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Abstract. In this paper, we mathematically associate Crypto Cloud Com-
puting, that has become an emerging research area, with Cooperative Game

Theory in the presence of uncertainty. In the sequel, we retrieve data from the
database of Amazon Web Service. The joint view upon Crypto Cloud Com-

puting, Cooperative Game Theory and Uncertainty management is a novel

approach. For this purpose, we construct a cooperative interval game model
and apply this model to Social Networks. Then, we suggest some interval so-

lutions related with the model by proposing a novel elliptic curve public key

encryption scheme over finite fields having the property of semantic security.
The paper ends with concluding words and an outlook to future studies.

1. Introduction. In the last decays, social networks have been a very important
structure for users who are interconnecting through a variety of relations. Some
popular social networking platforms are Facebook, Twitter, YouTube, etc. Social
networks allow users to share information and form connections between one an-
other, helping to improve the internet usability by storing content in cloud storage.
In recent years, these kinds of interactions have been constructed towards the di-
rection of how cryptographic tools can be employed to address a game-theoretical
problem in the field of social networks (see [38]). Researchers think that Crypto
Cloud Computing system can be designed so as to satisfy the needs of many users
of the cloud by using game theory [1, 19, 38]. Cloud providers such as Google App
Engine, Amazon EC2/S3, Microsoft Azure, Eucalyptus and Nimbus offer access
into scalable virtualized resources [19].

On social network websites and cloud services, one of the magnificent concerns is
the security and privacy of personal data. To control these information, being shared
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with other users and social applications is too important to be denied [25]. Cloud
computing security corresponds to the technology which is used for protecting data
and applications of the cloud from threats like disruption of services, unauthorized
access, modification, etc. [1].

In the sequel, proposing the discrete logarithm problem by the help of the group
of points on an elliptic curve defined over a finite field was proposed by Miller [45]
and Koblitz [39] independently, elliptic curve cryptosystems (ECC) have attracted
so much interest from the community of researchers. In fact, the attractability of
ECC is given because of the fact that no subexponential algorithm employed for
solving discrete logarithm problem on the chosen elliptic curve and the underlying
field properly. For this reason, one can benefit from an elliptic curve group which is
smaller in size than in other systems such as RSA and DSA, while having the same
level of security. Involving smaller key sizes result in storage space and bandwidth
savings, and faster implementations. This makes ECC appropriate for constrained
devices like smart cards and cellular phones.

From the advent of elliptic curve cryptosystems, many methods are proposed to
accelerate the arithmetic on elliptic curves. The implication of different coordinate
systems for representation of group elements and the usage of alternate forms of
elliptic curves are two of them. Different coordinate systems such as projective,
jacobian, inverted, etc., have been deeply studied in [11, 30]. Alternate forms of
elliptic curves to the well-known Weierstrass curve can be classified in Edwards
curves [9, 12, 13, 23, 31], Jacobi intersections and Jacobi quartics [14, 27, 31, 32,
42], Hessian curves [10, 26, 29, 34, 52], Huff curves [20, 22, 33, 35, 48, 55], and
their variants. The group structure of these curves has been already studied in
[11] because of having some nice properties such as resistance to the side-channel
attacks. Applying the unified addition formula, meaning that point addition and
point doubling have the same formula, provides a countermeasure to these attacks.
In our work, we propose a novel public key scheme by using elliptic curves over
finite fields which fulfills the property of semantic security. Furthermore, the cost
of the proposed scheme varies depending on the models of elliptic curves and the
type of coordinate systems.

Forming a coalition is very important and necessary for providers to prevent from
low security which induces a risk for its customers [43]. This leads us to Cooperative
Game Theory, where the players can possibly evoke extra gains or save costs by
working together, and to share them in a fair way. One way is to study general
properties of games arising from a particular type of an Operational Research (OR)
problem and to apply it to a suitable game-theoretical solution. Another way is to
consider a suitable allocation rule [16].

In our model, we follow an algorithm to create a minimum cost spanning tree
(mcst), which is an OR situation related with a graph. After constructing an mcst,
an allocation problem has to be found for minimizing total costs. This allocation
problem is proposed by Claus and Kleitman [21]. Moreover, Bird [15] took into
account the problem by using game theory and proposed an allocation rule, named
the Bird rule. Furthermore, we consider the Shapley value [50], which is used in
most of the models in cooperative game theory [2].

On the other hand, in many real-life situations, uncertainty exists and influences
the values of the coalitions. Hence, cooperative game theory has been extended
to different models providing decision making in situations which are characterized
by including uncertainty implied. In these models, the characteristic functions are
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not crisp like in the classical case. The outcome of cooperation includes uncer-
tainty in different forms such as stochastic uncertainty, fuzzy uncertainty, interval
uncertainty, ellipsoidal uncertainty, grey uncertainty, etc. [5, 28, 44, 53]. Coopera-
tive interval games and related interval solution concepts are suitable models which
give an aid to decision making in collaborative situations under uncertainty [4, 18].
The model of cooperative interval games supposes that for each coalition a lower
and an upper bound of the outcome of cooperation can be forecasted, without any
probabilistic assumptions [17].

In a majority of the real-life situations, players who are considering cooperation
sign a contract without knowing the payoffs of the coalitions. But, with certainty
they know their lower and upper bounds. These kinds of contracts are made to
specify how interval uncertainty regarding the coalition values is incorporated in
the allocation of the worth of the grand coalition before its uncertainty is resolved,
and how the realization of payoff for the grand coalition is eventually allocated
among the players [3]. An important issue which the players have to agree upon in
order to construct cooperation in the grand coalition is how to transform an interval
allocation into a crisp payoff when the uncertainty regarding the grand coalition’s
value is removed. A technique to transform an interval allocation into a payoff
vector establishes a basic tool of contracts which players have to sign when they
cannot assess with certainty the coalition payoffs [17].

In [38], the theory of Crypto-Cloud Computing with an efficient encryption al-
gorithm under XTR by bringing together main topics of Cloud Computing, Coop-
erative Game Theory and Cryptology is introduced. The most interesting property
of this work is the synergy achieved between cryptographic solutions and the co-
operative game theory world in financial problems of Cloud Computing application
areas. Uncertainty is a daily basis of real life. In many cases, we can not know
the crisp values of the coalitions’ values. Hence, we construct a model with interval
costs.

In this paper, inspired by [38], we implement social networks to Crypto-Cloud
Computing by constructing a cooperative game model. Here, a main novelty is to
associate Crypto Cloud Computing with Cooperative Game Theory in the presence
of uncertainty. In the sequel, we build the connection by retrieving data from
the database of Amazon Web Service. Furthermore, we construct a cooperative
interval game model and apply this model to Social Networks with this information.
Moreover, we suggest some interval solutions related with the model by proposing
a novel elliptic curve public key encryption scheme over finite fields having the
property of semantic security.

The rest of the paper continues as follows. First, we give some preliminaries from
cooperative interval games, graph theory and related solution concepts in Section
2. Section 3 introduces the elliptic curves over finite fields and proposes a novel
encryption scheme that the security depends on the elliptic curve discrete logarithm
problem and elliptic curve Diffie-Hellman problem. Information about Amazon Web
Service and a cooperative interval game application on Social Networks with some
interval solutions are stated in Section 4. Section 5 concludes with some final
remarks and recommendations about future research.

2. Preliminaries. In this section, mathematical background of interval calculus,
game theory and graph theory is provided.

Let I, J ∈ I(R) with I =
[
I, I
]
, J =

[
J, J

]
be two intervals and α ∈ R+. Here,

addition is defined by I + J =
[
I + J, I + J

]
, and positive scalar multiplication is
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given by αI =
[
αI, αI

]
. The partial subtraction operator is written as I−J , only if

|I| ≥ |J |, where |I| = I − I. It means that I − J =
[
I, I
]
−
[
J, J

]
=
[
I − J, I − J

]
.

A cooperative interval game is an ordered pair < N, c >, where N = {1, . . . , n}
stands for the set of players, c : 2N → I(R) is the characteristic function such
that c(∅) = [0, 0]. Here, I(R) is the set of all compact intervals in R. The worth
of a coalition S is defined by c(S) = [c(S), c(S)]. With IGN we denote the set
of all cooperative interval games with player set N . I(R)N denotes the set of all
n-dimensional intervals. Some coalition values c(S) may be degenerate intervals,
defined by c(S) = c(S) [18].

A minimum interval cost spanning tree situation (micst) is a situation, where
N = {1, 2, . . . , n} is the set of players willing to be connected as cheap as possible
to a source denoted by 0, based on an interval-valued cost function [46]. In an micst
situation, for each player i ∈ N the cost of the first edge on the unique path from
player i to the player source constructs the Bird’s tree allocation denoted by βR (T )
[15, 16].

Consider a tuple given by < N, {0}, A, ĉ >, where N = {1, ..., n} represents the
set of players, 〈N ∪ {0}, A〉 is a rooted directed graph with N ∪ {0} as a set of
vertices, A ⊂ N × (N ∪ {0}) as a set of arcs, and where 0 is the root. Furthermore,
ĉ : A → I (R+) is a nonnegative interval function defined on the set of arcs, and

b̂ (k) of k ∈ N is the possible best connection (for details see [24, 54]).
An interval solution concept on IGN is a map assigning to each interval game

c ∈ IGN a set of n-dimensional vectors whose components belong to I(R).
In this investigation, we use the interval Bird rule as a solution concept. The

interval Bird allocation (cf. [4]) is

IB(N, {0} , A, ĉ) = (IB1, IB2, ..., IBn) ∈ I (R)
N

with
IBk(N, {0} , A, ĉ) = (ŵ(k, b̂ (k)), k = 1, 2, ..., n.

A game < N, c > is named as size monotonic if < N, |c| > is monotonic. Here,
SMIGN stands for the class of size monotonic interval games with player set N .
Moreover, Π(N) is the set of permutations σ : N → N . Let be given some c ∈
SMIGN . The interval marginal operator corresponding to σ and the interval mar-
ginal vector of c with respect to σ are notated throughmσ andmσ(c), respectively. If
we denote the set of predecessors of i in σ by Pσ(i) =

{
r ∈ N |σ−1(r) < σ−1(i)

}
, then

mσ
σ(k)(c) = c(Pσ(σ(k))∪{σ(k)})−c(Pσ(σ(k))), or mσ

i (c) = c(Pσ(i)∪{i})−c(Pσ(i)).

Here, σ−1(i) names the entrance number of player i [3].
In this study, we also involve the interval Shapley value (cf. [18]) as a solu-

tion concept. The interval Shapley value Φ : SMIGN → I(R)N is defined as the
combination

Φ(c) =
1

n!

∑
σ∈Π(N)

mσ(c), for each c ∈ SMIGN .

Now, we deal with the cooperation under interval uncertainty inside of the set of
N players. The players use an interval solution concept named as Ψ, related with
the associated cooperative interval game < N, c >. Here, an interval allocation
Ψ(c) = (J1, . . . , Jn) ∈ I(R)N guarantees for each player i ∈ N a payoff eventually
within the interval Ji = [J i, J i] if the value of the grand coalition c(N) is known.
Obviously, c(N) =

∑
i∈N J i and c(N) =

∑
i∈N J i. For each i ∈ N the interval

[J i, J i] can be seen as the interval claim of i on the realization R ∈ c(N) of the
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payoff for the grand coalition N (c(N) ≤ R ≤ c(N)). We determine the payoffs as
xi ∈ [J i, J i], i ∈ N , such that

∑
i∈N xi = R. The amount R to be divided between

the players is smaller than
∑
i∈N J i implying the bankruptcy rules. These rules are

appropriate candidates for transforming an interval allocation (J1, . . . , Jn) into a
payoff vector (x1, . . . , xn) ∈ RN [17].

A bankruptcy situation with a set of players N means a pair (E, d), where E ≥
0 is the allocation to be divided and d ∈ RN+ is the vector of claims such that∑
i∈N di ≥ E. In this paper, we use a bankruptcy rule, namely the proportional

rule (PROP ). The rule PROP is defined by PROPi(E, d) = di∑
i∈N di

E for each

bankruptcy problem (E, d) and all i ∈ N .

3. Elliptic Curves. Cryptography is the most important tool to enhance security
of cloud computing, which is possible to make by using symmetric key or public
key algorithms. Here, we suggest a novel public key scheme by incorporating the
more common Weierstrass curve and the alternate models of elliptic curves. This
scheme essentially utilizes an ephemeral-static Elliptic Curve Diffie-Hellman key
exchange algorithm. The security of the proposed scheme, which also fulfills the
property of semantic security, depends on the difficulty of solving Elliptic Curve
Discrete Logarithm Problem (ECDLP) and Elliptic Curve Diffie-Hellman Problem
(ECDHP).

3.1. Introduction to elliptic curves over finite fields. Let Fq be a finite field

with q = pn. Then the algebraic closure of Fq is given by Fq =
⋃
i≥1 Fqi . An

elliptic curve over Fq with characteristic p > 3 is the set of solutions in Fq × Fq of
a Weierstrass curve given by

EW : y2 = x3 + ax+ b, (1)

with regard to the coefficients a, b ∈ Fq and ∆ = −16(4a3 + 27b2) 6= 0 in Fq.
The solution set of EW over Fq defines an additive group, extended by the point
at infinity (identity element of EW ) denoted by ∞ [40]. The explicit formula in
affine coordinates for the addition of two points in the curve EW defined over
Fq of characteristic p > 3 is given by applying the chord-and-tangent rule. Let
P = (x1, y1) and Q = (x2, y2) be the points on EW with P,Q 6= ∞ and Q 6= −P .
Then, we briefly give the addition and doubling formula below:

• Addition: If P 6= Q, then P +Q = (x3, y3), where
x3 = (

y2 − y1

x2 − x1
)2 − x1 − x2,

y3 = (
y2 − y1

x2 − x1
)(x1 − x3)− y1.

• Doubling: If P = Q, then 2P = (x3, y3), where
x3 = (

3x2
1 + a

2y1
)2 − 2x1,

y3 = (
3x2

1 + a

2y1
)(x1 − x3)− y1.

In an analogous way, Weierstrass form of the curves over Fq with characteristic
p = 2, 3 can be simplified by a similar formula as above (see [51, Appendix A]).
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It is possible to convert the aforementioned point multiplication formula to the
different coordinate systems: projective, Jacobian, mixed, etc. [30]. These coor-
dinate systems do not involve field inversions; thus, employing them supplies effi-
ciency. For instance, by applying the method of homogenization with x = X/Z and
y = Y/Z for Z 6= 0 relation to (1), we have the subsequent homogeneous equation
in projective coordinates:

EW,h : Y 2Z = X3 + aXZ2 + bZ3, (2)

where a, b ∈ Fq. The curve EW,h has a unique point with coordinate Z equal to 0,
namely (0 : 1 : 0), which has been called previously as the point at infinity ∞. On
the other side, for a more efficient computation on elliptic curves we can use the
alternate forms of elliptic curves, such as Edwards curves, Jacobi intersections and
Jacobi quartics, Hessian curves, Huff curves and their variants. The group structure
of these curves has already been surveyed in [8, 11]. They also permit the unified
addition formula, meaning that the point addition formula can be employed for the
doublings; this allows for a resisting against the side-channel attacks.

3.2. Proposed scheme. Now, we propose a novel Elliptic Curve ElGamal based
encryption scheme, inspired by the works in [7, 37, 38].

Scheme 1. Let E be any models of elliptic curve in affine coordinates over
Fq with characteristic p > 3 and P be an agreed-upon and publicly known point
of prime order n on the curve E. Let A and B be two parties, which correspond
to Alice and Bob, respectively. B randomly selects a static private key kB in the
interval [1, n− 1] and he computes his static public key Q = kBP .

Public Parameters: P , Q.

Private Parameters: kA, kB.

Encryption: A encrypts a message m ∈ Fq as follows:

i) A randomly selects an ephemeral private key kA in the interval [1, n − 1].
Then, she computes her ephemeral public key kAP .

ii) A computes kAkBP = (x1, y1) using the static public key Q = kBP of B.

iii) A calculates c = m+ (x1 + y1) ∈ Fq. Then, she sends the ciphertext c along
with her ephemeral public key kAP .

Decryption: B recovers the message m ∈ Fq as follows:

i) B computes kAkBP = (x1, y1), using A’s ephemeral public key kAP .
ii) B calculates m = c− (x1 + y1) ∈ Fq.

3.3. Computational cost of scheme 1. The novel scheme does not require any
multiplication in Fq, because of the encryption and decryption process. The com-
putational costs of novel scheme just depend on the point multiplication of elliptic
curves. In total, we have computations of 3 point multiplication; 2 point multipli-
cation for the encryption part, 1 point multiplication for the decryption part. In
Table 1, the detailed computational costs of the point multiplication on alternate
forms of elliptic curves are stated; they are more deeply analyzed in [11]. There-
fore, the costs of proposed scheme vary depending on the forms of elliptic curves and
the coordinate systems. Here, M, S and D enumerate the cost of multiplication,
squaring and multiplication by a constant in Fq, respectively.
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Table 1. Cost of arithmetic on alternate forms of elliptic curves.

Form of elliptic curves Coordinates Unified addition

Weierstrass Projective 11M+5S+1D

Edwards [23] Projective 10M+1S+1D

Projective 10M+1S+2D

Twisted Edwards [9, 31] Inverted 9M+1S+2D

Extended 9M+2D

Jacobi Intersections [14] Projective 13M+2S+1D

Twisted Jacobi Intersections [27] Projective 13M+2S+5D

Extended Jacobi Quartics [32] Jacobian 10M+3S+1D

Extended Projective 8M+3S+2D

Hessian Curves [34] Projective 12M

Generalized Hessian Curves [26] Projective 12M+1D

Twisted Hessian Curves [10] Projective 11M

Huff Curves [35] Projective 11M

Generalized Huff Curves [55] Projective 11M+3D

New Generalized Huff Curves [20] Projective 12M+4D

Extended Huff Curves [48] Projective 10M

3.4. Security analysis of scheme 1. First, we raise the subsequent well-known
setting and problems about the elliptic curves.

Definition 3.1. Given P,Q ∈ E, the problem of finding an integer a such that
Q = aP is called the Elliptic Curve Discrete Logarithm Problem (ECDLP).

Definition 3.2. Given P , aP and bP , the problem of finding abP is called the
Elliptic Curve Diffie-Hellman Problem (ECDHP).

It is evident that the proposed scheme is tractable if one can solve both ECDLP
and ECDHP. On the other hand, the security of the scheme depends on identifying
the pairwise point kAkBP = (x1, y1) from x1 + y1 ∈ Fq. In [47], it is proved that

there exist q−1
2 ways to split x1 + y1 ∈ Fq. However, as far as we survey, there is

no methodology known yet to identify the pairwise point kAkBP = (x1, y1) among
them.

Lemma 3.3. Scheme 1 is semantically secure.

Proof. Suppose that m1 ∈ Fq and m2 ∈ Fq are two known messages from the enemy
E , and E sends these two messages to A for encryption. A encrypts the message
m1 or m2 using kAkBP = (x1, y1) such that c = m + (x1 + y1), and she sends the
ciphertext c to the enemy E . Hence, by using c, m1, m2 and public parameters, E
can receive c−m1 = d1 + (x1 + y1) (resp. c−m2 = d2 + (x1 + y1)) by substracting
m1 (resp. m2) from c, where d1 = m − m1 (resp. d2 = m − m2). This fact
implies that computing d1 (resp. d2) is equivalent with identifying the pairwise
point kAkBP = (x1, y1) from x1 + y1, which is not possible. Consequently, E is
not able to find whether the ciphertext c is the encryption of m1 or m2 with a
probability non-negligibly larger than 1/2.
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4. An application: The cooperative interval game model in social net-
works.

4.1. Amazon web services. Amazon Web Services (AWS) are a scable cloud-
computing platform constructed for high availability and dependability that pro-
vides tools enabling us to run a wide range of applications. In this study, we utilize
the subsequently named web services as follows: Amazon Elastic Compute Control
(Amazon EC2) is a web service providing a resizable computational capacity within
the cloud. It is designed to make web-scale cloud computing easier for develop-
ers. Amazon S3 is storage for the Internet and it is constructed to make web-scale
computing easier for developers. Amazon Route 53 is a highly available and scable
DNS (Domain Name Server) service, which is constructed to give developers a cost
effective way to route users for Internet applications. Amazon CloudFront is a web
service for content delivery, which delivers content using a global network of edge
locations and works seamlessly with Amazon S3, that permanently stores the orig-
inal versions of files. Amazon RDS is a web service which facilitates it to set up,
operate, and scale a relational database in the cloud. Amazon DynamoDB is a high
performance non-relational database service, which is easy to set up, operate, and
scale. It is created to handle basic problems of database management, performance,
scalability, and reliability. It also provides a predictable high performance and a
low latency at scale [6].

4.2. The model. In our study, it is presumed that we have 3 new social network
companies launching social web applications. These websites are three-tier web
applications, leveraging open-source content management and publishing soft wares,
store and serve large amounts of static media content through content delivery
networks, and use relational databases to deliver a personalized user experience
to their visitors. These three companies pursue common objectives in terms of
work safety. The data of website users are encrypted in a cryptology system; then
the companies keep their own user’s data in each others’ data storage. In this
way, the companies aim to demonstrate a reliable network configuration. However,
the companies do not have any historical data or experience in launching such an
application. This “enterprise” has the potential to bring in a lot of advertising
revenue, but they have no idea whether the websites be useful.

To support the websites, each company has got 1 Load Balancer, 2 Web Servers,
2 Application Servers, and 6 High Availability Database Servers. In the two-
coalitions, however, the companies use 1 Web Server, 1 Application Server and
4 High Availability Database Servers. In the grand coalition, they use 6 High
Availability Database Servers. The type of these servers in all the coalitions are
Linux on m4.4xlarge. The properties of Social Network Companies (SNC) and some
additional storage for cloud computing services are stated in Table 2.

An illustration of our model’s Amazon Cloud Services can be seen in Figure 1.
Here, cost accounting and pricing mechanisms for social network firms are re-

ceived. The cryptology system as a source locates in the private cloud for safety
reasons. The social network companies are placed in a public cloud; herewith, the
model runs on a hybrid cloud. The cryptology part of the model refers to Platform
as a Service (PaaS) (for details see [38]).

The companies strive to move data from an unencrypted volume to an encrypted
volume. They create a snapshot of the unencrypted volume, then they create an
unencrypted copy of that snapshot and, finally, restore the encrypted snapshot to



CRYPTO CLOUD COMPUTING BY COOPERATIVE GAME THEORY 1935

Table 2. The parameters of companies.

PARAMETERS SNC1 SNC2 SNC3 SNC1-SNC2 SNC1-SNC3 SNC2-SNC3 SNC1-SNC2-SNC3

Load Balancer 500 500 3000 1000 3500 3500 4000

(GB/Month) for EC2

Web Server 1/2 1/2 1/2 1/4 1/4 1/4 1/6

(Year/Piece) for EC2

App Server 1/2 1/2 1/2 1/4 1/4 1/4 1/6

(Year/Piece) for EC2

Storage: EBS Volume 6/2500 6/3000 6/8000 12/5500 12/10500 12/11000 18/13500

(Volume/GB) for EC2

Storage 10 100 200 110 210 300 310

(TB) for S3

Data Transfer Out 200 900 6400 1100 6600 7300 7700

(GB/Month) for EC2

Data Transfer In (GB/Month) 1000 500 10000 1500 11000 10500 11500

for EC2

Data Transfer Out 1000 3000 10000 4000 11000 13000 11000

(GB/Month) for CloudFront

Data Storage 30 200 350 230 380 550 380

(TB) for Dynoma

Data Transfer Out 200 250 1500 450 17000 1750 1700

(GB/Month) for Dynoma

Figure 1. The Amazon Cloud Service properties of one social
network company.

a new volume (the other companies’ data store), which will also be encrypted. The
model with cryptology system works for this target and creates cryptographic costs
to the companies.

There is uncertainty about the realization of a snapshot creation, about the
process in one day, and the cryptographic cost is taken as a degenerate internal. We
assume that there exists a standard cost in cryptography (see Section 3). In order to
work on the ambiguity levels of 0% and 100%, respectively, we use the cooperative
game under interval uncertainty. The total costs of Amazon Web Services for each
company and each coalitions can be found in Table 3.
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Table 3. The total costs.

Amazon Web Services Total Cost of Company ($) ([0%, 100%])

SNC1 [13063.02, 35506.80]

SNC2 [64401.07, 91333.57]

SNC3 [116776.67, 188596.67]

SNC1-SNC2 [41587.70, 81986.54]

SNC1-SNC3 [141710.26, 330237.82]

SNC2-SNC3 [193574.13, 391079.13]

SNC1-SNC2-SNC3 [168389.68, 531978.52]

In the model, ψ =
[
ψ,ψ

]
, being the cost of the required proposed encryp-

tion algorithm (Scheme 1) is added to the costs constructed from the social net-
work companies and the cryptology system. Then, the following costs are re-
spectively obtained:

[
13063.02 + ψ, 35506.80 + ψ

]
,
[
64401.07 + ψ, 91333.57 + ψ

]
,[

116776.67 + ψ, 188596.67 + ψ
]
. Hence, the total costs are calculated from storing

the encrypted information of other social network companies’ data stores. Figure 2
illustrates the model with closer details.

Figure 2. The crypto-computing model of the study.

4.3. The interval solutions. In our model, social network cloud services are con-
structed in a cooperative manner. In the sequel, the costs are allocated by using
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the interval Bird rule and the interval Shapley value. We note that ψ = [ψ,ψ] is
our encryption cost. First, we use the Bird rule (see Figure 2). Then, the optimal
solution is

[
196360.98 + ψ, 447731.16 + ψ

]
. This yields us the Bird allocation βR(Γ)

as follows:

βR(Γ) =
(
[13063.02 + ψ, 35506.80 + ψ], [41587.70, 81986.54],

[141710.26, 330237.82]
)
.

Table 4 illustrates the interval costs of the coalitions.

Table 4. The interval costs of the coalitions.

c ({∅}) = [0, 0]

c ({1}) =
[
13063.02 + ψ, 35506.80 + ψ

]
c ({2}) =

[
64401.07 + ψ, 91333.57 + ψ

]
c ({3}) =

[
116776.67 + ψ, 188596.67 + ψ

]
c ({1, 2}) =

[
54650.72 + ψ, 117493.34 + ψ

]
c ({1, 3}) =

[
154773.28 + ψ, 365744.62 + ψ

]
c ({2, 3}) =

[
257975.2 + ψ, 482412.7 + ψ

]
c ({1, 2, 3}) =

[
196360.98 + ψ, 447731.16 + ψ

]
Second, we calculate the interval Shapley value Φ(c) of our game as follows:

Φ(c) =
(
[−11476.02 + ψ/3, 34159.71 + ψ/3],

[65793.96 + ψ/3, 120407.13 + ψ/3],

[142043.04 + ψ/3, 293164.32 + ψ/3]
)
.

4.4. The PROP rule. In this section, we suggest a one-point solution by the help
of our interval solutions. Here, we apply the proportional rule (PROP) to get a
one-point solution from an interval solution (for details see [17]).

First, we employ the interval Bird rule and assume that the realizations of c(N)
are R1 = 200000 + ψ,R2 = 250000 + ψ, R3 = 450000 + ψ.

Now, we calculate the individual crisp allocations. Then, we distribute the
amount Ei, i = 1, 2, 3, among three social network companies as follows:

E1 = R1 − c(N) = 3639.02,

E2 = R2 − c(N) = 53639.02,

E3 = R3 − c(N) = 253639.02,

The claims di, i = 1, 2, 3, of each company on the realizations R1, R2, R3 are as
follows:

d1 = J1 − J1 = 22443.78,

d2 = J2 − J2 = 40398.84,

d3 = J3 − J3 = 188527.56.

We note that the total claim is 251370.18. Table 5 illustrates the one-point PROP
solution by using interval Bird rule.

Second, we apply the interval Shapley rule.
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Table 5. The one-point solutions by using PROP for the interval
Bird rule.

f d

PROP (E1, d) (324.91, 584.83, 2729.26)

PROP (E2, d) (4789.20, 8620.57, 40229.25)

PROP (E3, d) (22646.36, 40763.47, 190229.19)

The claims di, i = 1, 2, 3, of each company on the realizations R1, R2, R3 are as
follows:

d1 = J1 − J1 = 45635.73,

d2 = J2 − J2 = 54613.17,

d3 = J3 − J3 = 151121.28.

We note that the total claim is 251370.18. Table 6 illustrates the one-point PROP
solution by using interval Shapley rule.

Table 6. The one-point solutions by using PROP for the interval
Shapley rule.

f d

PROP (E1, d) (660.66, 790.62, 2187.74)

PROP (E2, d) (9738.05, 11653.72, 32247.25)

PROP (E3, d) (46047.64, 55106.10, 152485.28)

5. Conclusion. Recently, Crypto Cloud Computing has become an interesting re-
search area with many technical, security, commercial and financial aspects, goals
and consequences. Cloud computing comes along with its share of challenges, in
terms of security, data privacy, compliance, availability, lack of standards, etc.
These challenges are highlighted more in regulated and security-sensitive environ-
ments, such as Social Networks. Considering the cooperative functionality of Crypto
Cloud Computing, the use of game theory in that area has been understood to be-
come very beneficial [1, 19, 38].

Uncertainty is present in almost every real-world situation, it is influencing and
questioning our decisions. What in the past is regarded as a matter left alone to the
soft human and social sciences, now enters core areas of hard research, computation
and calibration. This has been transforming the view on uncertainty, supported
by approaches such as uncertainty quantization, grey numbers, robust counterparts
of optimization and of stochastic optimal control, e.g. related to stochastic hybrid
systems with jumps [36, 41, 49, 53].

In this study, we construct a model by using cooperative game theory under
uncertainty, which associates to Crypto Cloud Computing. In the sequel, we pro-
pose a novel encryption algorithm by using elliptic curves over finite fields having
the property of semantic security. Hence, we retrieve data from the database of
Amazon Web Service. The most interesting and important property of our work is
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combining the cryptography and cooperative game theory in social networks used
in cloud-computing applications. By implementing the cryptographic solution to
the cooperative interval games, we both must be behind from cooperative game and
cryptography sides. Before closing, we note that our study deals with cooperative
interval games without any probability included. However, in future research and
application, our model and related solution concepts can be applied to the different
forms such as stochastic, fuzzy or grey uncertainty [44, 49, 53].

Acknowledgments. We thank the anonymous referees for their detailed and very
helpful comments. Furthermore, we express our gratitude to Editor-in-Chief, Pro-
fessor Kok Lay Teo, and Associate Editor of the paper, Professor Stefan Wolfgang
Pickl.

REFERENCES

[1] S. P. Ahuja and B. Moore, A Survey of Cloud Computing and Social Networks, Network and
Communication Technologies, 2 (2013), 11–16.

[2] S. Z. Alparslan Gök, R. Branzei and S. Tijs, The interval Shapley value: an axiomatization,
Central European Journal of Operations Research, 18 (2010), 131–140.

[3] S. Z. Alparslan Gök, R. Branzei and S. Tijs, Convex interval games, Journal of Applied

Mathematics and Decision Sciences, 2009 (2009), Article ID 342089, 14 pages.
[4] S. Z. Alparslan Gök, O. Palancıand M. O. Olgun, Cooperative interval games: Mountain sit-

uations with interval data, Journal of Computational and Applied Mathematics, 259 (2014),

622–632.
[5] S. Z. Alparslan Gök and G.-W. Weber, On dominance core and stable sets for cooperative

ellipsoidal games, Optimization, 62 (2013), 1297–1308.

[6] Amazon Web Services, Available from: http://calculator.s3.amazonaws.com/index.html.
[7] M. Ashraf and B. B. Kırlar, Message transmission for GH- public key cryptosystem, Journal

of Computational and Applied Mathematics, 259 (2014), 578–585.

[8] M. Ashraf and B. B. Kırlar, On the Alternate Models of Elliptic Curves, International Journal
of Information Security Science, 1 (2012), 49–66.

[9] D. Bernstein, P. Birkner, M. Joye, T. Lange and C. Peters, Twisted Edwards curves, Progress
in Cryptology - Africacrypt 2008, Lecture Notes in Computer Science, 5023 (2008), Springer,

389–405.

[10] D. Bernstein, C. Chuengsatiansup, D. Kohel and T. Lange, Twisted Hessian curves, Progress
in CryptologyLATINCRYPT 2015, 269–294, Lecture Notes in Comput. Sci., 9230, Springer,

Cham, 2015. Available from https://eprint.iacr.org/2015/781.pdf.

[11] D. Bernstein and T. Lange, Explicit Formulas Database, Available from http://www.

hyperelliptic.org/EFD.
[12] D. Bernstein and T. Lange, Faster addition and doubling on elliptic curves, Progress in

Cryptology - Asiacrypt 2007, Lecture Notes in Computer Science, 4833 (2007), Springer,
29–50.

[13] D. Bernstein, T. Lange and R. R. Farashahi, Binary Edwards Curves, Cryptographic Hardware

and Embedded Systems - CHES 2008, Lecture Notes in Computer Science, 5154 (2008),
Springer, 244–265.

[14] O. Billet and M. Joye, The Jacobi model of an elliptic curve and side-channel analysis, AAECC

2003, Lecture Notes in Computer Science, 2643 (2003), Springer-Verlag, 34–42.
[15] C. G. Bird, On cost allocation for a spanning tree: A game theoretic approach, Networks, 6

(1976), 335–350.
[16] P. Borm, H. Hamers and R. Hendrickx, Operations research games: A survey, TOP , 9 (2001),

139–216.
[17] R. Branzei, S. Tijs and S. Z. Alparslan Gök, How to handle interval solutions for coopera-

tive interval games, International Journal of Uncertainty, Fuzziness and Knowledge-Based
Systems, 18 (2010), 123–132.

[18] R. Branzei, S. Z. Alparslan Gök and O. Branzei, Cooperative games under interval uncer-
tainty: on the convexity of the interval undominated cores, Central European Journal of
Operations Research, 19 (2011), 523–532.

http://dx.doi.org/10.5539/nct.v2n2p11
http://www.ams.org/mathscinet-getitem?mr=MR2658685&return=pdf
http://dx.doi.org/10.1007/s10100-009-0096-0
http://www.ams.org/mathscinet-getitem?mr=MR2530019&return=pdf
http://dx.doi.org/10.1155/2009/342089
http://www.ams.org/mathscinet-getitem?mr=MR3132827&return=pdf
http://dx.doi.org/10.1016/j.cam.2013.01.021
http://dx.doi.org/10.1016/j.cam.2013.01.021
http://www.ams.org/mathscinet-getitem?mr=MR3175547&return=pdf
http://dx.doi.org/10.1080/02331934.2013.793327
http://dx.doi.org/10.1080/02331934.2013.793327
http://calculator.s3.amazonaws.com/index.html
http://www.ams.org/mathscinet-getitem?mr=MR3132823&return=pdf
http://dx.doi.org/10.1016/j.cam.2013.10.005
http://www.ams.org/mathscinet-getitem?mr=MR2482341&return=pdf
http://dx.doi.org/10.1007/978-3-540-68164-9_26
http://www.ams.org/mathscinet-getitem?mr=MR3447379&return=pdf
http://dx.doi.org/10.1007/978-3-319-22174-8_15
https://eprint.iacr.org/2015/781.pdf
http://www.hyperelliptic.org/EFD
http://www.hyperelliptic.org/EFD
http://www.ams.org/mathscinet-getitem?mr=MR2565722&return=pdf
http://dx.doi.org/10.1007/978-3-540-76900-2_3
http://dx.doi.org/10.1007/978-3-540-85053-3_16
http://www.ams.org/mathscinet-getitem?mr=MR2042410&return=pdf
http://dx.doi.org/10.1007/3-540-44828-4_5
http://www.ams.org/mathscinet-getitem?mr=MR0441390&return=pdf
http://dx.doi.org/10.1002/net.3230060404
http://www.ams.org/mathscinet-getitem?mr=MR1878668&return=pdf
http://dx.doi.org/10.1007/BF02579075
http://www.ams.org/mathscinet-getitem?mr=MR2650995&return=pdf
http://dx.doi.org/10.1142/S0218488510006441
http://dx.doi.org/10.1142/S0218488510006441
http://www.ams.org/mathscinet-getitem?mr=MR2847555&return=pdf
http://dx.doi.org/10.1007/s10100-010-0141-z
http://dx.doi.org/10.1007/s10100-010-0141-z
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