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We construct supersymmetric solutions of three-dimensional N ¼ ð1; 1Þ general massive supergravity
(GMG). Solutions with a null Killing vector are, in general, pp-waves. We identify those that appear at
critical points of the model, some of which do not exist in N ¼ ð1; 1Þ new massive supergravity (NMG).
In the timelike case, we find that many solutions are common with NMG, but there is a new class that is
genuine to GMG, two members of which are stationary Lifshitz and timelike squashed AdS spacetimes. We
also show that in addition to the fully supersymmetric AdS vacuum, there is a second AdS background with
a nonzero vector field that preserves 1=4 supersymmetry.
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I. INTRODUCTION

Trying to understand quantum gravity in three-
dimensional rather than four-dimensional spacetime is a
technically more manageable problem. A reason for this is
that a three-dimensional gravity theory on anti-de Sitter
(AdS) space is dual to a two-dimensional conformal field
theory (CFT), and such CFTs are much better understood
compared to higher-dimensional ones. With this goal in
mind, topologically massive gravity (TMG) [1] has been
widely studied in recent years (see e.g., [2]), which is
obtained by adding the gravitational Chern-Simons term
to pure Einstein gravity with or without a cosmological
constant. This model is unitary and propagates a single
massive mode. Recently, a novel modification of this theory
was achieved where a particular four-derivative curvature
term was added to the TMG action, after which it remained
unitary and there were two massive graviton states.
Depending on whether the model contains the gravitational
Chern-Simons termor not, it is called generalmassivegravity
(GMG) or new massive gravity (NMG), respectively [3,4].
Since supersymmetry, in general, improves ultraviolet

behavior, it is natural to consider supersymmetric exten-
sions of these models, which was carried out in a series of
papers. The fact that the isometry group of AdS3 can be

written as SOð2; 2Þ ≃ SOð2; 1Þ × SOð2; 1Þ makes it
possible to haveN ¼ ðp; qÞ supergravities in three dimen-
sions [5] with either on-shell or off-shell formulations.
The off-shell N ¼ 1 versions of the TMG [1] and GMG
[3,4] were constructed in [6,7] and [8,9], respectively.
The off-shell action of N ¼ 2 conformal supergravity
was obtained in [10], and the off-shell N ¼ ð1; 1Þ TMG
action was given in [11]. The most general off-shell
formulations for N ¼ 2 supergravity were developed in
[12,13] in superspace, and the corresponding N ¼ 2 TMG
actions were given in [14], both in the superspace and the
component settings. The bosonic action and supersym-
metry transformations of off-shell N ¼ 2 GMG were
obtained in [15]. A complete superspace action for off-
shell N ¼ 2 GMG was given in [16] using earlier results
in [13,14].
Identifying supersymmetric vacua of these theories is an

important problem, and in this paper, we will study
supersymmetric solutions of N ¼ ð1; 1Þ GMG [15,16].
In [17] a general Killing spinor analysis was performed to
classify supersymmetric solutions ofN ¼ ð1; 1Þ TMG, and
some particular warped AdS solutions were found. A big
advantage of working with off-shell supergravities is that
such an analysis remains valid for any extension of the
model; only field equations change. Later, supersymmetric
solutions of N ¼ ð1; 1Þ NMG were examined in [18], and
it was found that some additional backgrounds are allowed
compared to N ¼ ð1; 1Þ TMG, such as static Lifshitz
spacetime. We will show that for N ¼ ð1; 1Þ GMG, even
more configurations appear, such as stationary Lifshitz
spacetime and a timelike warped AdS with no restriction on
the norm of the warping. The latter can be turned into a
black hole–like object when it is squashed after a proper
identification of a coordinate[19]. Moreover, we find that in
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addition to a maximally supersymmetric AdS vacuum,
there exists a 1=4 supersymmetric AdS vacuum too. As
usual, supersymmetric solutions can be grouped as null or
timelike with respect to the norm of a Killing vector that is
obtained as a Killing spinor bilinear [20]. We summarize
our findings for the timelike case in Table I where we also
make comparison with N ¼ ð1; 1Þ NMG and TMG mod-
els. In all these papers the same ansatz for the auxiliary
fields is assumed. For all versions of off-shell N ¼ 2
supergravities, the general Killing spinor analysis was
given in [14] and all maximally supersymmetric solutions
were obtained. The superalgebras corresponding to these
backgrounds were provided in [21], which also contains
further observations about supersymmetric solutions of
these theories.
The organization of our paper is as follows. In the next

section we give a brief introduction of the N ¼ ð1; 1Þ
GMG model [15,16]. The two subsequent sections con-
stitute our main results where we apply the Killing spinor
analysis of [17] to our model. In Sec. III, we analyze a null
Killing vector and show that only pp-waves are allowed.

We also explicitly give new solutions that appear at critical
points of the theory. In Sec. IV, we do an analogous
investigation of the timelike case. Our ansatz for the
auxiliary fields gives rise to three choices for the vector
field components, and one of them leads to a new set of
solutions that exists only in GMG and not in NMG or
TMG. Additionally, we also find some solutions that were
overlooked in earlier works [17,18]. We conclude in Sec. V
with some comments and future directions. In Appendix A
we verify that the new AdS vacuum with nonzero vector
fields is 1=4 supersymmetric, whereas the other one with
vanishing vector fields preserves full supersymmetry. In
Appendix B we give a preliminary analysis of the black
hole–like geometry that one obtains from our timelike
squashed AdS solution (4.23).

II. N = (1;1) MASSIVE SUPERGRAVITY

We begin with a summary of the N ¼ ð1; 1Þ general
massive supergravity which was constructed in [15,16].
The bosonic part of its Lagrangian is given by

e−1LGMG ¼ σðRþ 2V2 − 2jSj2Þ þ 4MA −
εμνρ

4μ

�
Rμν

abωρab þ
2

3
ωab
μ ωνb

cωρca − 4FμνVρ

�
þ 1

m2

�
RμνRμν −

3

8
R2 − RμνVμVν

− FμνFμν þ 1

4
RðV2 − B2Þ þ 1

6
jSj2ðA2 − 4B2Þ − 1

2
V2ð3A2 þ 4B2Þ − 2VμB∂μA

�
; ð2:1Þ

where ðσ;M;m2; μÞ are arbitrary real constants and the complex scalar field S is defined as S ¼ Aþ iB. The limit m2 → ∞
corresponds to N ¼ ð1; 1Þ TMG, and the limit μ → ∞ corresponds to N ¼ ð1; 1Þ NMG models. Their supersymmetric
solutions were studied in [17,18], respectively. The model can be truncated toN ¼ 1 GMG [8,9] by setting the vector field
V and the imaginary part of the scalar field, i.e., B, to zero.
Equations of motion for A; B; Vμ and gμν fields are given, respectively, as

0 ¼ 4M − 4σAþ 1

m2

�
2

3
A3 − B2A − 3V2Aþ 2ð∇ · VÞBþ 2Vμ∂μB

�
;

0 ¼ 4σBþ 1

m2

�
1

2
RBþ A2Bþ 8

3
B3 þ 4V2Bþ 2Vμ∂μA

�
;

0 ¼ 4σVμ −
1

m2

�
2RμνVν þ 4∇νFμν þ Vμ

�
3A2 þ 4B2 −

R
2

�
þ 2B∂μA

�
þ 2

μ
εμνρFνρ;

0 ¼ σ

�
Rμν þ 2VμVν −

1

2
gμν½Rþ 2V2 − 2ðA2 þ B2Þ�

�
− 2gμνMAþ 1

μ
Cμν þ

1

m2

�
□Rμν −

1

4
∇μ∇νRþ 9

4
RRμν − 4Rρ

μRνρ

− 2Fμ
ρFνρ þ

1

4
RVμVν − 2RρðμVνÞVρ −

1

2
□ðVμVνÞ þ∇ρ∇ðμðVνÞVρÞ þ 1

4
RμνðV2 − B2Þ − 1

4
∇μ∇νðV2 − B2Þ

−
1

2
VμVνð3A2 þ 4B2Þ − 2BVðμ∂νÞA −

1

2
gμν

�
13

8
R2 þ 1

2
□R − 3R2

ρσ − RρσVρVσ þ∇ρ∇σðVρVσÞ − F2
ρσ

þ 1

4
RðV2 − B2Þ − 1

2
□ðV2 − B2Þ þ 1

6
ðA2 þ B2ÞðA2 − 4B2Þ − 1

2
V2ð3A2 þ 4B2Þ − 2BVρ∂ρA

��
; ð2:2Þ

where the Cotton tensor is defined as
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Cμ
ν ¼ εμρσ∇ρ

�
Rσν −

1

4
gσνR

�
: ð2:3Þ

Note that the gravitational Chern-Simons term has no
contribution to the scalar field equations. The complete
field equations ofN ¼ ð1; 1Þ GMG were first given in [14]
where all maximally supersymmetric solutions were also
obtained.
The N ¼ ð1; 1Þ supersymmetry transformations are1

δeμa ¼
1

2
ϵ̄γaψμ þ H:c:;

δψμ ¼
�
∂μ þ

1

4
ωμ

abγab

�
ϵ −

i
2
Vνγ

νγμϵ −
S
2
γμϵ

�;

δVμ ¼
i
8
ϵ̄γνργμð2D½νψρ� − iVσγ

σγνψρ − Sγνψ�
ρÞ þ H:c:;

δS ¼ −
1

4
ϵ̄�γμνð2D½μψν� − iVσγ

σγμψν − Sγμψ�
νÞ; ð2:4Þ

where ϵ is a complex Dirac spinor. These are off-shell
transformations since the supersymmetry algebra closes
without imposing the field equations (2.2).
The model has a fully supersymmetric AdS3 vacuum

when

A ¼ −
1

l
; B ¼ 0; Vμ ¼ 0; M ¼ Aσ −

A3

6m2
;

ð2:5Þ

where the effective cosmological constant is Λ ¼ −1=l2,
that is, Rμν ¼ 2Λgμν. Linearizing the theory around this
vacuum, one finds that, generically, the graviton has two
massless modes with η ¼ 1 and η ¼ −1 and two massive
modes with masses η1 and η2 given by

η1η2 ¼
1

Ω
; η1 þ η2 ¼

lm2

μΩ
; ð2:6Þ

where Ω ¼ σl2m2 − 1
2
. When mass values are repeated,

logarithmic modes appear, and such points of the parameter
space are labeled as critical. Assuming that 1=μ ≠ 0, there
are five possibilities [22]:

ðiÞ η1 ¼ η2 ≠ �1; ðiiÞ η1 ¼ 1; η2 ≠ �1;

ðiiiÞ η1 ¼ −1; η2 ≠ �1; ðivÞ η1 ¼ η2 ¼ 1;

ðvÞ η1 ¼ η2 ¼ −1: ð2:7Þ

The supermultiplet structure of this theory at these critical
points, as well as at ordinary points, was studied in [23].

Now we would like to find supersymmetric solutions of
this model. Since it is off shell, the Killing spinor analysis
done in [17] is also valid here, which we summarize in the
next two sections. As usual, assuming the existence of at
least one Killing spinor, one finds that there is a Killing
vector constructed as a spinor bilinear which is either null
or timelike.

III. NULL KILLING VECTOR

The Killing spinor analysis of [17] shows that in the null
case the vector field should be of the form Vμ ¼ ∂μθ for
some arbitrary function θðu; xÞ. Hence, the contribution of
the gravitational Chern-Simons term to the vector field
equation (2.2) vanishes automatically. Furthermore, if S is a
real constant one finds that supersymmetry actually
requires the vector field to vanish and the Killing spinor
becomes a constant spinor [17,18]. Now, we choose

A ¼ −1; B ¼ 0; Vμ ¼ 0; ð3:1Þ

where the AdS radius jlj is fixed to 1 in (2.5), which
requires M ¼ 1

6m2 − σ, from the scalar field equation. The
only remaining field, namely, the metric, has the form [17]

ds2 ¼ dx2 þ 2e2xdudvþQðx; uÞdu2; ð3:2Þ

with the null Killing vector in the v direction. This
generically describes a pp-wave; however when Qðx; uÞ ¼
const or Qðx; uÞ ¼ e2x, it is AdS3. The metric field
equation in (2.2) implies that

Qxxxx −
�
4þm2

μ

�
Qxxx þ

�
9

2
þm2σ þ 3m2

μ

�
Qxx

−
�
1þ 2m2σ þ 2m2

μ

�
Qx ¼ 0: ð3:3Þ

When there is no degeneracy, the most general solution of
this differential equation is

Qðx; uÞ ¼ c1ðuÞ þ c2ðuÞe2x þ c3ðuÞeλ1x þ c4ðuÞeλ2x;
ð3:4Þ

where the functions ciðuÞ; i ¼ 1;…; 4, are arbitrary func-
tions of u and

λ1;2 ¼ 1þm2

2μ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þm2

2μ

�
2

−
�
1

2
þm2

μ
þm2σ

�s
:

ð3:5Þ

One can show that functions c1ðuÞ and c2ðuÞ can be set to
zero without loss of generality [18,24].

1In this paper, we follow the conventions of [18]. In [17], on
the other hand, S ¼ −Z and σ ¼ 1.
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There are five special cases that must be analyzed
separately.2 They correspond precisely to the critical points
that we listed in (2.7) since λi ¼ Ωηi þ 1; ði ¼ 1; 2Þ. Now
solutions at these critical points take the form

ðiÞ λ1 ¼ λ2 ¼ 1þm2

2μ
; μ2 ¼ m4

4m2σ − 2
;

Qðx; uÞ ¼ c1ðuÞ þ c2ðuÞe2x þ ½c3ðuÞ þ c4ðuÞx�eλ1x;

ðiiÞ λ1 ¼ 2; λ2 ¼
m2

μ
¼ 1

2
þm2σ;

Qðx; uÞ ¼ c1ðuÞ þ ½c2ðuÞ þ c3ðuÞx�e2x þ c4ðuÞeλ2x;

ðiiiÞ λ1 ¼ 0; λ2 ¼ 2þm2

μ
¼ 3

2
−m2σ;

Qðx; uÞ ¼ c1ðuÞ þ c2ðuÞe2x þ c3ðuÞxþ c4ðuÞeλ2x;

ðivÞ λ1 ¼ λ2 ¼ 2; m2 ¼ 3

2σ
¼ 2μ;

Qðx; uÞ ¼ c1ðuÞ þ ½c2ðuÞ þ c3ðuÞxþ c4ðuÞx2�e2x;

ðvÞ λ1 ¼ λ2 ¼ 0; m2 ¼ 3

2σ
¼ −2μ;

Qðx; uÞ ¼ c1ðuÞ þ c2ðuÞe2x þ c3ðuÞxþ c4ðuÞx2: ð3:6Þ

Note that in the last two cases we have triple degeneracy,
which does not occur in supersymmetric null solutions of
N ¼ ð1; 1Þ NMG [18].
In general, these solutions preserve 1=4 supersymmetry,

except the round AdS3 which preserves full supersym-
metry [18].

IV. TIMELIKE KILLING VECTOR

We now discuss the timelike case. We will employ the
same ansatz for scalar and vector fields as in [17,18],
namely,

A ¼ const; B ¼ 0; V0 ¼ const;

V1 ¼ const; V2 ¼ 0; ð4:1Þ

where tangent indices f0; 1; 2g correspond to ft; x; yg
coordinates, respectively. The metric with a timelike
Killing vector in the t-direction has the form [17]

ds2 ¼ −e2φðyÞðdtþ CðyÞdxÞ2 þ e2λðyÞðdx2 þ dy2Þ; ð4:2Þ

where λðyÞ, φðyÞ and CðyÞ are arbitrary functions of y. For
supersymmetry, metric functions should satisfy

e−λφ0 ¼ V1 þ A;

e−λλ0 ¼ A − V1;

e−λC0 ¼ 2V0eλ−φ; ð4:3Þ

where a prime indicates differentiation with respect to y.
Note that, for this differential equation system, the follow-
ing choices are special:

ðiÞV1 ¼ A; ðiiÞV1 ¼ −A;

ðiiiÞV0 ¼ 0; ðivÞV1 ¼ 0; ð4:4Þ

since they reduce the number of independent metric
functions from three to two or one. The significance of
the V1 ¼ −A case was overlooked in [18], and hence the
corresponding solutions were missed. Also, cases with A ¼
M ¼ 0 were not considered in [18,17] since this makes the
effective cosmological constant zero. We will allow this
option here.
Next, we solve the field equations of the model (2.2) with

these constraints. The advantage of our ansatz (4.1) is that it
makes scalar and vector field equations algebraic, and once
they are satisfied, Einstein equations become automatic.
From the two nontrivial vector field equations, one can
show that the condition�

3V0

m2
−
1

μ

�
ðV1 − AÞðV2

0 − V2
1Þ ¼ 0 ð4:5Þ

has to be fulfilled, which puts a strong restriction on the
possible supersymmetric solutions. After satisfying this
condition, only one of the vector field equations in (2.2)
remains free. Now we will follow these three possibilities
and solve the constraint equations (4.3) together with the
remaining vector field equation for each case, paying
particular attention to the special choices (4.4).
Supersymmetric solutions in this section are 1=4 super-

symmetric [17], except for the round AdS3 with no vector
fields (4.18), which is fully supersymmetric as we show in
Appendix A.

A. The V1 =A case

In this case the scalar field equation implies

M ¼ Aσ þ A
4m2

�
7A2

3
− 3V2

0

�
: ð4:6Þ

The vector field equations are automatically satisfied when
V1 ¼ A ¼ V0 ¼ 0, and otherwise we get

σ ¼ 2V0

μ
þ 7

4m2
ðA2 − 3V2

0Þ: ð4:7Þ

There are two special cases for (4.4), namely, V0 ¼ 0
and V1 ¼ A ¼ 0.

2We ignore the case λ1 ¼ 2 and λ2 ¼ 0 since that requires
1=μ ¼ 0, which we do not allow.
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1. The V1 =A ≠ 0 case

In this case, by solving Eq. (4.3) the metric (4.2) takes
the form

ds2 ¼ V2

A2

�
dxþV0A

V2
e2Aydt

�
2

−
A2

V2
e4Aydt2 þ dy2; ð4:8Þ

where V2 ≡ −V2
0 þ V2

1.
When V0 ≠ 0 this corresponds to a warped AdS3 space

with warping parameter

ν2 ¼ 1 −
V2

A2
: ð4:9Þ

Depending on if the norm of the vector field, i.e., V2, is
positive, negative or zero, it describes a spacelike squashed
(0 < ν2 < 1), a timelike stretched (ν2 > 1) or a null warped
AdS3 spacetime, respectively (see [17,18] for details).
When V0 ¼ 0, note that (4.7) requires σ ≥ 0 and

M ¼ 7A3=ð3m2Þ. The metric (4.8) takes the form

ds2 ¼ −e4Aydt2 þ dy2 þ dx2; ð4:10Þ

which corresponds to AdS2 ×R or AdS2 × S1 geometries.
Note that the gravitational Chern-Simons term has no
effect. Here, if we assume σ ≠ 0, then this solution does
not exist in N ¼ ð1; 1Þ TMG.

2. The V1 =A=0 and V0 ≠ 0 case

For this case, M ¼ 0 and (4.7) implies V0 ¼
2m2

21
ð2μ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4
μ2
− 21σ

m2

q
Þ when V0 ≠ 0. Solving supersymmetry

constraints (4.3) we get

ds2 ¼ −ðdtþ 2V0ydxÞ2 þ dx2 þ dy2; ð4:11Þ

which represents a timelike warped flat space [25]. Note
that if V0 ¼ 0, then (4.7) is no longer valid and the vector
field equation is automatically satisfied. In this case (4.11)
becomes Minkowski spacetime.
These are still solutions when 1=μ ¼ 0 or 1=m2 ¼ 0, but

they were not considered in [18,17].

B. The jV1j= jV0j;V1 ≠ A case

Let V0 ¼ −εV1, where ε2 ¼ 1. The scalar and remaining
vector field equation give

M ¼ Aσ −
A3

6m2
; ð4:12Þ

0¼V1

�ðA2þ4AV1þ2V2
1Þ

m2
−
2ε

μ
ðAþV1Þþ2σ

�
: ð4:13Þ

Here the special cases (4.4) to be considered are V1 ¼ 0
and V1 ¼ −A.

1. The V1 ≠ −A case

For this case, solving (4.3) gives the metric

ds2¼−y2αdt2þ 2ε

A−V1

yα−1dtdxþ dy2

y2ðA−V1Þ2
; ð4:14Þ

where α ¼ ðV1 þ AÞ=ðV1 − AÞ. Although, at first sight,
V1 ¼ A looks problematic, in this subsection that is not
allowed. For A ≠ 0, this solution corresponds to an AdS3
pp-wave when jV1j ¼ jV0j ≠ 0 [17,18]. Supersymmetry
requires ε ¼ −1 [17].
When A ¼ 0, from (4.12) we have M ¼ 0, and

V1 ¼ −
m2ε

2μ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2σ −

m4

4μ2

s
; ð4:15Þ

which requires m2 ≤ 4μ2σ. The metric (4.14) with α ¼ 1
and V1 ≠ 0 becomes

ds2 ¼ −y2dt2 −
2ε

V1

dtdxþ dy2

V2
1y

2
: ð4:16Þ

After the coordinate transformations u ¼ ðln yÞ=V1 and
z ¼ −εx=V1, we get

ds2 ¼ −e2uV1dt2 þ 2dtdzþ du2; ð4:17Þ

which describes a pp-wave in flat spacetime in Brinkmann
coordinates [25]. This solution also exists in TMG and
NMG but was not considered in [17,18].
On the other hand, when A ≠ 0 but jV1j ¼ jV0j ¼ 0, the

metric (4.14) takes the form

ds2 ¼ 1

A2y2
ð−dτ2 þ dx2 þ dy2Þ; ð4:18Þ

which is the round AdS3 spacetime with radius 1=jAj. Here
we defined τ ¼ At − εx. This is the only solution which is
maximally supersymmetric, as we show in Appendix A.

2. The V1 = −A case

Note that in this case (4.13) and (4.12) imply M ¼
2Aσ=3 and A2 ¼ 2m2σ, which means σ > 0. Now, putting
α ¼ 0 in (4.14) we obtain

ds2 ¼ −
�
dt −

εdx
2Ay

�
2

þ 1

4A2y2
ðdx2 þ dy2Þ; ð4:19Þ

which is the round AdS3 with radius 1=jAj written as a
timelike Hopf fibration over a hyperbolic space without any
warping [25]. Since AdS is conformally flat, its Cotton
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tensor vanishes. Therefore, this solution also exists in
NMG, which was not noticed in [18]. It is not a solution
of TMG.
In Appendix A we show that unlike our previous AdS3

solution (4.18), this one preserves only 1=4 supersym-
metry. This requires ε ¼ −1, that is, V0 ¼ V1, and the
resulting Killing spinor is constant.

C. The V0 = m2

3μ ;jV0j ≠ jV1j;V1 ≠ A case

The main difference between the solutions ofN ¼ ð1; 1Þ
GMG and NMG [18] shows up in this class since 1=μ
appears directly in V0. Solutions here either do not exist in
NMG or they exist as a special case of the more general
form that is allowed in GMG. They are not solutions of
N ¼ ð1; 1Þ TMG [17].
The scalar and vector field equations become

M ¼ A
�
σ þ 3V2

1

4m2
−

m2

12μ2
−

A2

6m2

�
; ð4:20Þ

0 ¼ m4 þ 3μ2ð5V2
1 þ 4AV1 − 2A2Þ − 12m2μ2σ: ð4:21Þ

The cases V1 ¼ −A and V1 ¼ 0 should be considered
separately (4.4).

1. The V1 ≠ 0 case

For this case, solving (4.3) leads to the metric

ds2 ¼ −y2αdt2 −
V0ðαþ 1Þyα−1

V2
1

dtdxþ V2ðαþ 1Þ2
4V4

1

dx2

y2

þ ðαþ 1Þ2
4V2

1

dy2

y2
; ð4:22Þ

where α ¼ ðV1 þ AÞ=ðV1 − AÞ. Note that, since V1 ≠ 0,
we have α ≠ −1.
First let us assume that V1 ≠ −A, which implies that

α ≠ 0. Then, the metric (4.22) remains invariant under the
rescalings y → λy; x → λx; t → λ−αt, where λ is an arbi-
trary constant. Hence this solution corresponds to a sta-
tionary Lifshitz spacetime [26] with dynamical exponent
z ¼ −α. Such a solution was obtained before for the
minimal massive 3D gravity model [27] in [28]. The
solution exists even when A ¼ 0 with dynamical exponent
z ¼ −1, although M ¼ 0. In the NMG limit, namely,
μ → ∞, we have V0 ¼ 0 and (4.22) becomes static
Lifshitz spacetime as in minimal massive 3D gravity [28].
When V1 ¼ −A, i.e., α ¼ 0 and M ¼ A3=ð3m2Þ, the

metric (4.22) with τ ¼ 2A2t=V0 becomes

ds2 ¼ 1

4A2

�
−ν2

�
dτ þ dx

y

�
2

þ 1

y2
ðdx2 þ dy2Þ

�
; ð4:23Þ

which is a timelike warped AdS3 [25] with warping
ν2 ¼ V2

0=A
2. The form of the metric is similar to our

solution given in (4.19); however, here we have V0 ≠ �A,
and therefore it is not round AdS3. Moreover, unlike our
previous timelike warped solution (4.8), there is no
restriction on the warping; it can be squashed or stretched.
When it is squashed, it becomes a self-dual-type solution
[29] after an appropriate identification that is free from
closed timelike curves and has a Killing horizon [19],
which we study further in Appendix B. Note that in the
NMG limit, that is, 1=μ ¼ 0, V0 vanishes and the metric
(4.23) becomes Rt ×H2, where H2 is a two-dimensional
hyperbolic space. This case was overlooked in [18].

2. The V1 = 0 case

In this case M ¼ −2A3=ð3m2Þ and A2 ¼ m2ðm2−
12μ2σÞ=6μ2; therefore, we need to have m2 > 12μ2σ.
Here we also assume A ≠ 0 (that is, m2 ≠ 12μ2σ) since
this was covered in Sec. IVA 2. Solving (4.3) the metric
becomes

ds2¼−
1

y2

�
dtþ 2m2

3μA2
lnydx

�
2

þ 1

A2y2
ðdx2þdy2Þ: ð4:24Þ

This can be thought of as some “logarithmic” deformation
of AdS3 in Poincaré coordinates. We are not familiar with
this metric. Two of its curvature invariants are

R ¼ 2ðV2
0 − 3A2Þ; RμνRμν ¼ 4ð3V4

0 − 4A2V2
0 þ 3A4Þ:

ð4:25Þ

V. DISCUSSION

In this paper we constructed a large number of super-
symmetric backgrounds of N ¼ ð1; 1Þ GMG theory
[15,16]. Since supersymmetric solutions of N ¼ ð1; 1Þ
TMG and NMG were studied earlier [17,18] with the
same ansatz for auxiliary fields, the picture is now
complete, and one can see consequences of including
separate off-shell invariant pieces from our Table I. In
[18] it was found that N ¼ ð1; 1Þ NMG allows more
solutions in comparison to N ¼ ð1; 1Þ TMG [17], and
here we showed thatN ¼ ð1; 1Þ GMG is even richer. Since
the difference between NMG and GMG is the presence of
the gravitational Chern-Simons term in the latter, our
findings highlight the effect of this term. In particular,
we have seen that the static Lifshitz solution of NMG
becomes stationary in GMG. This phenomenon was also
observed for minimal massive gravity [27] in [28].
Similarly, comparing solutions of GMG with TMG in
Table I, one can see the significance of including higher
derivative terms.
Looking at supersymmetric solutions [25] of a closely

related model, namely, N ¼ ð2; 0Þ TMG [15,16], one
realizes that many are common and almost all of them
are homogeneous backgrounds [28]. It is desirable to
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understand the connection between supersymmetry and
homogeneity better. As far as we know, (4.22) is the first
example of a supersymmetric stationary Lifshitz spacetime
[26], and its properties should be investigated further. In
particular, one may look for some stationary, supersym-
metric Lifshitz black holes since it is known that they do
not exist in N ¼ ð1; 1Þ NMG [18]. It would also be
interesting to study thermodynamics and conserved charges
[30] of our timelike warped AdS solution (4.23), which has
a Killing horizon as shown in Appendix B. We were able to
give geometric identification of all our solutions except
(4.24). This is a deformation of AdS3 that we have not seen
before, and it deserves a more detailed examination.
The second AdS vacuum that we found (4.19) is worth

investigating further. For example, one may try to obtain a
renormalization group flow between the two AdS vacua
using an appropriate string solution. For that purpose,
constructing matter couplings or extensions with more
supersymmetries of this theory might be necessary.
Moreover, by making the x-coordinate periodic in
(4.19), one obtains a massless, static BTZ black hole
[31] with a nonzero charge. To check whether the model
admits massive, rotating versions of this, we need a more
elaborate investigation, which will require relaxing our
ansatz (4.1). Searching supersymmetric flows between
warped vacua of the model is also interesting [32].
Finally, connecting these three-dimensional models to

higher dimensions as well as to three-dimensional on-shell
supergravities is an important task. We hope to come back
to these issues in the near future.
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APPENDIX A: SUPERSYMMETRY OF AdS3
WITH VECTOR FIELDS

In this appendix, we show that our AdS3 solution with
the metric (4.19) and nonzero vector fields V1 ¼ −A and
V0 ¼ −εV1 preserves 1=4 supersymmetry when ε ¼ −1.
The Killing spinor equation δψμ ¼ 0 can be written from

(2.4) with S ¼ A as

dϵþ1

4
ωabγ

abϵ−
A
2
γaeaϵ�−κ

i
2
ðVaγ

aÞðγbebÞϵ¼0; ðA1Þ

where we inserted the constant κ (which is actually 1) to be
able to more easily compare with the AdS3 solution that has
no vector fields, (4.18).
We choose the orthonormal frame for the metric (4.19) as

e0¼dt−
ε

2Ay
dx; e1¼ ε

2Ay
dx; e2¼ ε

2Ay
dy; ðA2Þ

whose spin connections are

ω01¼
dy
2y

; ω02¼−
dx
2y

; ω12¼−εAdt−
dx
2y

: ðA3Þ

We take the γ-matrices as

γ0 ¼ iσ2; γ1 ¼ σ1; γ2 ¼ σ3; ðA4Þ

where σi’s are Pauli matrices, and we decompose the
complex Dirac spinor ϵ as

TABLE I. Supersymmetric timelike solutions of N ¼ ð1; 1Þ GMG in comparison with N ¼ ð1; 1Þ NMG and N ¼ ð1; 1Þ TMG. For
GMG we assume σ ≠ 0; 1=μ ≠ 0 and 1=m2 ≠ 0. When A ¼ 0, then M ¼ 0.

Solution Conditions GMG NMG TMG

Round AdS (max. susy) V1 ¼ V0 ¼ 0, A ≠ 0 (4.18) ✓ ✓
Round AdS (1=4 susy) V1 ¼ V0 ¼ −A ≠ 0 (4.19) ✓ ✗
Spacelike squashed AdS V1 ¼ A ≠ 0; V0 ≠ 0; V2 > 0 (4.8) ✓ ✓
Timelike stretched AdS V1 ¼ A ≠ 0; V0 ≠ 0; V2 < 0 (4.8) ✓ ✓
Null warped AdS V1 ¼ A ≠ 0; V2 ¼ 0 (4.8) ✓ ✓
AdS2 ×R V1 ¼ A ≠ 0; V0 ¼ 0 (4.10) ✓ ✗
Timelike warped flat V1 ¼ A ¼ 0; V0 ≠ 0 (4.11) ✓ ✓
Minkowski V1 ¼ A ¼ V0 ¼ 0 (4.11) ✓ ✓
AdS pp-wave jV1j ¼ jV0j ≠ jAj, A ≠ 0 (4.14) ✓ ✓
Flat space pp-wave jV1j ¼ jV0j ≠ 0, A ¼ 0 (4.17) ✓ ✓
Stationary Lifshitz V0 ¼ m2

3μ ; V1 ≠ −A; V1 ≠ 0 (4.22) Static ✗

Timelike warped AdS V0 ¼ m2

3μ ; V1 ¼ −A ≠ 0; V2 ≠ 0 (4.23) Rt ×H2 ✗

Deformation of AdS V0 ¼ m2

3μ ; V1 ¼ 0; A ≠ 0 (4.24) ✗ ✗
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ϵ ¼
�
ϵ1 þ iζ1
ϵ2 þ iζ2

�
: ðA5Þ

With these choices, for ε ¼ −1 we get the following four
equations from (A1):

dϵ1 − Aϵ2dt ¼ 0;

dζ1 −
ζ1
2y

dy ¼ 0;

dϵ2 þ Aϵ1dtþ κ

�
ζ1
2y

dy − Aζ2dt

�
¼ 0;

dζ2 þ
ζ2
2y

dy −
ζ1
y
dx − κ

�
ϵ1
2y

dy − Aϵ2dt

�
¼ 0: ðA6Þ

It is easy to see that for κ ¼ 0 (that is, pure AdS3) this
differential equation system has the following four linearly
independent solutions:

ðiÞ ζ1 ¼ ζ2 ¼ 0; ϵ1 ¼ cosAt; ϵ2 ¼ − sinAt;

ðiiÞ ζ1 ¼ ζ2 ¼ 0; ϵ1 ¼ sinAt; ϵ2 ¼ cosAt;

ðiiiÞ ζ1 ¼ 0; ζ2 ¼ y−1=2; ϵ1 ¼ ϵ2 ¼ 0;

ðivÞ ζ1 ¼ y1=2; ζ2 ¼ xy−1=2; ϵ1 ¼ ϵ2 ¼ 0: ðA7Þ
So, AdS3 with no vector fields is fully supersymmetric as it
should be. Now, for κ ¼ 1 (so there is a contribution from
the vector field) we see that Killing spinor equations (A6)
admit only one solution, which is given as

ϵ0 ¼
�
1

i

�
; ðε ¼ −1Þ: ðA8Þ

The constant Killing spinor (A8) satisfies Pϵ0 ¼ ϵ0 and
P�ϵ0 ¼ 0, where P ¼ 1

2
ðI2 þ iγ0Þ.

On the other hand, when ε ¼ 1, the Killing spinor
equations (A6) still admit four solutions for pure AdS3
[just interchange ζi ↔ ϵi in (A8)], as it should be, since ε
can be absorbed by the x-coordinate in the metric (4.19).
But there are no solutions with ε ¼ κ ¼ 1.
In summary, our AdS3 solution with nonzero vector

fields (4.19) preserves 1=4 supersymmetry when ε ¼ −1.
This result is in agreement with the Killing spinor analysis
done in the appendix of [17], where it was shown that
supersymmetry enhancement happens only for AdS3 with
no vector fields turned on.

APPENDIX B: TIMELIKE SQUASHED
SELF-DUAL BLACK HOLES

The spacelike (4.8) and timelike squashed solutions
(4.23) that we obtained are examples of the so-called
self-dual-type solutions [29] after a proper identification.

Although they do not have an event horizon or a singularity,
they possess a Killing horizon and hence can be interpreted
as black hole–like objects with similar thermodynamic
properties [19]. The spacelike squashed self-dual solution
appears as the near horizon region of the extremal Kerr
black hole [33] and has been studied for TMG in [34–36]
and forN ¼ ð1; 1Þ extended TMG in [17]. However, so far
the timelike version has only appeared inN ¼ ð2; 0Þ TMG
as a supersymmetric solution [25]. Here, we initiate its
study by looking at its geometry more closely.
The timelike AdS3 solution that we obtained (4.23) is

squashed when V2
0 < A2, which requires m2 > 12μ2σ. It is

a self-dual-type solution [29] with no closed timelike
curves when the x-coordinate is identified such that
x ∼ xþ 2π. First, note that after the following coordinate
changes,

y ¼ eu

cosh σ
; x ¼ eu tanh σ;

τ ¼ t0 − 2tan−1
�
tanh

�
σ

2

��
; ðB1Þ

it can be mapped into global AdS coordinates

ds2¼ 1

4A2
½cosh2σdu2þdσ2−ν2ðdt0 þsinhσduÞ2�; ðB2Þ

where now the periodic coordinate is u. To see its causal
structure more clearly, we now look at Schwarzschild-type
coordinates in (4.23) with ν2 < 1 by defining3

y¼ 1

r−rh
; τ¼ t̃

ν
−
6ð1−νÞrh
νð4−ν2Þ θ; x¼ 6

4−ν2
θ; ðB3Þ

where rh ≥ 0 is a constant. Now, the metric (4.23) trans-
forms into

ds2 ¼ 1

4A2

�½36ðr − rhÞ2
ð4 − ν2Þ2 dθ2 þ dr2

ðr − rhÞ2

−
�
d t̃þ 6ðνr − rhÞ

4 − ν2
dθ

�
2
�
; ðB4Þ

where θ ∼ θ þ 2π. Note that there is a Killing horizon at

r ¼ rh where the Killing vector χ ¼ 6ðνr−rhÞ
4−ν2 ∂ t̃ − ∂θ null.

Unlike the spacelike self-dual case [17], here the Killing
horizon has Lorentzian signature.

3Going to Schwarzschild-type coordinates directly from (4.23)
rather than (B2) leads to a much simpler set of transformations
compared to those given in [19,17].
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