Killing spinor bilinear [20]. We summarize
our findings for the timelike case in Table I where we also
make comparison with A = (1, 1) NMG and TMG mod-
els. In all these papers the same ansatz for the auxiliary
fields is assumed. For all versions of off-shell N =2
supergravities, the general Killing spinor analysis was
given in [14] and all maximally supersymmetric solutions
were obtained. The superalgebras corresponding to these
backgrounds were provided in [21], which also contains
further observations about supersymmetric solutions of
these theories.

The organization of our paper is as follows. In the next
section we give a brief introduction of the N = (1,1)
GMG model [15,16]. The two subsequent sections con-
stitute our main results where we apply the Killing spinor
analysis of [17] to our model. In Sec. III, we analyze a null
Killing vector and show that only pp-waves are allowed.
|

g’”’/)
e_IEGMG = U(R + 2V2 - 2‘S|2) + A4MA — E Rm,abwpab +

1 1 1
— F, F" + ZR(V2 -B%) + p |S|>(A? — 4B%) — 5 VZ(3A% +4B%) — 2V”B€)ﬂA} ,

2
gwﬁbwybca)pw — 4Fuvvp] +

We also explicitly give new solutions that appear at critical
points of the theory. In Sec. IV, we do an analogous
investigation of the timelike case. Our ansatz for the
auxiliary fields gives rise to three choices for the vector
field components, and one of them leads to a new set of
solutions that exists only in GMG and not in NMG or
TMG. Additionally, we also find some solutions that were
overlooked in earlier works [17,18]. We conclude in Sec. V
with some comments and future directions. In Appendix A
we verify that the new AdS vacuum with nonzero vector
fields is 1/4 supersymmetric, whereas the other one with
vanishing vector fields preserves full supersymmetry. In
Appendix B we give a preliminary analysis of the black
hole-like geometry that one obtains from our timelike
squashed AdS solution (4.23).

IL. A/ =(1,1) MASSIVE SUPERGRAVITY

We begin with a summary of the N = (1,1) general
massive supergravity which was constructed in [15,16].
The bosonic part of its Lagrangian is given by

1

v 3 2 v
— {RWR” ~ R =RV

(2.1)

where (o, M, m2, u) are arbitrary real constants and the complex scalar field S is defined as § = A + iB. The limit m? -
corresponds to A = (1, 1) TMG, and the limit 4 — oo corresponds to A = (1, 1) NMG models. Their supersymmetric
solutions were studied in [17,18], respectively. The model can be truncated to ' = 1 GMG [8,9] by setting the vector field
V and the imaginary part of the scalar field, i.e., B, to zero.

Equations of motion for A, B,V, and g,, fields are given, respectively, as

1 [2
0 =4M —46A +— [§A3 —B*A-3V?A+2(V-V)B+ ZV"('?”B} ,
m
1 1 2 8 3 2
0=406B +— 5RB+A B+§B~ +4V°B+2VF9,A],
m
1 v v 2 2 R 2 vp
0 =40V, —3 2R, V¥ +4VYF,, +V,(3A° +4B -5 2BJ,A +;eﬂy,,F ;
1 5 s 1 1 1 9 p
0 =0 R;tl/ + 2VﬂVD —_ Egm/[R + 2V —_ 2(A + B )] - ZgﬂDMA +;Cﬂl/ + W DR}H/ —_ ZVﬂVUR + ZRRIW - 4RﬂRI/p
1 1 1 1
—2F,F,, + ZRV,,VD - 2R, V)V’ — 5 OWV,V,) +V,V,(V,V?) + ZR,w(v2 - B?) - Zv,,vy(v2 - B?)
1 1 13 1
-5 V,V,(3A% +4B*) — 2BV ,0,)A — 59 <§ R? + 5 OR - 3R3, — R,,V*V° +V ,V (VPV°) - F5,

1 1 1 1
+ ZR(v2 - B?) - ED(v2 - B?) + € (A% 4 B?)(A? - 4B?) - 5 V2(3A% +4B%) - ZBV/’8/,A>] :
where the Cotton tensor is defined as
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1
cr, =e"v, <R,,y - Zg(,,JR) . (2.3)

Note that the gravitational Chern-Simons term has no
contribution to the scalar field equations. The complete
field equations of N = (1, 1) GMG were first given in [14]
where all maximally supersymmetric solutions were also
obtained.

The N = (1, 1) supersymmetry transformations are'

l_
de,* = Ee}/“wﬂ +H.c.,

i

1 S
Sy, = <8” + Zw,,“"n;,) €— 5 Vor'y.e — = vu€,

2
1_ . *
oV, = §€}’Dp}’,4 (ZD[DVI/)] =1V r'rw, — Syv‘///)) +H.c.,

1 - ) )
58S = — Ze*yﬂv(ZD[,,ll/y] — iV v, — Srws). (2.4)

where € is a complex Dirac spinor. These are off-shell
transformations since the supersymmetry algebra closes
without imposing the field equations (2.2).

The model has a fully supersymmetric AdS; vacuum
when

1 A3
A:—?, B =0, V,=0, M:Ac,v—6 5
(2.3)
where the effective cosmological constant is A = —1/£2,

that is, R,, = 2Ag,,. Linearizing the theory around this
vacuum, one finds that, generically, the graviton has two
massless modes with # = 1 and n = —1 and two massive
modes with masses #7; and 7, given by

1 ‘m?

m+m=—,

P~ 2.6

mnz =

where Q = 6/?m?* — 1. When mass values are repeated,
logarithmic modes appear, and such points of the parameter
space are labeled as critical. Assuming that 1/u # 0, there
are five possibilities [22]:

(1)7’]1 :ﬂz?éil, (11)7]1 :177]2¢i1’
(iii) 7, = —1.75 # 1, (iv)m=m=1,
V)m =m=-1 (27)

The supermultiplet structure of this theory at these critical
points, as well as at ordinary points, was studied in [23].

n this paper, we follow the conventions of [18]. In [17], on
the other hand, S = —-Z and ¢ = 1.

Now we would like to find supersymmetric solutions of
this model. Since it is off shell, the Killing spinor analysis
done in [17] is also valid here, which we summarize in the
next two sections. As usual, assuming the existence of at
least one Killing spinor, one finds that there is a Killing
vector constructed as a spinor bilinear which is either null
or timelike.

III. NULL KILLING VECTOR

The Killing spinor analysis of [17] shows that in the null
case the vector field should be of the form V, = 9,0 for
some arbitrary function 6(u, x). Hence, the contribution of
the gravitational Chern-Simons term to the vector field
equation (2.2) vanishes automatically. Furthermore, if S is a
real constant one finds that supersymmetry actually
requires the vector field to vanish and the Killing spinor
becomes a constant spinor [17,18]. Now, we choose

B=0, V,=0,

(3.1)

where the AdS radius |Z| is fixed to 1 in (2.5), which

requires M = 63,'2 — o, from the scalar field equation. The

only remaining field, namely, the metric, has the form [17]

ds* = dx* + 2e*dudv + Q(x, u)du?, (3.2)

with the null Killing vector in the v direction. This
generically describes a pp-wave; however when Q(x, u) =
const or Q(x,u) = e*, it is AdS;. The metric field
equation in (2.2) implies that

m? 9 3m?
Qxxxx - (4 + > Qxxx + ( + ng + > Qxx
JZ 2 H

2 2
- <1 n 2m20+m) 0, =0. (3.3)
u

When there is no degeneracy, the most general solution of
this differential equation is

O(x. u) = c1(u) + c2(u)e™ + c3(u)el + cy(u) e,
(3.4)

where the functions ¢;(u),i =1, ...,4, are arbitrary func-
tions of u and

m2 m2 2 1 m2
da=1+ e S ) o (2™ e ).
127y, \/< +2ﬂ) (2+ﬂ +m0>

(3.5)

One can show that functions ¢ (u«) and ¢, (u) can be set to
zero without loss of generality [18,24].
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There are five special cases that must be analyzed
separately.2 They correspond precisely to the critical points
that we listed in (2.7) since 4; = Qn; + 1, (i = 1,2). Now
solutions at these critical points take the form

3
w

(iii) 4 = 0,4, =2 + — = = — m’0,
u 2

O(x,u) = c;(u) + cr(u)e™ + c3(u)x + c4(u)e™,
3
2

(IV) ﬂ'l = 12 = 2, m- = = 2/4,

26
O(x,u) = cy(u) + [co(u) + c3(u)x + c4(u)x*]e>,
3

A =21,=0, 2= = 2u,
(V) A 2 m 2o H

Q(x,u) = c;(u) + co(u)e* + c3(u)x + cq(u)x>.  (3.6)

Note that in the last two cases we have triple degeneracy,
which does not occur in supersymmetric null solutions of
N = (1,1) NMG [18].

In general, these solutions preserve 1/4 supersymmetry,

except the round AdS; which preserves full supersym-
metry [18].

IV. TIMELIKE KILLING VECTOR

We now discuss the timelike case. We will employ the
same ansatz for scalar and vector fields as in [17,18],
namely,

B =0,
VZZO,

A = const, Vy = const,

V| = const, (4.1)

where tangent indices {0, 1,2} correspond to {t,x,y}
coordinates, respectively. The metric with a timelike
Killing vector in the ¢-direction has the form [17]

ds® = —e*0)(dt 4 C(y)dx)? + e*0)(dx® + dy?), (4.2)

where A(y), ¢(y) and C(y) are arbitrary functions of y. For
supersymmetry, metric functions should satisfy

*We ignore the case 1; =2 and 4, = 0 since that requires
1/u = 0, which we do not allow.

et =V, + A,
e =A-V,,

e*C =2Vt ?, (4.3)

where a prime indicates differentiation with respect to y.
Note that, for this differential equation system, the follow-
ing choices are special:
(1) Vl = A’
(iii) Vo = 0,

(i) V, = —A,
(4.4)

since they reduce the number of independent metric
functions from three to two or one. The significance of
the V| = —A case was overlooked in [18], and hence the
corresponding solutions were missed. Also, cases with A =
M = 0 were not considered in [18,17] since this makes the
effective cosmological constant zero. We will allow this
option here.

Next, we solve the field equations of the model (2.2) with
these constraints. The advantage of our ansatz (4.1) is that it
makes scalar and vector field equations algebraic, and once
they are satisfied, Einstein equations become automatic.
From the two nontrivial vector field equations, one can
show that the condition

3V, 1

(e-Dvi-az-v-o @

m*p

has to be fulfilled, which puts a strong restriction on the
possible supersymmetric solutions. After satisfying this
condition, only one of the vector field equations in (2.2)
remains free. Now we will follow these three possibilities
and solve the constraint equations (4.3) together with the
remaining vector field equation for each case, paying
particular attention to the special choices (4.4).

Supersymmetric solutions in this section are 1/4 super-
symmetric [17], except for the round AdS; with no vector
fields (4.18), which is fully supersymmetric as we show in
Appendix A.

A. The V| =A case

In this case the scalar field equation implies

A [7A?

The vector field equations are automatically satisfied when
Vi =A=V,=0, and otherwise we get

(4.6)

Wy 7
=20 (A2 -3V)).

¢ U 4m?

(4.7)

There are two special cases for (4.4), namely, V, =0
and V, =A=0.
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1. The Vi=A # 0 case

In this case, by solving Eq. (4.3) the metric (4.2) takes
the form

V2 VoA 2 A2
ds*> =— (dx + %ez"‘ydz) — —264Aydt2 + dy?,

e (4.8)
where V2 = -V{ + V7.

When V, # 0 this corresponds to a warped AdS; space
with warping parameter

(4.9)

Depending on if the norm of the vector field, i.e., V2, is
positive, negative or zero, it describes a spacelike squashed
(0 < v* < 1), atimelike stretched (v> > 1) or a null warped
AdS; spacetime, respectively (see [17,18] for details).
When Vy =0, note that (4.7) requires ¢ >0 and
M = 7A%/(3m?). The metric (4.8) takes the form
ds* = —e*Vdt? + dy? + dx?, (4.10)
which corresponds to AdS, x R or AdS, x S! geometries.
Note that the gravitational Chern-Simons term has no

effect. Here, if we assume ¢ # 0, then this solution does
not exist in N = (1, 1) TMG.

2. The Vi=A=0 and V, # 0 case

For this case,

2 (i +, /i’ 2lg) when V, # 0. Solving supersymmetry
constraints (4.3) we get

M =0 and (4.7) implies V,=

ds®> = —(dt + 2Vyydx)? + dx* + dy*,  (4.11)
which represents a timelike warped flat space [25]. Note
that if V; = 0, then (4.7) is no longer valid and the vector
field equation is automatically satisfied. In this case (4.11)
becomes Minkowski spacetime.

These are still solutions when 1/u = 0 or 1/m? = 0, but
they were not considered in [18,17].

B. The |V{|=|Vy|,V; # A case
Let V) = —&V,, where &> = 1. The scalar and remaining

vector field equation give

3

M=Ac ——,
° 6m?

(4.12)

A2 44AV, +2V2) 2
o=y, |44V + 1)——8(A+V1)—|—20.
u

— (4.13)

Here the special cases (4.4) to be considered are V; =0
and V, = —-A.

1. The V| # —A case

For this case, solving (4.3) gives the metric

2

d
2(zdt2 a ldtdx—i— 5 Y

ds?=— S A—
e VA=V

(4.14)

where a = (V| +A)/(V, —A). Although, at first sight,
V1 = A looks problematic, in this subsection that is not
allowed. For A # 0, this solution corresponds to an AdS;
pp-wave when |V | =|V,| #0 [17,18]. Supersymmetry
requires ¢ = —1 [17].

When A = 0, from (4.12) we have M = 0, and

(4.15)

which requires m? < 4u’c. The metric (4.14) with a = 1
and V| # 0 becomes

2 dy?
7 didx s

1)’

ds> = —y*dt* — (4.16)

After the coordinate transformations u = (Iny)/V, and
7= —ex/Vy, we get

ds* = —e>V1df* + 2dtdz + du?, (4.17)
which describes a pp-wave in flat spacetime in Brinkmann
coordinates [25]. This solution also exists in TMG and
NMG but was not considered in [17,18].

On the other hand, when A # 0 but |V| = |V,| = 0, the
metric (4.14) takes the form

1
ds* = (=di® + dx* + dy?),

yos (4.18)

which is the round AdS; spacetime with radius 1/|A|. Here
we defined 7 = At — ex. This is the only solution which is
maximally supersymmetric, as we show in Appendix A.

2. The V= —A case

Note that in this case (4.13) and (4.12) imply M =
2A6/3 and A?> = 2m?c, which means ¢ > 0. Now, putting
a =0 in (4.14) we obtain

edx\?2 1
d52:—<dt——> Sy S(dx +dy?),  (4.19)

which is the round AdS; with radius 1/|A| written as a
timelike Hopf fibration over a hyperbolic space without any
warping [25]. Since AdS is conformally flat, its Cotton
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tensor vanishes. Therefore, this solution also exists in
NMG, which was not noticed in [18]. It is not a solution
of TMG.

In Appendix A we show that unlike our previous AdS;
solution (4.18), this one preserves only 1/4 supersym-
metry. This requires ¢ = —1, that is, V, =V, and the
resulting Killing spinor is constant.

C. The Vo="5 [Vy| # V4|, V1 # A case

The main difference between the solutions of N = (1, 1)
GMG and NMG [18] shows up in this class since 1/u
appears directly in V). Solutions here either do not exist in
NMBG or they exist as a special case of the more general
form that is allowed in GMG. They are not solutions of
N = (1,1) TMG [17].

The scalar and vector field equations become

0 =m* +3p>(5V3 +4AV| — 2A%) — I2m*p’e.  (4.21)

The cases V; = —A and V; =0 should be considered
separately (4.4).

1. The V{ # 0 case

For this case, solving (4.3) leads to the metric

ds® = —y*dr* — Vola+ Dy dtdx + Via+ 17 de
V2 4avi  y?
1)2 dy?
(“+2) o, (4.22)
4vy oy

where a = (V; +A)/(V; —A). Note that, since V| #0,
we have a # —1.

First let us assume that V| # —A, which implies that
a # 0. Then, the metric (4.22) remains invariant under the
rescalings y — Ay, x — Ax,t — A7%, where A is an arbi-
trary constant. Hence this solution corresponds to a sta-
tionary Lifshitz spacetime [26] with dynamical exponent
7z = —a. Such a solution was obtained before for the
minimal massive 3D gravity model [27] in [28]. The
solution exists even when A = 0 with dynamical exponent
z = —1, although M =0. In the NMG limit, namely,
u— oo, we have Vy=0 and (4.22) becomes static
Lifshitz spacetime as in minimal massive 3D gravity [28].

When V, = —A, ie., a=0 and M = A3/(3m?), the
metric (4.22) with 7 = 2A4%t/V,, becomes

i =2 (ar+ PV s L@ v a)|. @)
442 y y? Y| '

which is a timelike warped AdS; [25] with warping
v? = V3/A2. The form of the metric is similar to our

solution given in (4.19); however, here we have V, # +A,
and therefore it is not round AdS;. Moreover, unlike our
previous timelike warped solution (4.8), there is no
restriction on the warping; it can be squashed or stretched.
When it is squashed, it becomes a self-dual-type solution
[29] after an appropriate identification that is free from
closed timelike curves and has a Killing horizon [19],
which we study further in Appendix B. Note that in the
NMG limit, that is, 1/u = 0, V|, vanishes and the metric
(4.23) becomes R, x H,, where H, is a two-dimensional
hyperbolic space. This case was overlooked in [18].

2. The V=0 case
In this case M = —-2A%/(3m?) and A? = m?*(m*-
12u%c)/6p?; therefore, we need to have m? > 124°c.
Here we also assume A # 0 (that is, m? # 12u%c) since
this was covered in Sec. IVA 2. Solving (4.3) the metric
becomes

2m? 1

2
ds*= Inyd dx?+dy?).
s 3Iquny x} +A2y2(x+ y*)

L [dt+ (4.24)

y

This can be thought of as some “logarithmic” deformation
of AdS; in Poincaré coordinates. We are not familiar with
this metric. Two of its curvature invariants are

R =2(V}—3A?%), R, R =43V} —4A%VE 4 3A%).

(4.25)

yHv

V. DISCUSSION

In this paper we constructed a large number of super-
symmetric backgrounds of N = (1,1) GMG theory
[15,16]. Since supersymmetric solutions of N = (1,1)
TMG and NMG were studied earlier [17,18] with the
same ansatz for auxiliary fields, the picture is now
complete, and one can see consequences of including
separate off-shell invariant pieces from our Table I. In
[18] it was found that "= (1,1) NMG allows more
solutions in comparison to A" = (1,1) TMG [17], and
here we showed that N = (1, 1) GMG is even richer. Since
the difference between NMG and GMG is the presence of
the gravitational Chern-Simons term in the latter, our
findings highlight the effect of this term. In particular,
we have seen that the static Lifshitz solution of NMG
becomes stationary in GMG. This phenomenon was also
observed for minimal massive gravity [27] in [28].
Similarly, comparing solutions of GMG with TMG in
Table I, one can see the significance of including higher
derivative terms.

Looking at supersymmetric solutions [25] of a closely
related model, namely, N' = (2,0) TMG [15,16], one
realizes that many are common and almost all of them
are homogeneous backgrounds [28]. It is desirable to

106022-6
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TABLE . Supersymmetric timelike solutions of N" = (1,1) GMG in comparison with A" = (1,1) NMG and N = (1, 1) TMG. For
GMG we assume ¢ # 0,1/u # 0 and 1/m* # 0. When A = 0, then M = 0.

Solution Conditions GMG NMG ™G
Round AdS (max. susy) Vi=Vy=0,A#0 (4.18) v v
Round AdS (1/4 susy) Vi=Vo=—-A#0 (4.19) v X
Spacelike squashed AdS Vi=A#0,Vy#0,V2>0 (4.8) v v
Timelike stretched AdS Vi=A#0,Vy#0,V2<0 4.8) v v
Null warped AdS Vi=A#0,V>=0 4.8) v v
AdS, x R Vi=A#0,Vy=0 4.10) v X
Timelike warped flat Vi=A=0,Vy#0 (4.11) v v
Minkowski Vi=A=V,=0 @.11) v v
AdS pp-wave Vi =|Vo| # |Al, A %0 (4.14) v v
Flat space pp-wave Vil = Vol #0,A=0 4.17) v v
Stationary Lifshitz Vo= ';17 Vi#-AV, #0 4.22) Static X
Timelike warped AdS Vo = %, Vi=-A#0,V2#£0 (4.23) R, x H, X
Deformation of AdS Vo = ';_2 V,=0,A%#0 4.24) X X

m

understand the connection between supersymmetry and
homogeneity better. As far as we know, (4.22) is the first
example of a supersymmetric stationary Lifshitz spacetime
[26], and its properties should be investigated further. In
particular, one may look for some stationary, supersym-
metric Lifshitz black holes since it is known that they do
not exist in A" = (1,1) NMG [18]. It would also be
interesting to study thermodynamics and conserved charges
[30] of our timelike warped AdS solution (4.23), which has
a Killing horizon as shown in Appendix B. We were able to
give geometric identification of all our solutions except
(4.24). This is a deformation of AdS; that we have not seen
before, and it deserves a more detailed examination.

The second AdS vacuum that we found (4.19) is worth
investigating further. For example, one may try to obtain a
renormalization group flow between the two AdS vacua
using an appropriate string solution. For that purpose,
constructing matter couplings or extensions with more
supersymmetries of this theory might be necessary.
Moreover, by making the x-coordinate periodic in
(4.19), one obtains a massless, static BTZ black hole
[31] with a nonzero charge. To check whether the model
admits massive, rotating versions of this, we need a more
elaborate investigation, which will require relaxing our
ansatz (4.1). Searching supersymmetric flows between
warped vacua of the model is also interesting [32].

Finally, connecting these three-dimensional models to
higher dimensions as well as to three-dimensional on-shell
supergravities is an important task. We hope to come back
to these issues in the near future.
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APPENDIX A: SUPERSYMMETRY OF AdS;
WITH VECTOR FIELDS

In this appendix, we show that our AdS; solution with
the metric (4.19) and nonzero vector fields V; = —A and
Vo = —€V, preserves 1/4 supersymmetry when & = —1.

The Killing spinor equation dy,, = 0 can be written from
(2.4) with § = A as

1 A i
de+gwure=Sr,e'e =5 (Var)(rpe)e=0. (A1)

2 2

where we inserted the constant « (which is actually 1) to be
able to more easily compare with the AdS; solution that has
no vector fields, (4.18).

We choose the orthonormal frame for the metric (4.19) as

&

O—di——"—dx, e'=——dx, =——dy, (A2
¢ oyt ¢ Tt Cegds (A2)
whose spin connections are
dy dx dx
=, = -, = - Adt—— A3
@o1 2y 20} 2y @12 € 2y (A3)
We take the y-matrices as
Yo = 02, Y1 =01, 72 = 03, (A4)

where o¢;’s are Pauli matrices, and we decompose the
complex Dirac spinor € as
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€ +1
€:< ! ,§1>. (A5)
€) + lz_:z
With these choices, for ¢ = —1 we get the following four
equations from (A1l):

d€1 —A€2dt = 0,
¢, —édy =0,
2y

d€2 +A€1dt + K<g—ldy —ACzdt) = 0,
y

ey + 2 dy — Ly — K<€—1 dy — Aezdt) —0. (A6)
y

2y 2y
It is easy to see that for k = 0 (that is, pure AdS;) this
differential equation system has the following four linearly
independent solutions:

(i), =6 =0, € =cosAt, €, =—sinAt,

(i), =¢, =0, € =sinAtf, e, =cosAt,
(iii) £ = 0, L=y e =6 =0,
)&=y L=x" a=6=0. (A7)

So, AdS; with no vector fields is fully supersymmetric as it
should be. Now, for « = 1 (so there is a contribution from
the vector field) we see that Killing spinor equations (A6)
admit only one solution, which is given as

w (D). b

The constant Killing spinor (A8) satisfies Pey = ¢, and
P*ey = 0, where P = 1 (I, + i7°).

On the other hand, when & =1, the Killing spinor
equations (A6) still admit four solutions for pure AdS;
[just interchange {; <> ¢; in (A8)], as it should be, since &
can be absorbed by the x-coordinate in the metric (4.19).
But there are no solutions with ¢ =k = 1.

In summary, our AdS; solution with nonzero vector
fields (4.19) preserves 1/4 supersymmetry when ¢ = —1.
This result is in agreement with the Killing spinor analysis
done in the appendix of [17], where it was shown that
supersymmetry enhancement happens only for AdS; with
no vector fields turned on.

(A8)

APPENDIX B: TIMELIKE SQUASHED
SELF-DUAL BLACK HOLES

The spacelike (4.8) and timelike squashed solutions
(4.23) that we obtained are examples of the so-called
self-dual-type solutions [29] after a proper identification.

Although they do not have an event horizon or a singularity,
they possess a Killing horizon and hence can be interpreted
as black hole-like objects with similar thermodynamic
properties [19]. The spacelike squashed self-dual solution
appears as the near horizon region of the extremal Kerr
black hole [33] and has been studied for TMG in [34-36]
and for V' = (1, 1) extended TMG in [17]. However, so far
the timelike version has only appeared in A = (2,0) TMG
as a supersymmetric solution [25]. Here, we initiate its
study by looking at its geometry more closely.

The timelike AdS; solution that we obtained (4.23) is
squashed when V3 < A2, which requires m* > 124%¢. It is
a self-dual-type solution [29] with no closed timelike
curves when the x-coordinate is identified such that
x ~ x + 2x. First, note that after the following coordinate
changes,

u

y:coesha’ x = e“tanho,

7 =1 —2tan"! [tanh <g>] , (B1)
it can be mapped into global AdS coordinates
ds? :H{z[coshzaduz+da2 —v*(dt +sinhodu)?],  (B2)

where now the periodic coordinate is u. To see its causal
structure more clearly, we now look at Schwarzschild-type
coordinates in (4.23) with 1> < 1 by deﬁning3

1 i 6(1-v)r,
=, =Ty
Y r—ry, ’ v v(4-1?)

=50 (B3

where r;, > 0 is a constant. Now, the metric (4.23) trans-
forms into

do* +
(4-17) (r—ra)?
6(vr

~ —rh) 2
(1756~ )]

where 0 ~ 0 4+ 2z. Note that there is a Killing horizon at
r = r, where the Killing vector y = 6(1’_7;;”)8; — 0y null.

Unlike the spacelike self-dual case [17], here the Killing
horizon has Lorentzian signature.

1 {[36@ — 1) dr

(B4)

3Going to Schwarzschild-type coordinates directly from (4.23)
rather than (B2) leads to a much simpler set of transformations
compared to those given in [19,17].
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