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Abstract. A search for new interactions and resonances produced in LHC
proton–proton (pp) collisions at a centre-of-mass energy

√
s = 7 TeV was

performed with the ATLAS detector. Using a dataset with an integrated
luminosity of 36 pb−1, dijet mass and angular distributions were measured up
to dijet masses of ∼3.5 TeV and were found to be in good agreement with
Standard Model predictions. This analysis sets limits at 95% CL on various
models for new physics: an excited quark is excluded for mass between 0.60
and 2.64 TeV, an axigluon hypothesis is excluded for axigluon masses between
0.60 and 2.10 TeV and quantum black holes are excluded in models with six
extra space–time dimensions for quantum gravity scales between 0.75 and
3.67 TeV. Production cross section limits as a function of dijet mass are set
using a simplified Gaussian signal model to facilitate comparisons with other
hypotheses. Analysis of the dijet angular distribution using a novel technique
simultaneously employing the dijet mass excludes quark contact interactions
with a compositeness scale 3 below 9.5 TeV.
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1. Introduction

The search for new phenomena in particle interactions is perhaps most exciting when new
vistas are opened up by significant increases in experimental sensitivity, either by collecting
larger samples of data or by entering kinematic regimes never before explored. Searches are
particularly compelling when one can do both, as has recently become the case in the first
studies of proton–proton (pp) collisions at a centre-of-mass (CM) energy of 7 TeV produced
at the CERN Large Hadron Collider (LHC). We report on a search for massive objects and
new interactions using a sample of 36 pb−1 of integrated luminosity observed by the ATLAS
detector.

This analysis focuses on those final states where two very energetic jets of particles are
produced with large transverse momentum (pT) transfer. These 2 → 2 scattering processes are
well described within the Standard Model (SM) by perturbative quantum chromodynamics
(QCD), the quantum field theory of strong interactions. However, there could be additional
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contributions from the production of a new massive particle that then decays into a dijet final
state, or the rate could be enhanced through a new force that only manifests itself at very large
CM energies.

One can perform sensitive searches for new phenomena by studying both the dijet invariant
mass, mj j , and the angular distributions of energetic jets relative to the beam axis, usually
described by the polar scattering angle in the two-parton CM frame, θ∗. QCD calculations
predict that high-pT dijet production is dominated by t-channel gluon exchange, leading to
rapidly falling mj j distributions and angular distributions that are peaked at |cos θ∗

| close to 1.
By contrast, models of new processes characteristically predict angular distributions that would
be more isotropic than those of QCD. Discrepancies from the predicted QCD behaviour would
be evidence for new physics. This analysis focuses on a study of dijet mass and angular
distributions, which have been shown by previous studies [1–9] to be sensitive to new processes.
These dijet variables are well suited for searches employing early LHC data. The dijet mass
analyses can be performed using data-driven background estimates, while the angular analyses
can be designed to have reduced sensitivity to the systematic uncertainties associated with the
jet energy scale (JES) and integrated luminosity.

Following the first ATLAS studies of massive dijet events with 0.3 pb−1 [5] and
3.1 pb−1 [6], the full 2010 data set has increased statistical power by more than an order of
magnitude, and we have made several improvements to the analysis. A variety of models of
new physics have been tested and the angular distributions have been analysed using a new
technique that finely bins the data in dijet mass to maximize the sensitivity of the search to both
resonant and non-resonant phenomena. We set limits on a number of models and provide cross
section limits using a simplified Gaussian signal model to facilitate tests of other hypotheses
that we have not considered.

Section 2 describes the kinematic variables we used in this search. Section 3 describes the
detector and the data sample, as well as the common event selection criteria used in the studies
reported here. Section 4 describes the theoretical models employed, including the procedures
used to account for detector effects. Section 5 describes the search for resonance and threshold
phenomena using the dijet invariant mass. Section 6 describes the studies employing the angular
distributions as a function of the invariant mass of the dijet system. Section 7 summarizes our
results.

2. Kinematics and angular distributions

This analysis is focused on those pp collisions that produce two high-energy jets recoiling
back-to-back in the partonic CM frame to conserve momentum relative to the beamline. The
dijet invariant mass, mj j , is defined as the mass of the two highest pT jets in the event. The
scattering angle θ∗ distribution for 2 → 2 parton scattering is predicted by QCD in the parton
CM frame, which is in practice moving along the beamline due to the different momentum
fractions (Bjorken x) of one incoming parton relative to the other. The rapidity of each jet is
therefore a natural variable for the study of these systems, y ≡

1
2 ln(

E+pz

E−pz
), where E is the jet

energy and pz is the z-component of the jet’s momentum1. The variable y transforms under a

1 The ATLAS coordinate system is a right-handed Cartesian system with the x-axis pointing to the centre of
the LHC ring, the z-axis following the counter-clockwise beam direction and the y-axis directed upwards. The
polar angle θ refers to the z-axis, and φ is the azimuthal angle about the z-axis. Pseudo-rapidity is defined as
η ≡ −ln tan(θ/2) and is a good approximation to rapidity as the particle mass approaches zero.
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Lorentz boost along the z-direction as y → y − yB = y − tanh−1(βB), where βB is the velocity
of the boosted frame, and yB is its rapidity boost.

We use the mj j spectrum as a primary tool to search for new particles that would be
observed as resonances. The mj j spectrum is also sensitive to other phenomena, such as
threshold enhancements or the onset of new interactions at multi-TeV mass scales in our
current data sample. We bin the data in mj j choosing bin-widths that are consistent with
the detector resolution as a function of mass so that binning effects do not limit our search
sensitivity.

We employ the dijet angular variable χ derived from the rapidities of the two highest
pT jets, y1 and y2. For a given scattering angle θ∗, the corresponding rapidity in the parton
CM frame (in the massless particle limit) is y∗

=
1
2 ln( 1+|cos θ∗

|

1−|cos θ∗|
). We determine y∗ and yB from

the rapidities of the two jets using y∗
=

1
2(y1 − y2) and yB =

1
2(y1 + y2). The variable y∗ is

used to determine the partonic CM angle θ∗ and to define χ ≡ exp(|y1 − y2|) = exp(2|y∗
|).

As noted in previous studies, the utility of the χ variable arises because the χ distributions
associated with final states produced via QCD interactions are relatively flat compared with
the distributions associated with new particles or interactions that typically peak at low
values of χ .

In a previous dijet angular distributions analysis [6], a single measure of isotropy based on
y∗ intervals was introduced. This measure, Fχ , is the fraction of dijets produced centrally versus
the total number of observed dijets for a specified dijet mass range. We extend this to a measure
that is finely binned in dijet mass intervals:

Fχ

([
mmin

j j + mmax
j j

]
/2

)
≡

Nevents(|y∗
| < 0.6, mmin

j j , mmax
j j )

Nevents(|y∗| < 1.7, mmin
j j , mmax

j j )
, (1)

where Nevents is the number of candidate events within the y∗ interval and in the specified mj j

range. The interval |y∗
| < 0.6 defines the central region where we expect to be most sensitive

to new physics and corresponds to the angular region χ < 3.32, while |y∗
| < 1.7 extends the

angular range to χ < 30.0, where QCD processes dominate. This new observable, Fχ(mj j), is
defined using the same fine mj j binning used in analysis of the mj j spectrum. We also employ
the variable Fχ to denote the ratio in equation (1) for dijet masses above 2 TeV. Our studies
have shown that the Fχ(mj j) distribution is sensitive to mass-dependent changes in the rate of
centrally produced dijets.

Jets are reconstructed using the infrared-safe anti-kt jet clustering algorithm [10, 11] with
the distance parameter R = 0.6. The inputs to this algorithm are clusters of calorimeter cells
defined by energy depositions significantly above the measured noise. Jet four-momenta are
constructed by the vectorial addition of cell clusters, treating each cluster as an (E , Ep) four-
vector with zero mass. The jet four-momenta are then corrected as a function of η and pT for
various effects, the largest of which are the hadronic shower response and detector material
distributions. This is done using a calibration scheme based on Monte Carlo (MC) studies
including full detector simulation and validated with extensive test-beam studies [12] and
collision data [13–15].

The measured distributions include corrections for the JES but are not unfolded to account
for resolution effects. These distributions are compared to theoretical predictions processed
through a full detector simulation software.
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3. The ATLAS detector and event selection

3.1. The detector and trigger requirements

The ATLAS detector [16] is instrumented over almost the entire solid angle around the
pp collision point with layers of tracking detectors, calorimeters and muon chambers. Jet
measurements are made using a finely segmented calorimeter system designed to efficiently
detect the high-energy jets that are the focus of the study.

The electromagnetic (EM) calorimeter consists of an accordion-shaped lead absorber over
the region |η| < 3.2, using liquid argon (LAr) as the active medium to measure the energy
and geometry of the showers arising from jets. The measurement of hadronic energy flow in
the range |η| < 1.7 is complemented by a sampling calorimeter made of steel and scintillating
tiles. In the end-cap region 1.5 < |η| < 3.2, hadronic calorimeters consisting of a steel absorber
and a LAr active medium match the outer |η| limits of the EM calorimeters. To complete the
η coverage to |η| < 4.9, the LAr forward calorimeters provide both EM and hadronic energy
measurements. The calorimeter (η, φ) granularities are ∼0.1 × 0.1 for the hadronic calorimeters
up to |η| < 2.5 and then 0.2 × 0.2 up to |η| < 4.9. The EM calorimeters feature a finer readout
granularity varying by layer, with cells as small as 0.025 × 0.025 extending over |η| < 2.5.

The inner tracking detector (ID) covers the range |η| < 2.5, and consists of a silicon pixel
detector, a silicon microstrip detector (SCT) and, at |η| < 2.0, a transition radiation tracker
(TRT). The ID is surrounded by a thin superconducting solenoid providing a 2T magnetic field.

ATLAS has a three-level trigger system, with the first level trigger (L1) being custom-
built hardware and the two higher level triggers (HLT) being realized in software. The
triggers employed in this study selected events that had at least one large transverse energy
deposition, with the transverse energy threshold varying over the period of the data-taking as
the instantaneous luminosity of the LHC pp collisions rose.

The primary first-level jet trigger used in the resonance analysis had an efficiency of >99%
for events with dijet masses mj j > 500 GeV. This is illustrated in figure 1 where we show the
measured trigger efficiency as a function of mj j . After applying the full event selection from the
resonance analysis (except the mj j cut) we compute the fraction of events passing a reference
trigger which also pass our analysis trigger. The reference trigger is an inclusive jet trigger that
was fully efficient for pT > 80 GeV, while our event selection already requires pT > 150 GeV
to guarantee full efficiency of the reference trigger. Thus, we efficiently identify events for the
dijet resonance analysis at mj j > 500 GeV.

In order to have uniform acceptance for the angular distribution analysis, additional lower-
pT triggers were used for different angular and mass regions. We verified that these triggers
provided uniform acceptance as a function of χ for the dijet mass intervals in which they were
employed. Because these lower threshold triggers sampled only a subset of the pp collisions at
higher instantaneous luminosity, the effective integrated luminosity collected for dijet masses
between 500 and 800 GeV was 2.2 pb−1 and that between 800 and 1200 GeV was 9.6 pb−1 in the
dijet angular distribution analysis. Above 1200 GeV, the same trigger is used for the resonance
and angular analyses, and the full 36 pb−1 are used for both analyses.

3.2. Common event selection

Events are required to have at least one primary collision vertex defined by more than four
charged-particle tracks. Events with at least two jets are retained if the highest pT jet (the
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Figure 1. The efficiency of passing the primary first-level trigger as a function
of the dijet invariant mass, mj j . The uncertainties are statistical.

‘leading’ jet) satisfies p j1
T > 60 GeV and the next-to-leading jet satisfies p j2

T > 30 GeV. The
asymmetric thresholds avoid suppression of events where a third jet has been radiated, while
the 30 GeV threshold ensures that reconstruction is fully efficient for both leading jets. Events
containing a poorly measured jet [17] with pT > 15 GeV are vetoed to avoid cases where such
a jet would cause incorrect identification of the two leading jets. This criterion rejects less than
0.6% of the events. The two leading jets are required to satisfy quality criteria that ensure that
they arise from in-time energy deposition.

Further requirements are made on the jets in order to optimize the analysis of the dijet mass
spectrum and angular distributions, as described in sections 5 and 6.

4. Theoretical models and Monte Carlo (MC) simulations

The MC signal samples used for the analysis have been produced with a variety of event
generators. We have employed several of the most recent parton distribution functions (PDFs)
so that we consistently match the orders of the matrix element calculations implemented in
the different MC generators when we calculate QCD predictions, and to be conservative in
the calculation of expected new physics signals (all new physics signals are calculated only to
leading order (LO)).

4.1. Quantum chromodynamics (QCD) production

The angular distribution analyses required a prediction for the angular distribution arising
from QCD production. MC samples modelling QCD dijet production were created with the
Pythia 6.4.21 event generator [18] and the ATLAS MC09 parameter tune [19], using the
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modified leading-order MRST2007 [20] PDF (MRST2007LO*). The generated events were
passed through the detailed simulation of the ATLAS detector [21], which uses the Geant4
package [22] for the simulation of particle transport, interactions, and decays, to incorporate
detector effects. The simulated events were then reconstructed in the same way as the data to
produce predicted dijet mass and angular distributions that can be compared with the observed
distributions.

Bin-by-bin correction factors (K -factors) have been applied to the angular distributions
derived from MC calculations to account for next-to-leading order (NLO) contributions.
These K -factors were derived from dedicated MC samples and are defined as the
ratio NLOME/PYTSHOW. The NLOME sample was produced using matrix elements in
NLOJET++ [23–25] with the NLO PDF from CTEQ6.6 [26]. The PYTSHOW sample was
produced with the Pythia generator restricted to LO matrix elements and parton showering
using the MRST2007LO* PDF.

The angular distributions generated with the full Pythia calculation include various
non-perturbative effects such as multiple parton interactions and hadronization. The
K -factors defined above were designed to retain these effects while adjusting for differences
in the treatment of perturbative effects. We multiplied the full Pythia predictions of angular
distributions by these binwise K -factors to obtain a reshaped spectrum that includes corrections
originating from NLO matrix elements. Over the full range of χ , the K -factors change the
normalized angular distributions by up to 6%, with little variability from one mass bin to the
other.

The QCD predictions used for comparison with the measured angular distributions in this
paper are the product of the two-step procedure described above.

4.2. Models for new physics phenomena

MC signal events for a benchmark beyond-the-SM resonant process were generated using the
excited-quark (qg → q∗) production model [27, 28]. The excited quark q∗ was assumed to have
spin-1/2 and quark-like couplings, relative to those of the SM SU (2), U (1) and SU (3) gauge
groups, of f = f ′

= fs = 1, respectively. The compositeness scale (3) was set to the q∗ mass.
Signal events were produced using the Pythia event generator with the MRST2007LO* PDF
and with the renormalization and factorization scales set to the mean pT of the two leading jets.
We also used the Pythia MC generator to decay the excited quarks to all possible SM final
states, which are dominantly qg but also qW , q Z and qγ . The MC samples were produced
using the ATLAS MC09 parameter tune.

We also considered two other models of new physics that generate resonant signatures:
axigluons and Randall–Sundrum (RS) gravitons. The axigluon interaction [29–31] is described
by the Lagrangian

LAqq̄ = gQCDq̄ Aa
µ

λa

2
γ µγ5q. (2)

The parton-level events were generated using the CalcHEP MC package [32] with
MRST2007LO* PDF. We used a Pythia MC calculation to model the production and decays of
an RS graviton [33, 34] of a given mass. We performed this calculation with the dimensionless
coupling κ/M̄Pl = 0.1, where M̄Pl is the reduced Planck mass, to set limits comparable to other
searches [7, 35].
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For non-resonant new phenomena, we used a benchmark quark contact interaction (CI)
as the beyond-the-SM process. This models the onset of kinematic properties that characterize
quark compositeness: the hypothesis that quarks are composed of more fundamental particles.
The model Lagrangian is a four-fermion contact interaction [36–38] whose effect appears below
or near a characteristic energy scale 3. While a number of contact terms are possible, the
Lagrangian in standard use since 1984 [36] is the single (isoscalar) term:

Lqqqq(3) =
ξg2

232
9̄L

q γ µ9L
q 9̄L

q γµ9L
q , (3)

where g2/4π = 1 and the quark fields 9L
q are left-handed. The full Lagrangian used for

hypothesis testing is then the sum of Lqqqq(3) and the QCD Lagrangian. The relative phase
of these terms is controlled by the interference parameter, ξ , which is set for destructive
interference (ξ = +1) in the current analysis. Previous analyses [3] showed that the choice of
constructive (ξ = −1) or destructive (ξ = +1) interference changed exclusion limits by ∼1%.
MC samples were created by a Pythia 6.4.21 calculation using this Lagrangian, with each
sample corresponding to a distinct value of 3.

As another example of non-resonant new physics phenomena, we considered quantum
black holes (QBH) [39, 40], by which we mean any quantum gravitational effect that produces
events containing dijets. We used the BlackMax black hole event generator [41] to simulate
the simplest two-body final state scenario describing the production and decay of a QBH for
a given fundamental quantum gravity scale MD. These would appear as a threshold effect that
also depends on the number of extra space–time dimensions.

Previous ATLAS jet studies [42] have shown that the use of different event generators
and models for non-perturbative behaviour has a negligible effect on the observables in the
kinematic region we are studying. All of the MC signal events were modelled with the full
ATLAS detector simulation.

5. Search for dijet resonances

We make a number of additional selection requirements on the candidate events to optimize the
search for effects in the dijet mass distribution. Each event is required to have its two highest-pT

jets satisfy |η j | < 2.5 with |1η j j | < 1.3. In addition, the leading jet must satisfy p j1
T > 150 GeV

and mj j must be greater than 500 GeV. These criteria have been shown, based on studies of
expected signals and QCD background, to efficiently optimize the signal-to-background in the
sample. There are 98 651 events meeting these criteria.

5.1. The dijet mass distribution

In order to develop a data-driven model of the QCD background shape, a smooth functional
form

f (x) = p1(1 − x)p2 x p3+p4 ln x , (4)

where x ≡ m j j/
√

s and the pi are fit parameters, is fitted to the dijet mass spectrum. Although
not inspired by a theory, this functional form has been empirically shown to model the steeply
falling QCD dijet mass spectrum [3, 5, 7]. Figure 2 shows the resulting mass spectrum and fitted
background, indicating that the observed spectrum is consistent with a rapidly falling, smooth
distribution. The bin widths have been chosen to be consistent with the dijet mass resolution,
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Figure 2. The observed (D) dijet mass distribution (filled points) fitted using a
binned QCD background (B) distribution described by equation (4) (histogram).
The predicted q∗ signals normalized to 36 pb−1 for excited-quark masses of
1000, 1700 and 2500 GeV are overlaid. The bin-by-bin significance of the
data–background difference is shown in the lower panel.

increasing from ∼50 to ∼200 GeV for dijet masses from 600 to 3500 GeV, respectively. The
p-value of the fit to the data, calculated using the chi-squared test determined from pseudo-
experiments as a goodness-of-fit statistic, is 0.88. Although this p-value suggests that there is
no significant overall disagreement, we use a more sensitive statistical test, the BumpHunter
algorithm [43, 44], to establish the presence or absence of a resonance.

In its implementation in this analysis, the BumpHunter algorithm searches for the signal
window with the most significant excess of events above the background, requiring insignificant
discrepancy (Poisson counting p-value > 10−3) in both the adjacent sidebands. Starting with
a two-bin window, the algorithm increases the signal window and shifts its location until all
possible bin ranges, up to half the mass range spanned by the data, have been tested. The
most significant departure from the smooth spectrum, defined by the set of bins that have the
smallest probability of arising from a background fluctuation assuming Poisson statistics, is
therefore identified. The algorithm accounts for the ‘trials factor’ to assess the significance (i.e.,
p-value) of its finding. It does this by performing a series of pseudo-experiments to determine
the probability that random fluctuations in the background-only hypothesis would create an
excess as significant as the observed one anywhere in the spectrum. The background to which
the data are compared is obtained from the aforementioned fit, excluding the region with the
biggest local excess of data in cases where the χ2 test yields a p-value less than 0.01. Although
this is not the case for the actual data, it can happen in some of the pseudo-experiments that are
used to determine the p-value. The reason for this exclusion is to prevent potential new physics
signal from biasing the background.
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The most significant discrepancy identified by the BumpHunter algorithm is a three-bin
excess in the dijet mass interval 995–1253 GeV. The p-value, of observing an excess at least as
large as this assuming a background-only hypothesis, is 0.39. We therefore conclude that there
is no evidence for a resonance signal in the mj j spectrum and proceed to set limits on various
models.

5.2. Exclusion limits using the dijet mass

We set Bayesian credibility intervals by defining a posterior probability density from the
likelihood function for the observed mass spectrum, obtained by a fit to the background
functional form and a signal shape derived from MC calculations. A prior constant in the
possible signal strength is assumed. The posterior probability is then integrated to determine the
95% credibility level (CL) for a given range of models, usually parameterized by the mass of the
resonance. A Bayesian approach is employed for setting limits using the dijet mass distribution
as it simplifies the treatment of systematic uncertainties.

The systematic uncertainties affecting this analysis arise from instrumental effects, such
as the JES and resolution (JER) uncertainties, the uncertainty on the integrated luminosity
and the uncertainties arising from the background parameterization. Extensive studies of
the performance of the detector using both data and MC modelling have resulted in a
JES uncertainty ranging from 3.2 to 5.7% in the current data sample [15]. The systematic
uncertainty in the integrated luminosity is 11% [45]. The uncertainties in the background
parameterization are taken from the fit results discussed earlier and range from 3% at 600 GeV
to ∼40% at 3500 GeV. These uncertainties are incorporated into the analysis by varying all the
sources according to Gaussian probability distributions and convolving these with the Bayesian
posterior probability distribution. Credibility intervals are then calculated numerically from the
resulting convolutions.

Uncertainties in the signal models come primarily from our choice of PDFs and the tune for
the Pythia MC, which provides the best match of observed data with the predictions with that
choice of PDF. Our default choice of PDFs for the dijet mass analysis is MRST2007LO* [20]
with the MC09 tune [19]. Limits are quoted also using CTEQ6L1 and CTEQ5L PDF sets, which
provide an alternative PDF parameterization and allow comparisons with previous results [3],
respectively. For the q∗ limit analysis, we also vary the renormalization and factorization scales
in the Pythia calculation by factors of one-half and two and find that the observed limit varies
by ∼0.1 TeV.

5.3. Limits on excited quark production

The particular signal hypothesis used to set limits on excited quarks (q∗) has been implemented
using the Pythia MC generator, with fixed parameters to specify the excited quark mass, mq∗ ,
and its decay modes, as discussed in section 4. Each choice of mass constitutes a specific signal
template, and a high-statistics set of MC events was created and fully simulated for each choice
of mq∗ . The acceptance, A, of our selection requirements ranges from 49 to 58% for mq∗ from
600 to 3000 GeV, respectively. The loss of acceptance comes mainly from the pseudorapidity
requirements, which ensure that the candidate events have a high signal-to-background ratio.

In figure 3 the resulting 95% CL limits on σ ·A for excited quark production are shown as
a function of the excited quark mass, where σ is the cross section for production of resonance
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Table 1. The 95% CL lower limits on the allowed q∗ mass obtained using
different tunes and PDF sets. The MC09′ tune is identical to MC09 except for
the Pythia parameter PARP(82) = 2.1 and the use of the CTEQ6L1 PDF set.

Observed limit (TeV) Expected limit (TeV)
MC tune PDF set Stat. ⊕ syst. Stat. only Stat. ⊕ syst. Stat. only

MC09 [19] MRST2007LO* [20] 2.15 2.27 2.07 2.12
MC09′ CTEQ6L1 [46] 2.06 2.19 2.01 2.07
Perugia0 [47] CTEQ5L [48] 2.14 2.26 2.06 2.12
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Expected 95% CL upper limit
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-1 = 36 pbdt L
  ∫
 = 7 TeVs

Figure 3. The 95% CL upper limits on the cross section times acceptance for a
resonance decaying to dijets taking into account both statistical and systematic
uncertainties (points and solid line) compared to an axigluon model and to a q∗

model with three alternative MC tunes. We also show the expected limit (dotted
line) and the 68 and 95% contours of the expected limit (bands).

and A is the acceptance for the dijet final state. The expected limit is also shown, based on the
statistics of the sample and assuming a background-only hypothesis. We see that the observed
and expected limits are in reasonable agreement with each other, strengthening our earlier
conclusion that there is no evidence of a signal above the smooth background. Comparing the
observed limit with the predicted q∗ cross section times acceptance, we exclude at 95% CL q∗

masses in the interval 0.60 < mq∗ < 2.15 TeV. The expected limit excludes mq∗ < 2.07 TeV.
The sensitivity of the resulting limit to the choice of PDFs was modest, as shown in table 1

where the observed and expected mass limits are compared for several other models. In all
cases, the mass limits vary by less than 0.1 TeV. The inclusion of systematic uncertainties results
in modest reductions in the limit, illustrating that the limit setting is dominated by statistical
uncertainties.
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Table 2. The 95% CL lower limits on the allowed quantum gravity scale for
various numbers of extra dimensions.

Number of Observed MD limit (TeV) Expected MD limit (TeV)
extra dimensions Stat. ⊕ Syst. Stat. only Stat. ⊕ Syst. Stat. only

2 3.20 3.22 3.18 3.20
3 3.38 3.39 3.35 3.37
4 3.51 3.52 3.48 3.50
5 3.60 3.61 3.58 3.59
6 3.67 3.68 3.64 3.66
7 3.73 3.74 3.71 3.72

5.4. Limits on axigluon production

We set limits on axigluon production using the same procedure followed for the q∗ analysis,
creating templates for the signal using the axigluon model described in section 4 and full
detector simulation. There are large non-resonant contributions to the cross section at low dijet
mass, so we require at the parton-level that the axigluon invariant mass be between 0.7 and
1.3 times the nominal mass of the resonance. Having made this requirement, we note that the
axigluon and q∗ signal templates result in very similar limits. So for convenience we use the q∗

templates in setting cross section limits on axigluon production.
The resulting limits are shown in figure 3. Using the MRST2007LO* PDFs, we exclude

at 95% CL axigluon masses in the interval 0.60 < m < 2.10 TeV. The expected limit is m <

2.01 TeV. If only statistical uncertainties are included, the limit rises by ∼0.2 TeV, indicating
that the systematic uncertainties are not dominant.

5.5. Limits on quantum black hole (QBH) production

We search for the production of QBHs as these are expected to produce low multiplicity decays
with a significant contribution to dijet final states. Several scenarios are examined, with quantum
gravity scales MD ranging from 0.75 TeV to 4.0 TeV and with the number of extra dimensions,
n, ranging from two to seven. The fully simulated MC events are used to create templates similar
to the q∗ analysis. These QBH models produce threshold effects in mj j with long tails to higher
mj j that compete with the QCD background. However, the cross section is very large just above
the threshold and so it is possible to extract limits given the resulting resonance-like signal
shape.

The resulting limits are illustrated in figure 4, showing the observed and expected limits,
as well as the predictions for QBH production assuming two, four and six extra dimensions.
The observed lower limits on the quantum gravity scale, MD, with and without systematic
uncertainty, and the expected limit with and without systematic uncertainty, at 95% CL are
summarized in table 2. Using CTEQ6.6 PDFs, we exclude at 95% CL quantum gravity scales
in the interval 0.75 < MD < 3.67 TeV for the low-multiplicity QBHs with six extra dimensions.
The expected limit is MD < 3.64 TeV.

5.6. Limits on Randall–Sundrum (RS) graviton production

We search for the production of RS gravitons by creating dijet mass templates using the MC
calculation described in section 4. In this case, the sensitivity of the search is reduced by the
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Figure 4. The 95% CL upper limits on the cross section × acceptance versus
the quantum gravity mass scale MD for a QBH model, taking into account both
statistical and systematic uncertainties. The cross section × acceptance for QBH
models with two, four and six extra dimensions is shown. The 68 and 95% CL
contours of the expected limit are shown as the band.

lower production cross section, and by our kinematic criteria that strongly select for final states
that have either high-energy hadronic jets or EM showers.

The limits obtained for this hypothesis are illustrated in figure 5, showing the observed
and expected limits, as well as the predictions for RS graviton production. It is not possible
to exclude any RS graviton mass hypothesis, given the small expected signal rates and the
relatively large QCD backgrounds. A limit on RS graviton models could be established with
increased statistics, although more sophisticated stategies to improve signal-to-background may
be necessary.

5.7. Simplified Gaussian model limits

We have used these data to set limits in a more model-independent way by employing as our
signal template a Gaussian profile with means ranging from 600 GeV to 4000 GeV and with the
width, σ , varying from 3 to 15% of the mean.

Systematic uncertainties are treated in the same manner as described previously, using
pseudo-experiments to marginalize the posterior probabilities that depend on parameters that
suffer from systematic uncertainty. However, given that the decay of the dijet final state has not
been modelled, assuming only that the resulting dijet width is Gaussian in shape, we adjusted
the treatment of the JES by modelling it as an uncertainty in the central value of the Gaussian
signal.

The 95% CL limits are shown in table 3, expressed in terms of the number of events
observed after all event selection criteria have been applied. We stress that these event limits
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Figure 5. The 95% CL upper limits on the cross section × acceptance for an RS
graviton, taking into account both statistical and systematic uncertainties. The 68
and 95% CL contours of the expected limit are shown as the band.

are determined by assuming a Gaussian signal shape. Their variation as a function of mass and
width reflects the statistical fluctuations of data in the binned mj j distribution used to set them.

These limits can be employed by computing for a given model the acceptance A using a
standard MC calculation. The jet pT and η requirements should first be applied to determine the
expected signal shape in mj j . Since a Gaussian signal shape has been assumed in determining the
limits, we recommend removing any long tails in mj j (a ±20% mass window is recommended).
The fraction of MC events surviving these requirements is an estimate of the acceptance, and
can be used to calculate the expected event yield given a cross section for the process and
assuming a sample size of 36 pb−1. This event yield can then be compared with the limit in
table 3, matching the expected signal mean and width to the appropriate entry in the table.

6. Angular distribution analyses

For all angular distribution analyses, the common event selection criteria described in section 3
are applied, including the transverse momentum requirements on the two leading jets:
p j1

T > 60 GeV and p j2
T > 30 GeV. Additionally, χ distributions are accumulated only for events

that satisfy |yB| < 1.10 and |y
∗

| < 1.70. The |y
∗

| criterion determines the maximum χ of 30 for
this analysis. These two criteria limit the rapidity range of both jets to |y1,2| < 2.8 and define
a region within the space of accessible y1 and y2 with full and uniform acceptance in χ at
mj j > 500 GeV. These kinematic cuts have been optimized by MC studies of QCD and new
physics signal samples to ensure high acceptance for all dijet masses.

Detector resolution effects smear the χ distributions, causing events to migrate between
neighbouring bins. This effect is reduced by choosing the χ bins to match the natural
segmentation of the calorimeter, making them intervals of constant 1y for these high-pT dijet
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Table 3. The 95% CL upper limits on the number of observed signal events for
Gaussian reconstructed mj j distributions. The effects of systematic uncertainties
due to the luminosity, the background fit and the JES have been included.
We present the signal widths as σ/m.

Mean m σ/m
(GeV) 0.03 0.05 0.07 0.10 0.15

600 434 638 849 1300 1990
700 409 530 789 1092 945
800 173 194 198 218 231
900 88 103 123 162 311
1000 147 179 210 278 391
1100 143 169 204 263 342
1200 91 120 168 223 262
1300 65 80 101 120 122
1400 35 42 50 57 66
1500 24 27 32 40 60
1600 21 25 29 36 49
1700 26 27 28 38 43
1800 25 26 30 32 34
1900 22 22 25 25 26
2000 13 16 19 19 17
2100 10 12 14 16 17
2200 8.4 9.4 11 10 11
2300 6.8 7.3 7.4 8.3 9.0
2400 4.9 5.2 6.1 6.6 8.0
2500 4.6 4.9 5.4 6.4 6.9
2600 4.9 5.0 5.3 6.0 6.6
2700 5.1 5.0 5.0 5.2 5.7
2800 5.0 5.0 4.9 5.0 5.2
2900 4.6 4.5 4.7 4.6 4.8
3000 4.1 4.2 4.3 4.5 4.7
3200 3.2 3.5 3.6 3.8 4.1
3400 3.1 3.1 3.2 3.5 3.7
3600 3.1 3.1 3.1 3.3 3.6
3800 3.1 3.1 3.1 3.2 3.3
4000 3.1 3.1 3.1 3.1 3.3

events. The Fχ and Fχ(mj j) variables are even less sensitive to migration effects, given that they
depend on separation of the data sample into only two χ intervals.

6.1. Systematic and statistical uncertainties

Dijet angular distribution analyses have a reduced sensitivity to the JES and JER uncertainties
compared to other dijet measurements because data and theoretical distributions are normalized
to unit area for each mass bin in all cases. Nevertheless, the JES still represents the dominant
systematic uncertainty in the current studies.
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Figure 6. The χ distributions for 520 < mj j < 800 GeV, 800 < mj j < 1200 GeV,
1200 < mj j < 1600 GeV, 1600 < mj j < 2000 GeV and mj j > 2000 GeV. Shown
are the QCD predictions with systematic uncertainties (narrow bands), and data
points with statistical uncertainties. The dashed line is the prediction for a QBH
signal for MD = 3 TeV and n = 6 in the highest mass bin. The distributions and
QCD predictions have been offset by the amount shown in the legend to aid in
visually comparing the shapes in each mass bin.

As described in a previous publication [6], our dijet angular analyses use pseudo-
experiments to convolve statistical, systematic and theoretical uncertainties. The primary
sources of theoretical uncertainty are NLO QCD renormalization (µR) and factorization scales
(µF) and PDF uncertainties. The former are varied by a factor of two, independently, while the
PDF errors are sampled from a Gaussian distribution determined using CTEQ6.6 (NLO) PDF
error sets. The resulting bin-wise uncertainties for normalized χ distributions are typically up
to 3% for the combined NLO QCD scales and 1% for the PDF uncertainties. These convolved
experimental and theoretical uncertainties are calculated for all MC angular distributions (both
QCD and new physics samples). These statistical ensembles are used for estimating p-values
when comparing QCD predictions to data and for parameter determination when setting limits.

6.2. Observed χ and Fχ(mj j) distributions

The analysis method used in the first ATLAS publication on this topic [6] is revisited here
for the full 2010 data sample. The χ distributions are shown in figure 6 for several relatively
large mj j bins, defined by the bin boundaries of 520, 800, 1200, 1600 and 2000 GeV. There are
71 402 events in the sample, ranging from 42 116 events in the lowest mass bin to 212 events
with mj j > 2000 GeV. These bins were chosen to ensure sufficient statistics in each mass bin.
This is most critical for the highest mass bin—the focal point for new physics searches. The
χ distributions are compared in the figure to the predictions from QCD MC models and the
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Figure 7. The Fχ(mj j) function versus mj j . We show the QCD prediction with
systematic uncertainties (band), and data points (black points) with statistical
uncertainties. The expected signal from QCD plus a quark contact interaction
with 3 = 5.0 TeV is also shown.

signal that would be seen in one particular new physics model, a QBH scenario with a quantum
gravity mass scale of 3 TeV and six extra dimensions.

The data appear to be consistent with the QCD predictions, which include systematic
uncertainties. To verify this, a binned likelihood is calculated for each distribution assuming that
the sample consists only of QCD dijet production. The expected distribution of this likelihood
is then calculated using pseudo-experiments drawn from the QCD MC sample and convolved
with the systematic uncertainties as discussed above. The p-values for the observed likelihood
values, from the lowest to highest mass bins, are 0.44, 0.33, 0.64, 0.89 and 0.44, respectively,
confirming that the SM QCD hypothesis is consistent with the data.

We compute the Fχ(mj j) observable, introduced in section 2, using the same mass binning
employed in the dijet resonance searches. The observed Fχ(mj j) data are shown in figure 7
and are compared to the QCD predictions, which include systematic uncertainties. We also
show the expected behaviour of Fχ(mj j) if a contact interaction with the compositeness scale
3 = 5.0 TeV were present. Statistical analyses using Fχ(mj j) use mass bins starting at 1253 GeV
to be most sensitive to the high dijet mass region. Assuming only QCD processes and including
systematic uncertainties, the p-value for the observed binned likelihood is 0.28, indicating that
these data are consistent with QCD predictions.

In the absence of any evidence for signals associated with new physics phenomena, these
distributions are used to set 95% CL exclusion limits on a number of new physics hypotheses.

6.3. Exclusion limits from likelihood ratios

Most of the dijet angular distribution analyses described below use likelihood ratios to compare
different hypotheses and parameter estimation. Confidence level limits are set using the
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frequentist CLs+b approach [49]. As an example, for the Fχ(mj j) distributions the variable Q
is defined as follows:

Q = −2[ln L(Fχ(m j j)|H0) − ln L(Fχ(m j j)|H1)], (5)

where H0 is the null hypothesis (QCD only), H1 is a specific hypothesis for new physics
with fixed parameters and L(Fχ(mj j)|H) is the binned likelihood for the Fχ(mj j) distribution
assuming H as the hypothesis. Pseudo-experiments are used to determine the expected
distribution for Q for specific hypotheses. The new physics hypothesis is then varied to calculate
a Neyman confidence level.

6.4. Limits on quark contact interactions

The Fχ(mj j) variable is used for the first time in this paper to set limits on quark contact
interactions (CI), as described in section 4. MC samples of QCD production modified by a
CI are created for values of 3 ranging from 0.50 to 8.0 TeV.

For the pure QCD sample (corresponding to 3 = ∞), the Fχ(mj j) distribution is fitted to a
second order polynomial. For MC samples with finite 3, the distributions are fitted, as a function
of mj j , to the second order polynomial plus a Fermi function, which is a good representation of
the onset curve for CIs. QCD K -factors from section 4 are applied to the QCD-only component
of the spectra before calculating Fχ(mj j). This is done through an approximation that neglects
possible NLO corrections in the interference term between the QCD matrix element and the
CI term. The issue of NLO corrections to contact terms has been independently identified
elsewhere [50].

The Fχ(mj j) event sample is fitted in each mj j bin of the distribution as a function of
1/32, creating a predicted Fχ(mj j) surface as a function of mj j and 3. This surface enables
integration in mj j versus 3 for continuous values of 3. Using this surface, the 95% CL limit on
3 is determined using the log-likelihood ratio defined in equation (5). The resulting 95% CL
quantile is shown in figure 8.

Figure 8 also shows the expected value of Q for various choices of 3 as well as the
expected 95% CL limit and its 68% contour interval.

The observed exclusion limit is found from the point where the 95% quantile (dotted
line) crosses the median value of the distribution of Q values for the QCD prediction (dashed
line). This occurs at 3 = 9.5 TeV. The expected limit is 3 = 5.7 TeV. The observed result is
significantly above the expected limit because the data have fewer centrally produced, high mass
dijet events than expected from QCD alone, as can be seen in figure 7 where the observed values
of Fχ(mj j) fall below the QCD prediction for dijet masses around 1.6 TeV and above 2.2 TeV.
These data are statistically compatible with QCD, as evidenced by the p-value of the binned
likelihood. The expected probability that a limit at least as strong as this would be observed
is ∼8%.

As a cross-check, a Bayesian analysis of Fχ(mj j) has been performed, assuming a prior
that is constant in 1/32. This analysis sets a 95% credibility level of 3 > 6.7 TeV. The expected
limit from this Bayesian analysis is 5.7 TeV, comparable to the CLs+b expected limit. While the
observed limit from CLs+b analysis is significantly higher than the Bayesian results, we have no
basis on which to exclude the CLs+b result a posteriori.

As an additional cross-check, the earlier Fχ analysis of the dN/dχ distributions, coarsely
binned in mj j [6], has been repeated. With the larger data sample and higher threshold on the
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Figure 8. The log-likelihood ratio defined by the Fχ(mj j) distribution versus
the strength of the contact interaction, 3. The contact interaction limit is set by
comparing the measured log-likelihood ratio to that expected for a given value
of 3.

highest mj j bin (2 TeV), the observed and expected limits are 3 > 6.8 TeV and 3 > 5.2 TeV,
respectively. As anticipated, these limits are not as strong as those arising from the Fχ(mj j)

analysis because of the coarser mj j binning.
Finally, an analysis was performed to see whether a more sensitive measure could be

created by setting limits based on all 11 bins of the highest mass (mj j > 2 TeV) χ distribution,
instead of the two intervals used in the Fχ analysis. In this method, for each bin the same
interpolating function used in the Fχ(mj j) analysis is fitted to the bin contents resulting from all
QCD + CI MC samples, yielding the CI onset curve. Limits are set using the same log-likelihood
ratio and pseudo-experiment methods employed in the Fχ(mj j) analysis. The observed 95%
CL limit is 3 > 6.6 TeV. For the current data sample, the expected limit is 5.4 TeV. Since
the expected limit exceeds that from the Fχ analysis, this method shows promise for
future analyses.

6.5. Limits on excited quark production

The Fχ(mj j) distributions are also used to set limits on excited quark production. As described
earlier, the q∗ model depends only on the single parameter, mq∗ . Twelve simulated q∗ mass
(mq∗) samples in the range of 1.5–5.0 TeV are used for the analysis. Based on the assumption
that interference of QCD with excited quark resonances is negligible, q∗ MC samples are scaled
by their cross sections and added to the NLO QCD sample (which has been corrected using
bin-wise K -factors). By analogy with the CI analysis above, a likelihood is constructed by
comparing the expected and observed Fχ(mj j) distributions for each value of mq∗ . We then
form a likelihood ratio with respect to the QCD-only hypothesis and use this to set confidence
intervals on the production of a q∗.
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Figure 9. The 95% CL limits on the excited quark model using the logarithm of
the likelihood ratios obtained from the Fχ(mj j) distribution. The expected 68%
interval for the expected limits are shown by the band.

Figure 9 illustrates the limit setting procedure for the q∗ model. The observed exclusion
limit is found from the point where the 95% quantile (dotted line) crosses the measured value of
Q (dashed line). This occurs for mq∗ = 2.64 TeV. The expected limit, determined from the point
where the QCD prediction (solid line) crosses the 95% quantile, is 2.12 TeV. The observed limit
falls near the 68% (±1σ ) interval of the expected limit. The difference between observed and
expected limits arises from the lower observed Fχ(mj j) values at dijet masses above 2.2 TeV.

This result can be compared to the limits obtained from the dijet resonance analysis, which
sets observed exclusion limits on q∗ masses of 2.15 TeV.

6.6. Limits on new physics for additive signals

For new physics signals that do not interfere significantly with QCD, limit setting may be done
in a more model-independent way. MC signal samples are simulated independently from QCD
samples and, for a given choice of new physics model parameters, the two samples are added to
create a combined MC sample for comparison with data. This is implemented by introducing a
variable θnp defined as

θnp =
σnp ×Anp

σQCD ×AQCD
, (6)

where σ and A are the cross section and acceptance for the given process, and ‘np’ refers to
the new physics process. This variable represents the contribution of signal events in terms of
cross section times acceptance relative to the QCD background. The acceptance factors are
determined by MC calculations.
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Figure 10. The 95% CL upper limits in the Fχ–θnp plane for QBH production
for n = 6 extra dimensions.

6.7. Limits on QBH production

The model of QBH production [39, 40], introduced in section 4 and used to set limits
on these phenomena in the dijet resonance analysis, is again employed here to search for
QBH production using the dijet angular distributions. The θnp-parameter limit-setting method,
sensitive to σQBH ×AQBH, is used in this analysis since the QBH production model does not
include interference with QCD.

MC samples are created corresponding to discrete values of the QBH quantum gravity
mass scale MD ranging from 2.0 to 4.0 TeV and for two to seven extra dimensions (n), and are
used to determine the acceptance AQBH. The acceptance is found to vary from 58 to 89% as MD

is varied from 2.0 to 4.0 TeV, for the case of six extra dimensions. These studies have shown
that the signal acceptance for the model considered here varies only slightly with the model
parameter n. Thus, AQBH determined from a full simulation of the sample with n = 6 is applied
to a limit analysis for other choices of n, which have different cross sections.

The MC events with dijet masses greater than 2.0 TeV are binned in χ with the same
bin boundaries as those used in figure 6. Pseudo-experiments are used to incorporate the JES
uncertainty into the predicted χ distributions. In each χ bin, a linear fit is made for dN/dχ

versus θnp, creating a family of lines that define a dN/dχ surface in θnp versus χ . Scale
and PDF uncertainties, and the uncertainty in the JES correlation between the two jets, are
incorporated into this surface using pseudo-experiments, and a value of Fχ is calculated from
each distribution. The expected distributions of Fχ values are obtained for a range of QBH
hypotheses and QCD processes alone. Additional pseudo-experiments are used to model the
finite statistics of the high-mj j event sample. The 95% CL exclusion limit on Fχ , as a function
of θnp, is derived from the resulting likelihood distributions of Fχ .

Figure 10 illustrates the θnp parameter limit-setting procedure for the case n = 6. The
observed exclusion limit is found from the point where the 95% CL contour (dotted line) crosses
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Figure 11. The cross section × acceptance for QBHs as a function of MD for
two, four and six extra dimensions. The measured and expected limits are shown
in the solid and dashed lines.

the measured value of Fχ = 0.052 (dashed line), which occurs at θnp = 0.020. The expected
limit, determined from the point where the QCD prediction, 0.071 (solid line), crosses the 95%
CL contour, is at 0.075. The observed limit falls just outside the 68% (±1σ ) interval of the
expected limit. These limits on θnp are translated into limits on σ ×A using the QCD cross
section and the acceptance for fully simulated dijets, σQCD ×AQCD = 7.21 pb, resulting in an
observed 95% CL upper limit σQBH ×AQBH < 0.15 pb.

Figure 11 shows the σQBH ×AQBH versus MD curves for two, four and six extra dimensions.
The measured and expected limits for σQBH ×AQBH are plotted as horizontal lines. The crossing
points of these lines with the n versus MD curve yield expected and observed exclusion limits
for the QBH model studied here. The 95% CL lower limit on the quantum gravity mass scale
is 3.69 TeV for six extra dimensions. The expected limit is 3.37 TeV. The limits for all extra
dimensions studied here, n = 2–7, are listed in table 4.

The limit for σQBH ×AQBH may also be applied to any new physics model that satisfies the
following criteria: (1) the Fχ of np signal-only event samples should be roughly independent
of mj j , as is the case for q∗, QBH and CIs; and (2) this Fχ should be close to the value of Fχ

for the current QBH study [0.58]. It is not necessary that the mj j spectrum be similar or that the
QCD + np sample have the same Fχ .

It should also be noted that the results from this θnp parameter analysis are in agreement
with the expected and observed limits obtained for the same QBH model in the dijet resonance
analysis. These two analyses are focusing on complementary variables in the two-dimensional
space of mj j and χ yet arrive at similar limits.

A cross-check of these results is made by extracting a QBH limit using the Fχ(mj j)

distribution for the case of six extra dimensions. Signal and background samples are created
by combining the QBH signals for various MD’s with the QCD background sample corrected
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Table 4. The 95% CL exclusion limits on MD for various choices of extra
dimensions for the QBH model determined by the θnp parameter analysis for
at mj j > 2.0 TeV.

n extra Expected Observed
dimensions limit (TeV) limit (TeV)

2 2.91 3.26
3 3.08 3.41
4 3.20 3.53
5 3.29 3.62
6 3.37 3.69
7 3.43 3.75

by K -factors. The Fχ(mj j) distribution is then fitted in each mj j bin as a function of 1/M2
D

using the same interpolating function employed in Fχ(mj j) CI analysis. The likelihood ratio
construction and limit setting procedures used in the CI analysis are also applied in this study,
resulting in observed and expected 95% CL limits for MD of 3.78 and 3.49 TeV, respectively. A
further cross-check is performed using the 11-bin χ analysis to set limits on a QBH for the case
of six extra dimensions. This study yields an observed 95% CL limit of MD > 3.49 TeV and an
expected limit of MD > 3.36 TeV.

The expected and observed limits resulting from these four studies are summarized with
the results of other analyses in table 5. The strongest expected limits on QBH production come
from the dijet resonance analysis, but the angular analyses are in close agreement, yielding
limits within 0.3 TeV of each other for the QBH hypothesis under study.

7. Conclusion

Dijet mass and angular distributions have been measured by the ATLAS experiment over a large
angular range and spanning dijet masses up to ≈ 3.5 TeV using 36 pb−1 of 7 TeV pp collision
data. The angular distributions are in good agreement with QCD predictions and we find no
evidence for new phenomena. Our analysis, employing both the dijet mass and the dijet angular
distributions, places the most stringent limits on contact interactions, resonances and threshold
phenomena to date.

In table 5, the constraints on specific models of new physics that would contribute to dijet
final states are summarized.

We quote as the primary results the limits using the technique with the most stringent
expected limit. Therefore, we exclude at 95% CL excited quarks with masses in the interval
0.60 < mq∗ < 2.64 TeV, axigluons with masses between 0.60 TeV and 2.10 TeV, and QBHs with
0.75 < MD < 3.67 TeV assuming six extra dimensions.

We also exclude at 95% CL quark contact interactions with a scale 3 < 9.5 TeV. As noted
earlier, the observed limit is significantly above the expected limit of 5.7 TeV for this data
sample, and above the limits from an alternative calculation using Bayesian statistics. However,
we quote this result since the statistical approach is a standard procedure that was chosen
a priori.

New Journal of Physics 13 (2011) 053044 (http://www.njp.org/)

http://www.njp.org/


24

Table 5. The 95% CL lower limits on the masses and energy scales of the models
examined in this study. We have included systematic uncertainties in the upper
limits using the techniques described in the text. The result with the highest
expected limit is shown in boldface and is our quoted result.

95% CL limits (TeV)
Model and analysis strategy Expected Observed

Excited quark q∗

Resonance in mj j 2.07 2.15
Fχ (mj j ) 2.12 2.64

QBH for n = 6
Resonance in mj j 3.64 3.67
Fχ (mj j ) 3.49 3.78
θnp parameter for mj j > 2 TeV 3.37 3.69
11-bin χ distribution for mj j > 2 TeV 3.36 3.49

Axigluon
Resonance in mj j 2.01 2.10

Contact interaction 3

Fχ (mj j ) 5.7 9.5
Fχ for mj j > 2 TeV 5.2 6.8
11-bin χ distribution for mj j > 2 TeV 5.4 6.6

In a number of cases, searches for the same phenomenon have been performed using dijet
mass distributions, dijet angular distributions or both. We are able to set comparable limits
using these complementary techniques, while at the same time searching for evidence of narrow
resonances, threshold effects and enhancements in angular distributions that depend on the dijet
invariant mass.

This combined analysis is a sensitive probe into new physics that is expected to emerge
at the TeV scale. With increased integrated luminosity and continued improvements to analysis
techniques and models, we expect to increase the ATLAS discovery reach for new phenomena
that affect dijet final states.
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