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Abstract. Boundary value problems on large periodic networks arise in many
applications such as soil mechanics in geophysics or the analysis of photonic

crystals in nanotechnology. As a model example, singularly perturbed elliptic

differential equations of second order are addressed. Typically, the length of
periodicity is very small compared to the size of the covered region. The overall

complexity of the networks raises serious problems on the computational side.

The high density of the graph, the huge number of edges and vertices and highly
oscillating coefficients necessitate solution schemes, where even a numerical ap-

proximation is no longer feasible. Realizing that such a system depends on two

spatial scales - global scale (full domain) and local scale (microstructure) - a
two-scale asymptotic analysis for network differential equations is applied. The

limit process leads to a homogenized model on the full domain. The homoge-
nized coefficients cover the micro-oscillations and the topology of the periodic

network and characterize the effective behaviour. The approximate model’s

quality is guaranteed by error estimates. Furthermore, singularly perturbed
microscopic models with a decreasing diffusion part and transport-dominant

problems are discussed. The effectiveness of the two-scale limit analysis is

demonstrated by numerical examples of diffusion-advection-reaction problems
on large periodic grids.
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1. Introduction. This study is motivated by our work on OR-based models on
groundmotion prediction [32] as well as management and monitoring of ground-
water contamination. These applications are concerned with groundwater system
optimization, the assessment of environmental risks, localization and costs of wells
and pumping systems as well as cost-effective policies for remediation [9]. Gener-
ally, the flow and transport of contaminants through the soil can be determined by
so-called capillary models. The underlying domain of such models is given by a peri-
odic network that represents the capillary system. In our studies, we are concerned
with diffusion-advection-reaction models that describe the distribution of certain
substances like chemicals and radioactive tracers in the soil. Our experience shows
that the numerical solution of the differential equations on the underlying capillary
networks is very challenging and time-consuming.

In particular, we are interested in very large regions and comparably small pe-
riodic networks with a huge number of edges and an extremely large number of
singularities - the intermediate nodes of the network. This high number of branches
and the transmission conditions at the singularities of the network raise serious
problems on the numerical side. Even artificial examples on very small regions can-
not be solved in a reasonable time. Since the determination of the distribution of
contaminants is an important part of our studies on groundwater contamination, we
are interested in approximate models, that can be easily solved and lead to excellent
approximations of the solution of the network differential equation.

Capillary models in geophysics, oil exploration and soil mechanics usually rely on
porous media approaches [3, 8, 16]. The effective flow and transport through the soil
are modeled by boundary value problems on graphs where the three-dimensional pore
structure is represented by a periodic network of capillaries. Typically, the branches
of the network have a positive thickness and the corresponding approaches can be
summarized as models on thin domains [26, 10] and fattened graphs [5]. Various au-
thors from different disciplines addressed boundary value problems on such periodic
network structures. For example, diffusion/adsorption/advection macrotransport in
soils are discussed by Auriault and Lewandoska [2].

A problem from geophysics is addressed in Arbogast et al., where Darcy flows in
naturally fractured petroleum reservoirs are discussed [1]. Ng and Mei present a for-
mal derivation of the macroscale effective equations of flow and chemical transport
in context of ground water contamination by homogenization theory. They obtain
the macroscale equations governing the convective diffusion of a volatile organic
compound [30].

A natural extension of these approaches are differential equations on one-dimen-
sional manifolds (see Fig. 1). The thin domain, that usually has the same spatial
dimension as the overall covering domain Ω ⊂ R3, is replaced by a network of locally
one-dimensional branches. Hereby, the corresponding mathematical models have to
change their type and this leads to serious problems on the mathematical side.
In particular, the corresponding network model has now to include transmission
conditions at the intermediate nodes. The solutions of these models have to fulfill
additional continuity conditions at the ramification nodes for the solutions on the
adjacent edges.

In the field of mechatronics Lenczner et al. discussed differential equations on
networks in the context of cellular electronic circuits of microelectromechanical sys-
tems [24, 25], smart materials [7] and field effect microscopy [23]. A model for
two-dimensional resistive networks is presented by Vogelius in [31].
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Other authors focused on applications in material sciences. For example, the
elastic response and viscoelasticity of rubbery polymers is discussed in [15, 28, 29].
The rubber-like material contains a micro-structure that is represented by a micro-
sphere. A homogenization procedure is applied in order to describe the micro-to-
macro transition and the three-dimensional overall response of the polymer network.
In nanotechnology, photonic crystals are considered as optical analogous to semi-
conductors [12]. Photonic crystals can be described by large networks with a peri-
odic microstructure at the nanoscale. The goal is here to investigate the spectral
behaviour and to identify potential band gaps [17, 19, 20, 21]. Other applications
include periodic networks in filtration [11] and acoustics [6].

As a model example, we consider diffusion-advection-reaction problems on very
large networks with a periodic microstructure and a very small length of periodicity.
In contrast to other approaches for fattened graphs and thin domains, the model is
directly defined on the one-dimensional manifold.

The so-called microscopic model comprises the non-selfadjoint second order dif-
ferential equations on the branches of the network, the transmission conditions in
terms of Kirchhoff laws and continuity conditions at the ramification nodes and
Dirichlet boundary conditions at the outer nodes of the network. The modeling of
these systems on one-dimensional manifolds results in serious computational prob-
lems. In particular, the transmission conditions at the intermediate nodes have to
be taken into account what is not required for thin domains and fattened graphs. In
addition, a very large number of branches and singularities at the vertices has to be
considered. Furthermore, the periodic microstructure leads to highly-oscillating co-
efficients and a very fine discretization is required in the numerical solution schemes.
In other words, even a numerical solution can usually not be obtained with a rea-
sonable effort and this raises the question on how such a microscopic model could
be solved.

In this paper, we discuss a two-scale limit analysis for network functions on
ε-periodic networks based on an asymptotic expansion of the solution of the micro-
scopic model. The limit process leads to an approximating macroscopic model that
can be easily solved with standard software packages. The corresponding homoge-
nized coefficients of the macroscopic model provide a characterization of the global
behaviour of the microscopic model.

The limit process for differential equations on one-dimensional singularly per-
turbed manifolds is more complicated than the homogenization process on contin-
uous domains. Traditional averaging procedures on continuous domains as well as
on thin domains usually do not require the investigation of singularities at the in-
termediate nodes with several adjacent branches [4]. In addition, the solution of
the microscopic model on a thin domain and the solution of the macroscopic model
are defined on domains with the same dimension.

An averaging procedure based on asymptotic expansions for self-adjoint opera-
tors is proposed in [27]. Other methods mainly address fattened graphs and thin
domains, where the one-dimensional branches of the underlying graph are artificially
extended in the global domain [5].
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Figure 1. Graph structures: Fattened graphs (left) and one-
dimensional networks (right).

In case of microscopic models on one-dimensional manifolds, the solution of the
corresponding macroscopic model is defined on a domain in R3. That means, the
limit process describes the convergence of a series of functions on one-dimensional
manifolds to a limit function on a higher-dimensional domain. Such an averaging
approach for symmetric operators was firstly discussed in [27]. Here, we further
extend this approach to non-selfadjoint second-order differential equations on sin-
gularly perturbed periodic networks. We discuss the corresponding two-scale limit
analysis and derive the homogenized model on the superior domain.

The so-called homogenized coefficients of the macroscopic model directly depend
on the microstructure of the periodic network. In addition, we discuss the case
of singularly perturbed diffusion-advection-reaction equations. Here, a parameter
δ > 0 controls the influence of the diffusion part of the microscopic model. This
allows for an investigation of transport-dominant problems where the parameter δ
tends to zero. Such a situation is very challenging from the numerical point of view
since now boundary-layers occur on each edge of the network [14]. Fig. 2 shows the
example of a transport-dominant problem on a periodic network in the plane. On
each branch of the network, the solution develops a boundary layer (peak).
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Figure 2. Boundary layers: In case of transport-dominant prob-
lems, boundary layers arise on each branch of the network.

Before we present the mathematical formulation, we shortly illustrate the aver-
aging process at the example of a one-dimensional periodic network. The reference
graph consists of three edges as shown in Fig. 3.
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Figure 3. The reference graph: The one-dimensional network in
the unit cell [0, 1] consists of three edges.

The full domain is given by Ω = (0, 10) and is decomposed into a certain number
of segments with three edges obtained by copying and scaling from the reference
graph. The length of periodicity is given by ε = 10

#segments . The set of edges of the

network NΩ
ε is given by JΩ

ε = {1, . . . , 3 · #segments}, which is divided into three
subsets JΩ

ε,s :=
{
j = 3k−s

∣∣ k ∈ {1, . . . ,#segments}
}

for s = 0, 1, 2 that correspond
to the three edges of the reference graph (see Fig. 4).

I I I I I I I I I

0 10

←−−−−− ε −−−−−→

←−−−−− I −−−−−→←−−−−− II −−−−−→←−−−−− III −−−−−→

Figure 4. The one-dimensional network NΩ
ε : Recurrent elements

with three edges in the domain Ω.
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Figure 5. Highly oscillating coefficients: Diffusion coefficient and
source term on the one-dimensional network NΩ

1 .

As an example we consider a diffusion-reaction problem on the branches of the
network NΩ

ε . On the branches of the reference graph, the highly oscillating diffusion
coefficient is given by

A(z) =


0.2 , if z ∈

(
0, 1

4

)
,

1.0 , if z ∈
(

1
4 ,

3
4

)
,

0.2 , if z ∈
(

3
4 , 1
)
,
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and the source term takes the form

F(z) = 1 + cos(2π · z), if z ∈
(
0, 1

4

)
∪
(

1
4 ,

3
4

)
∪
(

3
4 , 1
)
,

as shown in Fig. 5. In addition, the coefficient of the reaction term is D ≡ 1.
The microscopic model on the network NΩ

ε has the form

−0.2 · d
2

dl2j
φεj(lj)+φεj(lj)= 1+cos

(
2π
ε ·lj

)
, j∈ JΩ

ε,2, lj ∈ ε
(
0, 1

4

)
−1.0 · d

2

dl2j
φεj(lj)+φεj(lj)= 1+cos

(
2π
ε ·
(
lj+

ε
4

))
, j∈ JΩ

ε,1, lj ∈ ε
(

1
4 ,

3
4

)
−0.2 · d

2

dl2j
φεj(lj)+φεj(lj)= 1+cos

(
2π
ε ·
(
lj+

3ε
4

))
,j∈ JΩ

ε,0, lj ∈ ε
(

3
4 , 1
)

φε(τ)= 0, for all boundary nodes τ of NΩ
ε ,

KΩ,ε
τ

(
Aεj ·

d

dlj
φεj

)
= 0, for all ramification nodes τ of NΩ

ε ,



(1)

where the Kirchhoff functional KΩ,ε
τ determines the difference between the flow

entering the ramification node τ and the flow leaving that node.
We represent the solution of the microscopic model in terms of the two-scale

asymptotic expansion

φε(x) = φ0(x) +

∞∑
k=1

φk(x, z), x ∈ Ω, z ∈ [0, 1].

The application of the two-scale averaging technique discussed in this paper
shows that the sequence of solutions of the microscopic model (1) converges for
ε→ 0 towards the solution of the so-called homogenized model on the full domain
Ω. The homogenized model has the form

−0.3 · d
2

dx2
φ0(x) + φ0(x)= 1, x ∈ Ω,

φ0(x)= 0, x ∈ ∂Ω.

 (2)
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Figure 6. Microscopic and macroscopic model : The first order
asymptotic expansion (red) and the exact solution (blue) of the
microscopic model for ε = 1 (left) and ε = 1

3 (right). The exact
solution shows an increasing number of micro-oscillation as ε tends
to zero.
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Fig. 6 shows the solution of the microscopic model (blue) and the homogenized
model (red) for different values of ε. The exact solution shows micro-oscillations that
are caused by the periodic microstructure and the highly oscillating coefficients. As
ε tends to zero, the amplitude of the micro-oscillations is decreasing. At the same
time, the frequency drastically increases. This makes a numerical solution very
difficult, because a very fine discretization is required to capture the effects of the
micro-oscillations.

The smooth homogenized solution does not show these oscillations and provides
a good approximation to the solution of the original problem for small values of ε
as can be seen by Fig. 7.

The homogenized coefficients usually are not equal to the coefficients obtained
by a pure averaging along the branches of the reference graph. For the diffusion
coefficient in the example we obtain

Â =
1∫

[0,1]

1
A(z) dz

= 0.3 6= 0.6 =

1∫
0

A(z) dz = A.

When we replace the homogenized boundary value problem (2) by the model

−A · d
2

dx2
φ0(x) + φ0(x)= 1, x ∈ Ω,

φ0(x)= 0, x ∈ ∂Ω,

 (3)

where Â instead of the coefficient A is used, we obtain the approximate “solution”
that is represented by the black line in Fig. 7.

Obviously, there is great difference between the solution of (3) and the exact
solution (blue) of the boundary value problem on the graph as well as the solution
of the homogenized model (red).
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Figure 7. Averaging strategies: Exact solution of the micro-
scopic model (blue), solution of the homogenized problem (red),
and the solution obtained by traditional averaging of the coeffi-
cients (black).

The rest of the paper is organized as follows: In Section 2, some notation about
one-dimensional periodic manifolds and the corresponding function spaces on net-
works are introduced. Section 3 discusses the microscopic model on the three-
dimensional network. On each branch of the network, the system is defined by a
diffusion-advection-reaction problem in terms of a second order differential equa-
tion. The system is singularly perturbed and the influence of the diffusion part can
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be controlled by a parameter. In particular, transport-dominant problems can be
considered by scaling down this parameter. Section 4 turns to two-scale asymptotic
expansions for functions on periodic networks that are applied in the two-scale limit
analysis in Section 5. As a result, the approximate macroscopic model on the full
domain is derived that can be easily solved by standard software packages. The as-
sociated homogenized coefficients characterize the effective behaviour of the system
on the full domain. Section 6 discusses so-called regular topologies that lead to a
simplified representation of the homogenized coefficients. A numerical example of
a diffusion-reaction problem on a three-dimensional grid is provided in Section 7.
Singularly perturbed systems are discussed in Section 8. In particular, the influence
of a vanishing diffusion part on the homogenized model is explained.

The numerical examples in Section 9 illustrate the case of transport-dominant
problems on periodic three-dimensional grids. Finally, we conclude with a dis-
cussion of future work and potential developments of the averaging technique on
one-dimensional manifolds.

2. Function Spaces on Periodic 3D-Networks. The system under considera-
tion is defined on the edges of a large ε-periodic network NΩ

ε (see Fig. 8). We assume
that the network is contained in the domain Ω ⊂ R3, where ∂Ω defines the outer
boundary of the region of interest. Since NΩ

ε is ε-periodic, it is the restriction of an
infinite ε-periodic network Nε to the domain Ω, i.e., NΩ

ε := Nε ∩Ω. In addition, we
assume that the total extension of the covering region Ω is considerably larger than
the given length of periodicity.

Assumption 2.1. The length of periodicity ε > 0 is considered as “very small”
compared to the diameter of the region of interest Ω, i.e., |Ω| � ε > 0.

Nodes and branches

The set of nodes of the networks Nε and NΩ
ε are given by Vε and V

(
NΩ
ε

)
:= Vε∩Ω,

respectively. The set of nodes of the restricted network NΩ
ε is composed of the

ramification nodes ∂R
(
NΩ
ε

)
:= Vε∩Ω and the boundary nodes ∂B

(
NΩ
ε

)
:= Vε∩∂Ω.

The restricted network NΩ
ε consists of the set of edges JΩ

ε . Each branch j ∈ JΩ
ε is

parameterized in terms of its arc length Lεj with regard to the interval Iεj := (0,Lεj).

Unit cell and reference graph

The unit cell is denoted by � = [0, 1)3 and Z := N1∩� is called the reference graph.
The networks Nε and NΩ

ε are composed of recurrent elements that are obtained from
the reference graph by copying and scaling with factor ε. The set of nodes of the
reference graph Z are given by V

(
Z
)

:= V1∩Ω and they comprise the corresponding

boundary nodes ∂B
(
Z
)

:= V1 ∩ ∂� and ramification nodes ∂R
(
Z
)

:= V1 ∩ int�.

The set of edges of the reference graph is denoted JZ and we assume that each
branch j ∈ JZ is parameterized in terms of its arc length LZ

j with regard to the

interval IZj := (0,LZ
j ).

3. Function Spaces on Scalable Networks. The network differential equations
are defined with regard to function spaces on one-dimensional manifolds in the d-
dimensional space (here, d = 3). Firstly, we introduce function spaces on single
branches.
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Figure 8. The network NΩ
ε .

Definition 3.1. On each edge j ∈ JΩ
ε we define the Hilbert spaces

H1
ε

(
Iεj
)

:=

{
φεj ∈ L2

(
Iεj
) ∣∣∣∣ ddlj φεj ∈ L2

(
Iεj
)}
,

H2
ε

(
Iεj
)

:=

{
φεj ∈ L2

(
Iεj
) ∣∣∣∣ ddlj φεj ∈ H1

ε

(
Iεj
)}
,

as well as the scaled norms∥∥φεj∥∥H1
ε(Iεj)

:=

{
εd−1 ·

∫
Iεj

[
d

dlj
φεj(lj)

]2

+
[
φεj(lj)

]2
dlj

} 1
2

,

∥∥φεj∥∥H2
ε(Iεj)

:=

{
εd−1 ·

∫
Iεj

[
d2

dl2j
φεj(lj)

]2

+

[
d

dlj
φεj(lj)

]2

+
[
φεj(lj)

]2
dlj

} 1
2

.

Then, function spaces on the network NΩ
ε can be defined.

Definition 3.2. On the ε-periodic network NΩ
ε we introduce the Hilbert space

H̃2
(
NΩ
ε

)
:=

{
φε =

(
φεj
)
j∈JΩ

ε
∈
∏
j∈JΩ

ε

H2
ε

(
Iεj
) ∣∣∣∣ ∑

j∈JΩ
ε

∥∥φεj∥∥2

H2
ε(Iεj)

<∞
}

with the norm ∥∥φεj∥∥H̃2(NΩ
ε )

:=

{∑
j∈JΩ

ε

∥∥φεj∥∥2

H2
ε(Iεj)

} 1
2

and the Hilbert space

H2
(
NΩ
ε

)
:=

{
φε ∈ H̃2

(
NΩ
ε

) ∣∣∣φε is continuous at all x ∈ ∂R
(
NΩ
ε

)}
,

where network functions are continuous at the ramification nodes.
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4. The Microscopic Model on the Periodic Network. As a model problem,
we consider a system of diffusion-advection-reaction equations on the curvilinear
three-dimensional network NΩ

ε . According to the structure of the network as a
one-dimensional manifold the microscopic model consists of three parts: a) a sys-
tem of second-order differential equations describing the behaviour of the model on
each parameterized branch, b) transmission conditions in terms of Kirchhoff laws
regarding the flow and continuity conditions that have to be fulfilled at the ram-
ification nodes, and c) homogeneous Dirichlet conditions that are imposed at the
outer boundary nodes of the network.

Definition 4.1. The microscopic model has the form

Find φε ∈ H2(NΩ
ε ) such that

Lεjφεj(lj) = Fεj (lj), j ∈ JΩ
ε , lj ∈ Iεj ,

φε(τ) = 0, τ ∈ ∂B
(
NΩ
ε

)
,

KΩ,ε
τ

(
Aj ·

d

dlj
φεj

)
= 0, τ ∈ ∂R

(
NΩ
ε

)
.


(MPε)

System equations:

On each branch j ∈ JΩ
ε , the second order system equation is given by

Lεjφεj(lj) :=

− d

dlj

(
δ · Aj

(
x(lj), ε

−1lj
)
· d
dlj

φεj(lj)

)
+

d

dlj

(
Bj
(
x(lj), ε

−1lj
)
· φεj(lj)

)
+ Cj

(
x(lj), ε

−1lj
)
· d
dlj

φεj(lj) +Dj
(
x(lj), ε

−1lj
)
· φεj(lj).

Here, x(lj) ∈ Ω describes the position on the three-dimensional network in the
region Ω (i.e., the global scale) and z = ε−1lj ∈ Z is the corresponding position on
the parameterized edges of the reference graph (i.e., the local scale). We note that
the diffusion part of the microscopic model is singularly perturbed by the parameter
δ > 0. This parameter regulates the influence of the diffusion part and it can be
used for an investigation of transport-dominant problems where δ tends to zero. In
addition, the coefficients A, B, C, D of the system equation and the source term F
have to fulfill the following conditions:

(C1) The coefficients A, B, C, D and the function F are Z \ ∂R(Z)-periodic with
regard to their second argument and we assume that

A ∈C3
(
Ω;H1

per(N1 \ V1)
)
, Amax ≥ A ≥ A0 > 0,

B ∈C3
(
Ω;H1

per(N1 \ V1)
)
, Bmax ≥ B ≥ 0,

C ∈C2
(
Ω;H1

per(N1 \ V1)
)
, Cmax ≥ C ≥ 0,

D ∈C1
(
Ω;H1

per(N1 \ V1)
)
, Dmax ≥ D ≥ 0,

F ∈C3
(
Ω; L2

per(N1 \ V1)
)
,

where H1
per(N1 \ V1) and L2(N1 \ V1) denote the sets of Z \ ∂R(Z)-periodic

H1- or L2-functions on the open set N1 \ V1.

(C2) For each τ ∈ V1 we assume

Kτ
(
B
)

= Kτ
(
C
)

= 0.
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(C3) For each branch j ∈ JZ and x ∈ Ω we have

1

2
· d

dσj

(
B(x, σj)− C(x, σj)

)
≥ 0.

Transmission conditions at ramification nodes:

Since uε ∈ H2(NΩ
ε ), the solution of the microscopic model fulfills continuity condi-

tions at the ramification nodes of the network NΩ
ε . In addition, Kirchhoff conditions

are imposed at the ramification nodes. At each ramification node τ ∈ ∂R
(
NΩ
ε

)
, the

Kirchhoff functional

KΩ,ε
τ (qε) =

∑
j∈JΩ,+

ε (τ)

lim
lj→Lε

j

qεj (lj)−
∑

j∈JΩ,−
ε (τ)

lim
lj→0

qεj (lj).

is defined for a given function qε on the network NΩ
ε . Here, the index set JΩ,+

ε (τ) ⊂
JΩ
ε consists of all edges that terminate in the node τ and the index set JΩ,−

ε (τ) ⊂ JΩ
ε

comprises all branches which leave the node τ . In a similar way, a Kirchhoff func-
tional Kτ can be introduced at the ramification nodes τ ∈ Vε of the infinite network
Nε and the ramification nodes τ ∈ ∂R(Z) of the reference graph, respectively.

5. Two-Scale Asymptotic Analysis. In the previous section the microscopic
model (MPε) is defined on the periodic network NΩ

ε . We assume that the length of
periodicity ε > 0 is very small compared to the diameter of the full domain Ω ⊂ R3.
This makes the numerical solution of (MPε) to a challenging task, because the
number of vertices (i.e., the ramification nodes) and the number of edges drastically
increase as ε tends to zero (what we assume here). Typically, the solution of the
microscopic model requires the consideration of a large number of constraints at the
ramification nodes in terms of transmission conditions and continuity conditions. In
addition, each branch has to be discretized for a numerical solution and this leads
to a huge algebraic system. In practice, as ε tends to zero, the number of vertices
and edges can easily exceed a threshold beyond that even a numerical solution
cannot be obtained in a reasonable time. The basic idea of the presented approach
is to replace the complex microscopic model on the network NΩ

ε by an easy-to-solve
macroscopic model on the full domain Ω that does not depend on these additional
constraints. The approximating macroscopic model is derived from the microscopic
model by a limit analysis where ε tends to zero.

5.1. Two-scale asymptotic expansion. The approximating macroscopic model
is derived from the microscopic model with the help of a two-scale asymptotic ex-
pansion

uε(x) = u0(x) +

∞∑
k=1

εk · uk
(
x,
x

ε

)
. (A)

The functions uk : Ω×N1 → R are periodic with regard to their second argument.
The right-hand side of the asymptotic expansion (A) is a function of the form

uj
(
x(lj), ε

−1lj
)
. In this way, two spatial length scales are integrated in the asymp-

totic analysis. The first scale describes the localization within the superior domain
Ω, and is also called the slow scale. The second scale measures the variation within
the reference cell and is called the fast scale. In other words, the asymptotic expan-
sion (A) reflects

(a) the macroscopic scale, that is described by the localization x ∈ Ω in the full
domain, and
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(b) the microscopic scale, that depends on the localization on the edge and the
corresponding position z = ε−1x on the reference graph.

The asymptotic expansion (A) is now used to derive the macroscopic model and a
characterization of the effective behaviour of the system on the network on a global
scale. In the following subsections we show how the differential equations on each
edge and the transmission conditions at the ramification nodes can be modified with
regard to the asymptotic expansion (A).

5.2. Differential equation on the edges. In a first step, the asymptotic expan-
sion is inserted in the differential equations on the branches of the network. For
this we need the following derivation rule that is fulfilled on each edge j.

Theorem 5.1 (Derivation rule). Let Ψ ∈ C1
(
Ω;H1

per(N1 \ V1)
)
, σj(lj) := ε−1lj

and Iεj for j ∈ JΩ
ε , ∇ :=

(
∂
∂x1

, . . . , ∂
∂xd

)T
denotes the gradient, “ ◦ ” is the scalar

product in Rd, and γj is a vector where the ith component is given by the cosine
of the angle between the tangential direction at the branch j and the ith coordinate
axis 1. Then, the following derivation rule is fulfilled:

d

dlj
Ψj

(
x(lj), σj(lj)

)
=

[
γj(σj) ◦ ∇Ψj(x, σj) + ε−1 · ∂

∂σj
Ψj(x, σj)

]
(x,σj)=(x(lj),σj(lj))

. (4)

Proof. Let j ∈ JΩ
ε . Then,

d

dlj
Ψj

(
x(lj), σj(lj)

)
=

d∑
i=1

∂

∂xi
Ψj

(
x(lj), σj(lj)

)
· d
dlj

xi(lj) +
∂

∂σj
Ψj

(
x(lj), σj(lj)

)
· d
dlj

σj(lj)

= γj
(
σj(lj)

)
◦ ∇Ψj

(
x(lj), σj(lj)

)
+ ε−1 · ∂

∂σj
Ψj

(
x(lj), σj(lj)

)
=

[
γj(σj) ◦ ∇Ψj(x, σj) + ε−1 · ∂

∂σj
Ψj(x, σj)

]
(x,σj)=(x(lj),σj(lj))

.

Now, the system equation takes the following form.

Theorem 5.2. Let Ψ ∈ C1
(
Ω;H1

per(N1\V1)
)

and σj(lj) := ε−1lj and Iεj for j ∈ JΩ
ε .

Then,

LεjΨj

(
x(lj), σj(lj)

)
=

[(
ε−2H2j + ε−1H1j +H0j

)
Ψj(x, σj)

]
(x,σj)=(x(lj),ε−1lj)

=

[
Fj(x, σj)

]
(x,σj)=(x(lj),ε−1lj)

,

1See [22], page 42, for further details about the geometry.
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where

H2j := − ∂

∂σj

(
δ · Aj(x, σj) ·

∂

∂σj

)
,

H1j := − ∂

∂σj

(
δ · Aj(x, σj) · γj(σj) ◦ ∇

)
− γj(σj) ◦ ∇

(
δ · Aj(x, σj) ·

∂

∂σj

)
+

∂

∂σj
Bj(x, σj) +

(
Bj(x, σj) + Cj(x, σj)

)
· ∂

∂σj
,

H0j := − γj(σj) ◦ ∇
(
δ · Aj(x, σj) · γj(σj) ◦ ∇

)
+ γj(σj) ◦ ∇Bj(x, σj)

+

(
Bj(x, σj) + Cj(x, σj)

)
· γj(σj) ◦ ∇+Dj(x, σj).

Proof. Let j ∈ JΩ
ε . Then,

LεjΨj

(
x(lj), σj(lj)

)
= − d

dlj

(
δ · Aj

(
x(lj), ε

−1lj
)
· d
dlj

Ψj

(
x(lj), ε

−1lj
))

+
d

dlj
Bj
(
x(lj), ε

−1lj
)
·Ψj

(
x(lj), ε

−1lj
)

+

(
Bj
(
x(lj), ε

−1lj
)

+ Cj
(
x(lj), ε

−1lj
))
· d
dlj

Ψj

(
x(lj), ε

−1lj
)

+Dj
(
x(lj), ε

−1lj
)
·Ψj

(
x(lj), ε

−1lj
)

= −
(
γj
(
σj(lj)

)
◦ ∇+ ε−1 ∂

∂σj

)(
δ · Aj

(
x(lj), ε

−1lj
)
·
(
γj
(
σj(lj)

)
◦ ∇

+ ε−1 · ∂

∂σj

)
Ψj

(
x(lj), ε

−1lj
))

+

((
γj
(
σj(lj)

)
◦ ∇+ ε−1 · ∂

∂σj

)
Bj
(
x(lj), ε

−1lj
))
·Ψj

(
x(lj), ε

−1lj
)

+

(
Bj
(
x(lj), ε

−1lj
)

+ Cj
(
x(lj), ε

−1lj
))

·
((

γj
(
σj(lj)

)
◦ ∇+ ε−1 · ∂

∂σj

)
Ψj

(
x(lj), ε

−1lj
))

+Dj
(
x(lj), ε

−1lj
)
·Ψj

(
x(lj), ε

−1lj
)

=

[
−γj(σj) ◦ ∇

(
δ · Aj(x, σj) · γj(σj) ◦ ∇Ψj(x, σj)

)
+ γj(σj) ◦ ∇Bj(x, σj) ·Ψj(x, σj)

+

(
Bj(x, σj) + Cj(x, σj)

)
· γj(σj) ◦ ∇Ψj(x, σj)

+Dj(x, σj) ·Ψj(x, σj)
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+ ε−1 ·
{
− ∂

∂σj

(
δ · Aj(x, σj) · γj(σj) ◦ ∇Ψj(x, σj)

)
− γj(σj) ◦ ∇

(
δ · Aj(x, σj) ·

∂

∂σj
Ψj(x, σj)

)
+

∂

∂σj
Bj(x, σj) ·Ψj(x, σj)

+

(
Bj(x, σj) + Cj(x, σj)

)
· ∂

∂σj
Ψj(x, σj)

}
+ ε−2 ·

{
− ∂

∂σj

(
δ · Aj(x, σj) ·

∂

∂σj
Ψj(x, σj)

)}]
(x,σj)=(x(lj),ε−1lj)

.

The system equation can be represented as

LεjΨj

(
x(lj), σj(lj)

)
=

[(
ε−2H2j + ε−1H1j +H0j

)
Ψj(x, σj)

]
(x,σj)=(x(lj),ε−1lj)

=

[
Fj(x, σj)

]
(x,σj)=(x(lj),ε−1lj)

.

Assumption 5.3 (Scale independence). For two-scale asymptotic analysis we as-
sume that the macroscopic scale represented by x ∈ Ω and the microscopic scale
given by σj ∈ Iεj for each branch j ∈ JΩ

ε are independent.

For the two-scale asymptotic analysis we assume later on that x and σj are
independent. With Theorem 5.2 we obtain the following result.

Theorem 5.4. If the scale independence from Assumption 5.3 is fulfilled, then(
ε−2H2j + ε−1H1j +H0j

)
Ψj(x, σj), (5)

where x plays the role of a parameter.

5.3. Transmission conditions at ramification nodes. In a second step, the
Kirchhoff-operator Kτ is applied to a function of the form Ψj

(
x(lj), ε

−1lj
)
.

Theorem 5.5. Let Ψ ∈ C1
(
Ω;H1

per(N1 \ V1)
)

and τ is a ramification node. If the
scale independence from Assumption 5.3 is fulfilled, then the following equation is
fulfilled:

K(τ)
0 (Ψj) + ε−1 · K(τ)

1 (Ψj) = 0, (6)

where

K(τ)
0 (Ψj) := Kτ

(
δ · Aj · γj ◦ ∇Ψj

)
, K(τ)

1 (Ψj) := Kτ
(
δ · Aj ·

∂

∂σj
Ψj

)
,

and x plays the role of a parameter.
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Proof. With the derivation rule from Theorem 4 we obtain

Kτ
(
δ · Aj ·

d

dlj
Ψj

)
= 0

⇔ Kτ
(
δ · Aj · γj ◦ ∇Ψj

)
+ ε−1 · Kτ

(
δ · Aj ·

∂

∂σj
Ψj

)
= 0 (7)

and

K(τ)
0 (Ψj) + ε−1 · K(τ)

1 (Ψj) = 0.

5.4. Identification of the functions φk. The functions φk, k ∈ N0, of the asymp-
totic expansion (A) can be identified as the solutions of auxiliary boundary problems
on the reference graph.

Theorem 5.6. The functions φk, k ∈ N0, of the asymptotic expansion (A) are the
solutions of the following cell problems:

H2jφ1j =−H1jφ0, j ∈ JZ,

K(τ)
1 (φ1) =−K(τ)

0 (φ0), τ ∈ ∂I
(
Z
)
,

φ1 is Z-periodic,


(S1)

and

H2jφ2j =−H1jφ1j −H0jφ0 + Fj , j ∈ JZ,

K(τ)
1 (φ2) =−K(τ)

0 (φ1), τ ∈ ∂I
(
Z
)
,

φ2 is Z-periodic,


(S2)

and

H2jφkj =−H1jφk−1j −H0jφk−2j , j ∈ JZ,

K(τ)
1 (φk) =−K(τ)

0 (φk), τ ∈ ∂I
(
Z
)
,

φk is Z-periodic,


(S3)

for k > 2.

Proof. We apply the asymptotic expansion (A) in Equation (5) to derive the form
of the functions φk, k ∈ N0. With(

ε−2H2j + ε−1H1j +H0j

)(
φ0 + εφ1j + ε2φ2j + . . .

)
= Fj ,

we obtain the equation

ε−2 · H2jφ0 + ε−1 · H1jφ0 +H0jφ0

+ ε−1 · H2jφ1j +H1jφ1j + ε · H0jφ1j

+H2jφ2j + ε · H1jφ2j + ε2·H0jφ2j

−Fj + . . .

= 0



198 E. KROPAT, S. MEYER-NIEBERG AND G. W. WEBER

that is ordered by the coefficients with the same exponents of the parameter ε. The
coefficient of ε−2 is equal to zero, because φ0 does not depend on σj . Comparing
the coefficients at the same exponents of ε leads to the following system of equations
for φk:

H2jφ0 = 0,

H2jφ1j = −H1jφ0,

H2jφ2j = −H1jφ1j −H0jφ0 + Fj ,
H2jφkj = −H1jφk−1j −H0jφk−2j , k > 2.

Similarly, the asymptotic expansion (A) can be applied to the transmission con-
ditions at the ramification nodes τ given by Equation (6). It follows

K(τ)
0

(
φ0 + εφ1 + ε2φ2 + . . .

)
+ ε−1 · K(τ)

1

(
φ0 + εφ1 + ε2φ2 + . . .

)
= 0,

and

K(τ)
0 (φ0) + ε · K(τ)

0 (φ1) + ε2 · K(τ)
0 (φ2) + . . .

+ ε−1 · K(τ)
1 (φ0) + K(τ)

1 (φ1) + ε · K(τ)
1 (φ2) + ε2 · K(τ)

1 (φ3) + . . . = 0.

Comparing the coefficients at the same exponents of ε we obtain:

K(τ)
1 (φ0) = 0,

K(τ)
1 (φ1) = −K(τ)

0 (φ0),

K(τ)
1 (φ2) = −K(τ)

0 (φ1)

K(τ)
1 (φk) = −K(τ)

0 (φk−1) , k > 2.

The combination of the equations obtained for the differential equations on the
branches of the network and the transmission conditions at the ramification nodes
lead to the system of auxiliary boundary value problems for the functions φk.

For the derivation of the macroscopic model the function φ1 is represented in
terms of the function φ0.

Definition 5.7. The function φ1 in the asymptotic expansion (A) is called φ0-
representable, if there exists a Z-periodic vector function S : Ω ×N1 → Rd that
is composed of functions S(k) : Ω × N1 → R with k ∈ {1, . . . , d} and a Z-periodic
function T : Ω×N1 → R such that

φ1 = S ◦ ∇φ0 − T · φ0. (8)
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Inserting (8) in systems (S1) and (S2) we can immediately see that φ1 is φ0-
representable.

Theorem 5.8. The function φ1 in the asymptotic expansion (A) is φ0-representable.
The functions S(k) are the solutions of the systems

− ∂

∂σj

(
δ · aj(x, σj) ·

∂

∂σj
S(k)
j (x, σj)

)
=

∂

∂σj

(
δ · Aj(x, σj) · γ(k)

j (σj)

)
, j ∈ JZ,

K(τ)
1

(
S(k)

)
= −K(τ)

0

(
(x)k

)
, τ ∈ ∂I(Z),

S(k) is Z-periodic,


(S4)

where (x)k denotes the k-th component of the vector x, and the function T is the
solution of the system

− ∂

∂σj

(
δ · Aj(x, σj) ·

∂

∂σj
Tj (x, σj)

)
=

∂

∂σj
Bj(x, σj), j ∈ JZ,

K(τ)
1

(
T
)

= 0, τ ∈ ∂I(Z),

T is Z-periodic.


(S5)

The solvability of the systems (S1)-(S5) is guaranteed by the following lemma2.

Lemma 5.9. Let k ∈ N0 and F ∈ Ck
(
Ω;L2(Z)

)
be Z-periodic. The problem

− ∂

∂σj

(
Aj(x, σj) ·

∂

∂σj
Ψj(x, σj)

)
= Fj (x, σj) , j ∈ JZ,

−K(τ)
1 (Ψ) = Gτ (x) , τ ∈ ∂I(Z),

(CP)

has a solution in Ck
(
Ω;H1

per

)
, if the following condition is fulfilled:

∑
j∈JZ

∫
IZj

Fj (x, σj) dσj =
∑

τ∈∂R(Z)

Gτ (x). (C)

Remark 1. Each solution of (CP) is defined up to an additive constant. Here, we
define that the unique solution of (CP) has to fulfill the following condition:∑

j∈JZ

∫
IZj

Ψj (x, σj) dσj = 0.

2See also lemma 19.2.1, p. 260, in [27].
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6. Macroscopic Model. In this section, the homogenized counterpart to the mi-
croscopic model is derived. The homogenized coefficients of the so-called macro-
scopic model characterize the behaviour of the microscopic model on the network
on a global scale. For the limit analysis it is not necessary to rely on the full
asymptotic expansion (A). It is sufficient to focus on the first-order asymptotic ex-
pansion φε = φ0 + εφ1 and the system (S2). The following theorem introduces the
macroscopic model.

Theorem 6.1. The function φ0 : Ω→ R is the solution of the following macroscopic
model

L0φ0(x) = F̂(x), x ∈ Ω,

φ0(x) = 0 , x ∈ ∂Ω.

}
(MP0)

Here, L0 is defined by

L0φ0(x) :=−
d∑

s,k=1

∂

∂xs

(
Âsk(x) · ∂

∂xk
φ0(x)

)
+

d∑
k=1

∂

∂xk

(
B̂k(x) · φ0(x)

)

+

3∑
k=1

Ĉk(x) · ∂

∂xk
φ0(x) + D̂(x) · φ0(x)

and the homogenized coefficients of the macroscopic model are given by

Âsk(x) =
∑
j∈JZ

∫
IZj

δ · Aj(x, σj) · γ(s)
j (σj)

(
γ

(k)
j (σj) +

∂

∂σj
S(k)
j (x, σj)

)
dσj ,

B̂k(x) =
∑
j∈JZ

∫
IZj

γ
(k)
j (σj)

(
Bj(x, σj) + δ · Aj(x, σj) ·

∂

∂σj
Tj(x, σj)

)
dσj ,

Ĉk(x) =
∑
j∈JZ

∫
IZj

Cj(x, σj)
(
γ

(k)
j (σj) +

∂

∂σj
S(k)
j (x, σj)

)

+
∂

∂σj

(
Bj(x, σj) · S(k)

j (x, σj)

)
dσj ,

D̂(x) =
∑
j∈JZ

∫
IZj

Dj(x, σj)− Cj(x, σj) ·
∂

∂σj
Tj(x, σj)

− ∂

∂σj

(
Bj(x, σj) · Tj(x, σj)

)
dσj ,

F̂(x) =
∑
j∈JZ

∫
IZj

Fj(x, σj) dσj .
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Proof. The coefficient φ2 of the asymptotic expansion (A) is the solution of system
(S2). The first equation of (S2) is given by

H2jφ2j(x, σj) = −H1jφ1j(x, σj)−H0jφ0(x) + Fj(x, σj).

In order to prove the condition (C), the right hand side of this equation has to be
integrated on all edges of the reference graph. With the second equation of system
(S2) we have to show that

∑
j∈JZ

∫
IZj

∂

∂σj

(
δ · Aj(x, σj) · γj(λj) ∗ ∇φ1j(x, σj)

)
dσj

+
∑
j∈JZ

∫
IZj

γj(σj) ∗ ∇
(
δ · Aj(x, σj) ·

∂

∂σj
φ1j(x, σj)

)
dσj

−
∑
j∈JZ

∫
IZj

∂

∂σj
Bj(x, σj) · φ1j(x, σj) dσj

−
∑
j∈JZ

∫
IZj

(
Bj(x, σj) + Cj(x, σj)

)
· ∂

∂σj
u1j(x, σj) dσj

+
∑
j∈JZ

∫
IZj

γj(σj) ∗ ∇
(
δ · Aj(x, σj) · γj(σj) ∗ ∇φ0(x)

)
dσj

−
∑
j∈JZ

∫
IZj

γj(σj) ∗ ∇Bj(x, σj) · φ0(x) dσj

−
∑
j∈JZ

∫
IZj

(
Bj(x, σj) + Cj(x, σj)

)
· γj(σj) ∗ ∇φ0(x) dσj

−
∑
j∈JZ

∫
IZj

Dj(x, σj) · φ0(x) dσj + Fj(x, σj) dσj =
∑
j∈JZ

∫
IZj

K(τ)
0 (φ1). (9)

The first term of (9) can be represented by

∑
j∈JZ

∫
IZj

∂

∂σj

(
δ · Aj(x, σj) · γj(λj) ∗ ∇φ1j(x, λj)

)
dσj

=
∑
j∈JZ

∫
IZj

[
δ · Aj(x, σj) · γj(λj) ∗ ∇φ1j(x, λj)

]LZ
j

0

=
∑

τ∈∂I Z

Kτ
(
δ · Aj · γj ∗ ∇φ1j

)
=

∑
τ∈∂I Z

K(τ)
0 (φ1),
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and condition (C) is fullfilled if and only if

−
∑
j∈JZ

∫
IZj

γj(σj) ∗ ∇
(
δ · Aj(x, σj) ·

∂

∂σj
φ1j(x, σj)

)
dσj

+
∑
j∈JZ

∫
IZj

∂

∂σj
Bj(x, σj) · φ1j(x, σj) dσj

+
∑
j∈JZ

∫
IZj

(
Bj(x, σj) + Cj(x, σj)

)
· ∂

∂σj
φ1j(x, σj) dσj

−
∑
j∈JZ

∫
IZj

γj(σj) ∗ ∇
(
δ · Aj(x, σj) · γj(σj) ∗ ∇φ0(x)

)
dσj

+
∑
j∈JZ

∫
IZj

γj(σj) ∗ ∇Bj(x, σj) · φ0(x) dσj

+
∑
j∈JZ

∫
IZj

(
Bj(x, λj) + Cj(x, σj)

)
· γj(σj) ∗ ∇φ0(x) dσj

+
∑
j∈JZ

∫
IZj

Dj(x, σj) · φ0(x) dσj =
∑
j∈JZ

∫
IZj

Fj(x, σj) dσj . (10)

The first six terms have the following representations:

• γj(σj) ∗ ∇
(
δ · Aj(x, σj) ·

∂

∂σj
φ1j(x, σj)

)
=

d∑
s=1

γ
(s)
j (σj) ·

∂

∂xs

(
δ · Aj(x, σj) ·

∂

∂σj

( d∑
k=1

S(k)
j (x, σj) ·

∂

∂xk
φ0(x)

− Tj(x, σj) · φ0(x)

))

=

d∑
s=1

d∑
k=1

∂

∂xs

(
γ

(s)
j (σj) · δ · Aj(x, σj) ·

∂

∂σj
S(k)
j (x, σj) ·

∂

∂xk
φ0(x)

)

−
d∑
s=1

∂

∂xs

(
γ

(s)
j (σj) · δ · Aj(x, σj) ·

∂

∂σj
Tj(x, σj) · φ0(x)

)
(11)
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• ∂

∂σj
Bj(x, σj) · φ1j(x, σj)

=
∂

∂σj
Bj(x, σj) ·

( d∑
k=1

S(k)
j (x, σj) ·

∂

∂xk
φ0(x)− Tj(x, σj) · φ0(x)

)

=

d∑
k=1

∂

∂σj
Bj(x, σj) · S(k)

j (x, σj) ·
∂

∂xk
φ0(x)

− ∂

∂σj
Bj(x, σj) · Tj(x, σj) · φ0(x) (12)

•
(
Bj(x, σj) + Cj(x, σj)

)
· ∂

∂σj
φ1j(x, σj)

=

(
Bj(x, σj) + Cj(x, σj)

)
· ∂

∂σj

( d∑
k=1

S(k)
j (x, σj) ·

∂

∂xk
φ0(x)

− Tj(x, σj) · φ0(x)

)
=

d∑
k=1

(
Bj(x, σj) + Cj(x, σj)

)
· ∂

∂σj
S(k)
j (x, σj) ·

∂

∂xk
φ0(x)

−
(
Bj(x, σj) + Cj(x, σj)

)
· ∂

∂σj
Tj(x, σj) · φ0(x) (13)

• wj(σj) ∗ ∇
(
δ · Aj(x, σj) · γj(σj) ∗ ∇φ0(x)

)
=

d∑
s=1

γ
(s)
j (σj) ·

∂

∂xs

(
δ · Aj(x, σj) ·

d∑
k=1

γ
(k)
j (σj) ·

∂

∂xk
φ0(x)

)

=

d∑
s=1

d∑
k=1

∂

∂xs

(
γ

(s)
j (σj) · δ · Aj(x, σj) · γ(k)

j (σj) ·
∂

∂xk
φ0(x)

)
(14)

• γj(σj) ∗ ∇Bj(x, σj) · φ0(x)

=

d∑
s=1

γ
(s)
j (σj) ·

∂

∂xs
Bj(x, σj) · φ0(x)

=

d∑
s=1

∂

∂xs

(
γ

(s)
j (σj) · Bj(x, σj)

)
· φ0(x) (15)
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•
(
Bj(x, σj) + Cj(x, σj)

)
· γj(σj) ∗ ∇φ0(x)

=

(
Bj(x, σj) + Cj(x, σj)

)
·
d∑
k=1

γ
(k)
j (σj) ·

∂

∂xk
φ0(x)

=

d∑
k=1

(
Bj(x, σj) + Cj(x, σj)

)
· γ(k)
j (σj) ·

∂

∂xk
φ0(x). (16)

By inserting (11)-(16) in (10) we obtain

−
∑
j∈JZ

∫
IZj

d∑
s=1

d∑
k=1

∂

∂xs

(
δ · Aj(x, σj) · γ(s)

j (σj) ·
∂

∂σj
S(k)
j (x, σj) ·

∂

∂xk
φ0(x)

)
dσj

+
∑
j∈JZ

∫
IZj

d∑
s=1

∂

∂xs

(
δ · Aj(x, σj) · γ(s)

j (σj) ·
∂

∂σj
Tj(x, σj) · φδ0(x)

)
dσj

+
∑
j∈JZ

∫
IZj

d∑
k=1

∂

∂σj
Bj(x, σj) · S(k)

j (x, σj) ·
∂

∂xk
φ0(x) dσj

−
∑
j∈JZ

∫
IZj

∂

∂σj
Bj(x, σj) · Tj(x, σj) · φ0(x) dσj

+
∑
j∈JZ

∫
IZj

d∑
k=1

(
Bj(x, σj) + Cj(x, σj)

)
· ∂

∂σj
S(k)
j (x, σj) ·

∂

∂xk
φ0(x) dσj

−
∑
j∈JZ

∫
IZj

(
Bj(x, σj) + Cj(x, σj)

)
· ∂

∂σj
Tj(x, σj) · φ0(x) dσj

−
∑
j∈JZ

∫
IZj

d∑
s=1

d∑
k=1

∂

∂xs

(
δ · Aj(x, σj) · γ(s)

j (σj) · γ(k)
j (σj) ·

∂

∂xk
φ0(x)

)
dσj

+
∑
j∈JZ

∫
IZj

d∑
s=1

∂

∂xs

(
γ

(s)
j (σj) · Bj(x, σj)

)
· φ0(x) dσj

+
∑
j∈JZ

∫
IZj

d∑
k=1

(
Bj(x, σj) + Cj(x, σj)

)
· γ(k)
j (σj) ·

∂

∂xk
φ0(x) dσj

+
∑
j∈JZ

∫
IZj

Dj(x, σj) · φ0(x) dσj =
∑
j∈JZ

∫
IZj

Fj(x, σj) dσj .
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Then, after a further modification regarding Bj and Cj , we get

−
∑
j∈JZ

∫
IZj

d∑
s=1

d∑
k=1

∂

∂xs

(
δ · Aj(x, σj) · γ(s)

j (σj) ·
∂

∂σj
S(k)
j (x, σj) ·

∂

∂xk
φ0(x)

)
dσj

−
∑
j∈JZ

∫
IZj

d∑
s=1

d∑
k=1

∂

∂xs

(
δ · Aj(x, σj) · γ(s)

j (σj) · γ(k)
j (σj) ·

∂

∂xk
φ0(x)

)
dσj

+
∑
j∈JZ

∫
IZj

d∑
s=1

∂

∂xs

(
δ · Aj(x, σj) · γ(s)

j (σj) ·
∂

∂σj
Tj(x, σj) · φ0(x)

)
dσj

+
∑
j∈JZ

∫
IZj

d∑
s=1

∂

∂xs

(
Bj(x, σj) · γ(s)

j (σj) · φ0(x)

)
dσj

+
∑
j∈JZ

∫
IZj

d∑
s=1

Cj(x, σj) · γ(s)
j (σj) ·

∂

∂xs
φ0(x) dσj

+
∑
j∈JZ

∫
IZj

d∑
s=1

∂

∂σj

(
Bj(x, σj) · S(s)

j (x, σj)

)
· ∂

∂xs
φ0(x) dσj

+
∑
j∈JZ

∫
IZj

d∑
s=1

Cj(x, σj) ·
∂

∂σj
S(s)
j (x, σj) ·

∂

∂xs
φ0(x) dσj

−
∑
j∈JZ

∫
IZj

Cj(x, σj) ·
∂

∂σj
Tj(x, σj) · φ0(x) dσj

−
∑
j∈JZ

∫
IZj

∂

∂σj

(
Bj(x, σj) · Tj(x, σj)

)
· φ0(x) dσj

+
∑
j∈JZ

∫
IZj

Dj(x, σj) · φ0(x) dσj =
∑
j∈JZ

∫
IZj

Fj(x, σj) dσj .

It follows immediately

−
d∑
s=1

d∑
k=1

∂

∂xs

((∑
j∈JZ

∫
IZj

δ · Aj(x, σj) · γ(s)
j (σj) · γ(k)

j (σj)

+ δ · Aj(x, σj) · γ(s)
j (σj) ·

∂

∂σj
S(k)
j (x, σj) dσj

)
· ∂

∂xk
φ0(x)

)
+

d∑
s=1

∂

∂xs

((∑
j∈JZ

∫
IZj

Bj(x, σj) · γ(s)
j (σj)

+ δ · Aj(x, σj) · γ(s)
j (σj) ·

∂

∂σj
Tj(x, σj) dσj

)
· φ0(x)

)
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+

d∑
s=1

(∑
j∈JZ

∫
IZj

Cj(x, σj) · γ(s)
j (σj) + Cj(x, σj) ·

∂

∂σj
S(s)
j (x, σj)

+
∂

∂σj

(
Bj(x, σj) · S(s)

j (x, σj)

)
dσj

)
· ∂

∂xk
φ0(x)

+
∑
j∈JZ

∫
IZj

(
Dj(x, σj)− Cj(x, σj) ·

∂

∂σj
φj(x, σj)

− ∂

∂σj

(
Bj(x, σj) · Tj(x, σj)

))
dσj · φ0(x) =

∑
j∈JZ

∫
IZj

Fj(x, σj) dσj .

Finally, with the homogenized coefficients Â, B̂, Ĉ, D̂, F̂ and homogeneous Dirichlet
boundary conditions we obtain the homogenized model.

L0φ0(x) = F̂(x), x ∈ Ω,

φ0(x) = 0 , x ∈ ∂Ω.

}
(MP0)

With the homogenization process described above, a macroscopic model (MP0) is
derived from the original microscopic model (MPε) by representing the solution of
the microscopic model in terms of the two-scale asymptotic expansion (A). The
original model on a ε-periodic network is replaced by an approximative model in
terms of a singularly perturbed second-order partial differential equation on the full
domain Ω. The homogenized model can be solved by standard software packages for
partial differential equations of second order. The coefficients of the homogenized
model characterize the effective behaviour of the microscopic model on a global
scale (cf. Fig. 9).

Figure 9. The homogenization process.
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Each homogenized coefficient is obtained by averaging along the branches of the
reference graph. In this way, the micro-oscillations of the microscopic model (as
discussed in Section 1) are integrated into the macroscopic model, but in a smooth

fashion. The homogenized coefficient B̂ depends on the diffusion coefficient δAj .
This influence is weak for advection-dominant microscopic models, where δ tends

to zero. We further note, that the homogenized coefficient D̂ depends on Bj and Cj .
The geometric structure of the periodic network that is represented by the topology

of the reference graph directly affects the homogenized coefficients Âsk, B̂k, Ĉk,

because these parameters depend on γ
(k)
j . In other words, the structure and the

geometry of the reference graph directly takes influence on the global behaviour of
the system.

Error Estimate
Since ε is small compared to the total diameter of the full region Ω, the macroscopic
model (MP0) provides an approximation for the microscopic model (MPε) on the
network NΩ

ε . This could be easily proofed by an evaluation of error estimates. We
consider the first-order approximation

φε(x) ∼ φ0(x) + ε · φ1

(
x,
x

ε

)
,

with φ1 = S ◦ ∇φ0 − T · φ0. The residuum Rε := φε − φ0 − εφ1 compares the
exact solution, φε, of the microscopic model on the network and the first order
approximation. The following error result is obtained after some straightforward
calculations3:

‖Rε‖H1(NΩ
ε ) ≤ C · ε

1
2 .

This inequality shows, that the the difference between the exact solution of the
microscopic model and the first-order approximation tends to zero for ε→ 0.

7. Regular Topologies. In some particular geometric situations, the homoge-
nized coefficients can be represented in a simplified way. The reference graph is
called regular, if it consists of paths that are all completely crossing the reference
cell from one of its sides to the opposite side (see Fig. 10).

Figure 10. Regular Topologies: A regular reference graph.

3For further details we refer to [22], pages 122-152.
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Because of the periodicity of B, S(k), and T the equations∑
j∈JZ

∫
IZj

∂

∂σj

(
Bj(x, σj) · S(k)

j (x, σj)

)
dσj = 0

and ∑
j∈JY

∫
IZj

∂

∂σj

(
Bj(x, σj) · Tj(x, σj)

)
dσj = 0

are fulfilled for networks with regular reference graphs. With these equations the
homogenized coefficients take the following simplified form:

Âsk(x) =
∑
j∈JZ

∫
IZj

δ · Aj(x, σj) · γ(s)
j (σj)

(
γ

(k)
j (σj) +

∂

∂σj
S(k)
j (x, σj)

)
dσj ,

B̂k(x)

=
∑
j∈JZ

∫
IZj

γ
(k)
j (σj)

(
Bj(x, σj) + δ · Aj(x, σj) ·

∂

∂σj
Tj(x, σj)

)

Ĉk(x) =
∑
j∈JZ

∫
IZj

Cj(x, σj)
(
γ

(k)
j (σj) +

∂

∂σj
S(k)
j (x, σj)

)
dσj ,

D̂(x) =
∑
j∈JZ

∫
IZj

Dj(x, σj)− Cj(x, σj) ·
∂

∂σj
Tj(x, σj) dσj ,

F̂(x) =
∑
j∈JZ

∫
IZj

Fj(x, σj) dσj .

8. Homogenization of Diffusion-Advection-Reaction Equations on 3D
Grids. In this section, we consider the example of a three dimensional network
with the paraxial reference graph. By copying and scaling of the reference graph
a three-dimensional network is created in the domain Ω = (0, 10)3 (in Fig. 11, the
length of periodicity is ε = 1).

For a given length of periodicity ε > 0 we consider the microscopic model (MPε)
with Dirichlet boundary conditions. For sake of simplicity we assume that the
coefficients A,B, C,D and the source term F of the microscopic model take constant
values:

−δA · d
2

dl2j
φεj(lj) + (B + C) · d

dlj
φεj(lj) +D · φεj(lj) = F , j ∈ JΩ

ε , lj ∈ Iεj ,

φε(τ) = 0, τ ∈ ∂B(NΩ
ε ),

KΩ,ε
τ

(
δA · d

dlj
φεj

)
= 0, τ ∈ ∂R(NΩ

ε ),


(17)



HOMOGENIZATION ON NETWORKS 209

0

1/2

1

0

1/2

1
0

1/2

1

xy

z

H

H

I
I I
I

Figure 11. Three-dimensional network : The periodic network
(right) is obtained by copying and scaling from the reference graph
(left).

For each j ∈ JΩ
ε the exact solution of the microscopic model is given by

φεj(lj) = C1j · eλ+lj + C2j · eλ−lj +
F
D

with

λ± =
1

2δA
·
[
B + C ±

√
(B + C)2 + 4DδA

]
The constant values C1j , C2j ∈ R are determined by the boundary conditions at the
outer nodes of the network as well as the transmission conditions and continuity
conditions at the ramification nodes. The homogenized coefficients are given by

Â11 = Â22 = Â33 = δA, B̂1 = −B̂2 =− B̂3 = B,

Â12 = Â13 = Â21 = 0, Ĉ1 = −Ĉ2 =− Ĉ3 = C,

Â31 = Â23 = Â32 = 0, D̂ = 3D, F̂ = 3F ,
The corresponding macroscopic model takes the form

− δA·
[
∂2

∂x2
1

φ0(x) +
∂2

∂x2
2

φ0(x) +
∂2

∂x2
3

φ0(x)

]
+ (B + C) ·

[
∂

∂x1
φ0(x)− ∂

∂x2
φ0(x)− ∂

∂x3
φ0(x)

]
+ 3D · φ0(x) = 3F , x ∈ Ω,

φ0(x) = 0, x ∈ ∂Ω.


The transport term of macroscopic model emphasizes the positive x1-direction and
the negative x2 and x3-directions and reflects in this way the topology of the refer-
ence graph.

In the next two subsections, we investigate the behaviour of the solution of (17)
for two different parameter constellations. The first example illustrates the limit
process of a diffusion-reaction-problem on an ε-periodic three-dimensional network
with a symmetric solution. The second example focuses on the influence of the trans-
port term and shows that the corresponding asymmetric solution of the diffusion-
advection-reaction system converges towards the solution of the homogenized model
on the full three-dimensional domain Ω.
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8.1. 3D-Example: A Diffusion-Reaction Problem. As a first example of the
microscopic model we consider a diffusion-reaction-problem with the coefficients
A = D = F = δ = 1 and B = C = 0. The microscopic model is given by

− d
2

dl2j
φεj(lj) + φεj(lj)= 1, j ∈ JΩ

ε , lj ∈ Iεj ,

φε(τ)= 0, τ ∈ ∂B(NΩ
ε ),

KΩ,ε
τ

(
d

dlj
φεj

)
= 0, τ ∈ ∂R(NΩ

ε ),


(18)

and the solution takes the form

φεj(lj) = C1j · elj + C2j · e−lj + 1

on each edge j ∈ JΩ
ε with lj ∈ Iεj . The corresponding macroscopic model is

− ∂2

∂x2
1

φ0(x)− ∂2

∂x2
2

φ0(x)− ∂2

∂x2
3

φ0(x) + 3 · φ0(x)= 3, x ∈ Ω,

φ0(x)= 0, x ∈ ∂Ω.

 (19)

The following figures illustrate the behaviour of the solution of the microscopic
model as well as the homogenized model in the 3D situation.

The solutions of these models take their values in the interval [0, 1] and these
values are represented with the colorbar in Fig. 12:

0.0   0.2     0.4     0.6  0.8     1.0    

Figure 12. Colorbar : The solutions of the microscopic model and
the homogenized model take their values in the interval [0, 1].

Fig. 13 shows the exact solution of the network differential equation (18) for the
different lengths of periodicity4. The figures on the right side show one half of the
grid and on the left side slices in the middle of the x1-x2-direction.

The figures on the left side of Fig. 13 show that the solution uε is symmetric.
This is because there is no transport term in (18). The corresponding homogenized
solution u0 of the macroscopic model (19) along the slice E =

{
(x, y, z) ∈ Ω |x = 5

}
is depicted in Fig. 14. The solution uε of the microscopic model converges towards
u0 in the sense of two-scale approximation.

Fig. 15 shows the development of the solution of the network differential equa-
tion (18) for ε→ 0 in the inner part of the three-dimensional domain Ω. Here, the
cube W = [0, 5]× [0, 5]× [5, 10] is removed from the full domain Ω and it shows the
part of the network NΩ

ε for ε = 1 and ε = 0.5 in Ω \W .

4In each subfigure, the number of edges of the full network NΩ
ε and the corresponding length

of periodicity ε are indicated in the form #edges/ε.
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6000/1

48000/0.5

Figure 13. 3D-diffusion-reaction-problem: Behaviour of the solu-
tion for ε = 1 and ε = 0.5.

Figure 14. Homogenized solution: A slice through the cube.
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6000/1 48000/0.5

Figure 15. 3D-diffusion-reaction problem: Behaviour of the solution.

It can be seen by Fig. 15 that the solution of the microscopic model converges
towards the symmetric solution of the corresponding macroscopic model (19) in
Fig. 16.

Figure 16. Homogenized solution: Inner part of the cube.

Table 1 shows the computational effort for the solution of the microscopic model (18)
for various values of the scaling factor ε. We used an INTEL Core (TM) i3-3 110M
CPU with 2.4 GHz and 4 GB primary memory. The corresponding homogenized
model (19) can be solved in less than a second.
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ε #edges #cells time in sec.

1.0 6.000 1.000 2.3
0.6 20.250 3.375 28.1
0.5 48.000 8.000 227.5
0.4 93.750 15.625 1039.9
0.3 162.000 27.000 3395.2
0.29 257.250 42.875 9069.6
0.25 384.000 64.000 18897.1
0.2 546.750 91.125 45392.3
0.2 750.000 125.000 80314.7

Table 1. Computational effort : Scaling factor ε, the number of
edges, the number of cells and the computing time in seconds.

Fig. 17 displays the computation time in terms of the number of cells. Even in
case of this very small cube with an edge length of ten units, the computation time
increased drastically. The solution of the network differential equation for ε = 0.2
required more than twenty-two hours. In realistic models, for example filtering in
oil recovery, huge capillary systems have to considered. A numerical solution of the
corresponding microscopic models is completely unrealistic.

Number of cells ×104
2 4 6 8 10 12

C
om

pu
ta

tio
n 

tim
e

×104

0

1

2

3

4

5

6

7

8

Figure 17. Computation time: Number of cells and the corre-
sponding computation time.

9. Reduced Equation. In the formulation of the microscopic model (MPε) the
parameter δ > 0 is used to regulate the influence of the diffusion part of the system
equation. If δ tends to zero, the microscopic model becomes transport-dominated.
These types of problems usually require specialized numerical schemes in order to
compensate the effects of outflow boundaries. In particular, for network differential
equations such problems lead to numerical difficulties since the outflow boundaries
arise on each single edge. Finite element solutions can show unexpected oscillations
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near the outflow boundary, i.e., at the end of each branch of the network. For
a numerical solution, the underlying discretization of the network requires a huge
number of nodes and an extremely large algebraic system has to be solved. The pa-
per [14] proposed a mesh adaption technique in a one-dimensional setting on a single
edge for steady diffusion-convection-reaction equations. Other approaches include
additional stabilization terms in the corresponding variational formulation [13]. The
two-scale averaging technique discussed in this paper allows for an analysis of sin-
gularly perturbed microscopic models on periodic networks and, thus, transport-
dominant network differential equations. Applying a formal asymptotic analysis
δ → 0 with regard to the macroscopic model (MP0), a so-called reduced equation is
derived that can be easily solved with standard software packages:

3∑
k=1

∂

∂xk

(
B̂redk (x) · φ0(x)

)
+

3∑
k=1

Ĉredk (x) · ∂

∂xk
φ0(x)

+ D̂red(x) · φ0(x) = F̂red(x).

The corresponding reduced coefficients take the form

B̂redk (x) =
∑
j∈JZ

∫
IZj

Bj(x, σj) · γ(k)
j (σj) dσj ,

Ĉredk (x) =
∑
j∈JZ

∫
IZj

Cj(x, σj) · γ(k)
j (σj) + Cj(x, σj) ·

∂

∂σj
S(k)
j (x, σj)

+
∂

∂σj

(
Bj(x, σj) · S(k)

j (x, σj)

)
dσj ,

D̂red(x) =
∑
j∈JZ

∫
IZj

Dj(x, σj)− Cj(x, σj) ·
∂

∂σj
Tj(x, σj)

− ∂

∂σj

(
Bj(x, σj) · Tj(x, σj)

)
dσj ,

F̂red(x) =
∑
j∈JZ

∫
IZj

Fj(x, σj) dσj .

Remark 2. We note that the reduced coefficients can be further simplified in
case of networks with regular reference graphs that are defined by paths connecting
border points on opposite sides of the reference cell. In such a situation, the reduced
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coefficients are given by

B̂redk (x) :=
∑
j∈JZ

∫
IZj

Bj(x, σj) · γ(k)
j (σj) dσj ,

Ĉredk (x) :=
∑
j∈JZ

∫
IZj

Cj(x, σj) · γ(k)
j (σj) + Cj(x, σj) ·

∂

∂σj
S(k)
j (x, σj) dσj ,

D̂red(x) :=
∑
j∈JZ

∫
IZj

Dj(x, σj)− Cj(x, σj) ·
∂

∂σj
Tj(x, σj) dσj ,

F̂red(x) :=
∑
j∈JZ

∫
IZj

Fj(x, σj) dσj .

10. Numerical Example: A Transport-dominant Problem. In this example,
we consider a diffusion-advection-reaction problem on the network NΩ

ε with A =
B = C = D = F = 1 and δ = 0.01. The corresponding microscopic model with
Dirichlet boundary conditions has the form

−0.01 · d
2

dl2j
φεj(lj) + 2 · d

dlj
φεj(lj) + φεj(lj)= 1, j ∈ JΩ

ε , lj ∈ Iεj ,

φε(τ)= 0, τ ∈ ∂BNΩ
ε ,

KΩ,ε
τ

(
0.01 · d

dlj
φεj

)
= 0, τ ∈ ∂RNΩ

ε .


(20)

The solution is given by

φεj(lj) = C1j · e
2+
√

5
2 lj + C2j · e

2−
√

5
2 lj + 1.

The corresponding homogenized equation looks as follows

−0.01·
[
∂2

∂x2
1
φ0(x) + ∂2

∂x2
2
φ0(x) + ∂2

∂x2
3
φ0(x)

]
+2·
[

∂
∂x1

φ0(x)− ∂
∂x2

φ0(x)− ∂
∂x3

φ0(x)

]
+ 3·φ0(x)= 3, x ∈ Ω,

φ0(x)= 0 , x ∈ ∂Ω.



(21)

Now, we show the behaviour of the solution of the microscopic problem (20).
The figures in the left part of in Fig. 18 show slices along the middle of the

network. The solution of the microscopic model is influenced by the transport term
in the negative x2- and x3-directions. In addition, the solution φε converges towards
the solution φ0 of the macroscopic model (21) for ε→ 0 as shown in the slice along
the surface E in Fig. 19.
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6000/1

48000/0.5

Figure 18. 3D-diffusion-advection-reaction-problem: Behaviour
of the solution.

Figure 19. Slices along a surface: Homogenized solution.

Figs. 18-19 display the evolution of a boundary layer that reflects the structure
of the reference graph. The boundary layer can also be recognized in the spatial
slices depicted in Fig. 20.

Fig. 20 illustrates the behaviour of a singularly perturbed problem. It shows the
solution of the macroscopic model along the surface E =

{
(x, y, z) ∈ ∂Ω

∣∣ y = 0
}
.

Along the surface E, the solution uε,1 takes nearly the value 1 (red). In Fig. 21,
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the solution of the corresponding macroscopic problem (i.e., the reduced problem)
takes the value 0 (blue) because of the homogeneous boundary condition u0(x) = 0
for all x ∈ ∂Ω of the Dirichlet boundary value problem.

6000/1 48000/0.5

Figure 20. Singularly perturbed 3D-diffusion-advection-
reaction-problem: Behaviour of the solution.

Figure 21. Solution of the macroscopic model : Inner part of the cube.

11. Conclusion and Outlook. Our studies in the field of OR-based models for
groundmotion prediction and monitoring of groundwater contamination are often
concerned with diffusion-advection-reaction problems on extremely large periodic
capillary networks. The numerical solution of these problems is very challenging
and easy-to-solve approximate models are strongly needed. The identification of the
so-called homogenized models poses a research question on its own. Network dif-
ferential equations are of significant importance in many applications ranging from
engineering sciences and soil mechanics to nanotechnology and multi-scale physics.
The numerical treatment of differential equations on extremely large networks is
very challenging. In practical applications like flow problems in rock mechanics, the
diameter of the region under consideration is very large when compared to the length
of periodicity of the corresponding network structure. This results in a very high
number of edges and huge number of intermediate nodes (or singularities), where
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transmission conditions have to be fulfilled. In addition, the periodic microstructure
of the network leads to highly oscillating coefficients that require a very fine dis-
cretization. A numerical solution of such problems is nearly impossible. The basic
idea of this paper is to replace the difficult to solve microscopic model on the pe-
riodic network by an easy-to-solve approximating homogenized problem on the full
domain. The proposed asymptotic analysis allows to derive the structure of the ho-
mogenized model and it reflects the effective behaviour of the microscopic model on
a global scale. The corresponding homogenized coefficients describe the character-
istics of network problem. They capture the effects of the micro-oscillations caused
by the periodic structure of the network. In addition, they reflect the geometry
of the network and the structure of the reference graph. This opens a perspective
for future work, where the influence of the network topology on the macroscopic
model and the effective behaviour could be addressed. In particular, such an ap-
proach could be used for topology optimization, for example for the development
of network structures like bio-materials. Averaging strategies for optimal control
problems on networks are a further promising direction of research. The asymptotic
analysis of optimal control problems on periodic networks with a positive thickness
of the branches is discussed in [18]. These approaches could be further extended
to optimal control problems on graphs with a vanishing thickness of the edges. A
completely new field of research are averaging strategies for stochastic systems on
periodic networks. In future work, we intend to include the notion of almost period-
icity in the sense of Bohr and Bochner into our analysis. The stochastic approaches
offers a new perspective for applications in signal theory and for an investigation of
the macroscopic behaviour of systems with microscopically periodic signals.
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