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ABSTRACT We introduce a novel method for abnormal crowd event detection in surveillance videos.
Particularly, our work focuses on panic and escape behavior detection that may appear because of violent
events and natural disasters. First, optical flow vectors are computed to generate a motion information
image (MII) for each frame, and then MIIs are used to train a convolutional neural network (CNN) for
abnormal crowd event detection. The proposedMII is a new formulation that provides a visual appearance of
crowd motion. The proposed MIIs make the discrimination between normal and abnormal behaviors easier.
The MII is mainly based on the optical flow magnitude, and angle difference computed between the optical
flow vectors in consecutive frames. A CNN is employed to learn normal and abnormal crowd behaviors
using MIIs. The MII generation, and the combination with a CNN is a new approach in the context of
abnormal crowd behavior detection. Experiments are performed on commonly used datasets such as UMN
and PETS2009. Evaluation indicates that our method achieves the best results.

INDEX TERMS Crowd behavior analysis, anomaly detection, motion information image, convolutional
neural network.

I. INTRODUCTION
Analysis of crowd behavior has become a popular research
field in recent years. Crowd behavior analysis can be utilized
in variety of applications, for example, automatic detection
of panic and escape behavior as a result of violence, riots,
natural disasters, and so forth. Generally it is challenging
to find effective features for crowds, since people inside
the crowd may be positioned at different locations and may
move in diverse directions. As a result, higher level analysis
becomes difficult.

According to [1], abnormal event detection can be clas-
sified as local and global abnormal events. Local abnormal
events contain an individual who acts differently from the rest
of the individuals within a crowded scene. In global abnormal
events, crowd behavior inside a global scene is abnormal,
such as sudden escape of people during an earthquake. This
work focuses on global abnormal crowd behavior detection.

A. RELATED WORK
For global crowd behavior analysis usually holistic
and object-based methods are utilized. In object-based
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approaches, the crowd consists of groups of individuals
(objects) [2], [3] and these objects are detected and tracked
in order to understand the global crowd behavior [4]. Major
challenges of object-based methods are accurate object iden-
tification, tracking and action recognition in dense crowds,
since occlusions affect the whole process. Alternatively,
in holistic methods [5]–[7], the crowd is considered as a
global unit. Thus, these approaches analyzes the whole crowd
itself to extract useful features (e.g. applying optical flow to
the entire frame) in order to detect the crowd behavior.

In this research, we concentrate on global abnormal crowd
event detection in surveillance videos, for example, sudden
escape of people in the same or diverse directions. Anomaly
detection consists of two main phases: event representation
and anomaly measurement. For abnormal event representa-
tion, spatial-temporal information can be used, for example
social force model [7], Histogram of Optical Flow (HOF) [8],
Histogram of Motion Direction (HMD) [9], spatial-temporal
gradient [10], chaotic invariant [11], mixtures of dynamic tex-
tures [12], sparse representation [1] and behaviour Entropy
model (BE) [13]. For anomaly measurement, most of the
approaches employ a one-class learning methods to learn
normal samples. As a one-class learner Hidden Markov
Model [10], Gaussian Mixture Model, one-class Support
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Vector Machine (SVM) [14], Replicator Neural Net-
works [15], Convolutional Neural Networks [16], [17] and
Bayesian model [18] can be utilized. Then, during testing,
if the test sample is significantly different from the normal,
it is accepted as abnormal.

There are also very recent works on abnormal crowd
behaviour detection based on distribution of magnitude of
optical flow (DMOF) [19], context location and motion-rich
spatio-temporal volumes (CL and MSV) [20], generative
adversarial nets (GAN) [21], temporal convolutional neural
network pattern (TCP) [22], global event influence model
(GEIM) [23], and histograms of optical flow orientation and
magnitude (HOFO) [24]. Reviews on crowd behaviour anal-
ysis can be found at [25], [26]. Recently, some survey papers
have also appeared for deep learning based crowd behaviour
analysis [27], [28]. Below, in part B, we particularly sum-
marize existing optical flow based methods both for global
and local crowd anomalies since our work is also based on
optical flow, and then, in part C , we explain our method and
the difference from existing works.

B. OPTICAL FLOW BASED METHODS
Here, we summarize optical flow based methods both for
global and local crowd anomalies. Social force model [7]
focuses on global anomaly. A grid of particles is placed over
the image plane, and they are advected with the space-time
average of optical flow. Then interaction force, between par-
ticles, is estimated using social force model. The interaction
force is then mapped into the image region to obtain Force
Flow for every pixel in every frame. The normal crowd
behaviour is modelled using the Force Flow frames. Finally,
bag of words approach is used to classify frames as normal
and abnormal. In [8], motion feature is obtained after bin-
ning the current optical flow distribution into angular bins,
yielding a one dimensional vector on flow directions for
local anomaly detection. In chaotic invariant [11], the pro-
cess begins with particle advection using optical flow. Then
particle trajectories are clustered to obtain representative
trajectories for a crowd flow. Next, the chaotic dynamics
of all representative trajectories are extracted. Probabilis-
tic model is learned from these chaotic feature set, and
finally, a maximum likelihood estimation criterion is uti-
lized to identify a global abnormal or normal behaviour.
They can also predict the location. Sparse representation [1]
method uses a multi-scale histogram of optical flow (MHOF)
that also preserves spatial contextual information to identify
local and global anomalies. They concatenate optical flow
direction and energy (magnitude) information at multiple
scales to generate a motion histogram. Behaviour Entropy
model (BE) [13] use optical flow magnitude information in
local regions to model behavior certainty, behavior entropy,
scene behavior entropy in order to analyse crowd behaviour
for global and local anomaly detection. Gnouma et al. [19]
present a method based on local distribution of magnitude
of optical flow (DMOF) for global anomaly detection. Patil
and Biswas [20] also proposed a method for global anomaly

detection. First, optical flow is computed at each frame of
a video. Then the video is divided into spatio-temporal vol-
umes (STV). In each volume, mean value of the optical flow
magnitudes is computed. Next, STVs with the higher mean
values are used for testing the anomaly. Histogram of flow
orientation information to together with mean value of the
flow magnitudes in that volume is used as a feature vector
for abnormal crowd behaviour detection. Generative adver-
sarial nets (GAN) [21] use optical flow magnitude images
for global and local abnormal behaviour detection. Ravan-
bakhsh et al. [22] fuse appearance and optical flowmagnitude
image using a convolutional neural network for global and
local abnormal crowd behaviour detection. Pan et al. [23]
performs global abnormal behaviour detection using a com-
bination of features such as combination of scale, veloc-
ity and disorder features. In their work, velocity feature is
based on optical flow magnitude. Colque et al. [24] also
proposed an optical flow based feature descriptor for global
and local anomaly detection. These features are represented
by histograms of optical flow orientation and magnitude and
entropy. This is a three-dimensional histogram consist of ori-
entation, magnitude and entropy of orientation dimensions.

C. CONTRIBUTION
We present a new work for abnormal crowd event detection.
The key contribution is new motion information image (MII)
generation using optical flow. The proposed MIIs can rep-
resent and discriminate normal and abnormal events well,
and when MIIs are input to a CNN for training and testing,
it achieves very promising results in this domain. Both normal
and abnormal MIIs are trained using a CNN that means we
have two categories in the CNN network. According to our
observation, during an abnormal event, people start to run.
Especially in the motion regions, this abnormal behavior
increases the angle difference between the optical flow vec-
tors computed in the previous frame and in the current frame
at each pixel location. In addition, we also observe that the
optical flow magnitude increases too. We introduce a mathe-
matical formulation to produce a MII. As a first step, optical
flow angle differences are computed for each pixel location
based on the current frame and the previous frame. However,
some optical flow measurements are small and noisy, and
their angle difference affect the observation. To overcome this
problem, the angle difference is multiplied with the optical
flow magnitude computed in the current frame, and form the
MII.We compute aMII for each frame. Finally, a CNN is used
to learn normal and abnormal crowd behaviors using MIIs.
In the testing phase, the CNN classifies the input MII image.

It is important to emphasize that though there are many
optical flow based algorithms have been introduced for crowd
behavior understanding, the MII generation is a completely
new concept that is based on the angle difference between
optical flow vectors in consecutive frames, and the optical
flow magnitude in the current frame. Our studies show that
when MIIs are combined with CNN for classification, it out-
performs the existing methods in abnormal crowd behavior
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detection. Our experiments are performed on two commonly
used public datasets, such as UMN [29] and PETS2009 [30].
Results illustrate that our method achieves the best results in
both datasets.

In our preliminary work [14], optical flow-based features
are used together with one class SVM for abnormal crowd
behaviour detection. In [14], we created a one-dimensional
feature vector based on a combination of optical flow mag-
nitude and optical flow angle difference information. The
proposed feature vectors are extracted for frames representing
normal behaviour, and then we use a one class SVM to train
these feature vectors. Finally, if a test frame is significantly
deviating from the normal type, it is labelled to be abnormal.
Our earlier work is significantly different from the current
work since in this paper we generate a novel MII represen-
tation that provides a visual appearance of crowd motion.
The MIIs are input to CNN for training and testing of two
classes: Normal and Abnormal crowd behaviours. It is also
important to note that Hatirnaz et al. [31] adopted our prelim-
inary work [14] to develop a concept-based semantic search
interface. They use semantic web technologies to improve
video retrieval for abnormal crowd behaviors in a surveillance
system. The novelty of this work is about using semantic web
technologies for annotation of surveillance videos and devel-
oping an intelligent semantic search interface. They use the
existing work in [14] for crowd behavior feature extraction.

In this paper, Section 2 introduces motion information
image (MII) generation. Section 3 presents abnormal crowd
event detection using CNN. Section 4 presents experiments in
UMN and PETS2009 datasets, as well as, discusses param-
eter selection and computational complexity evaluations.
Section 5 is conclusions.

II. MOTION INFORMATION IMAGE GENERATION
The proposed motion information image (MII) generation
is based on optical flow. The optical flow at each frame is
computed using the Lucas-Kanade algorithm [32]. In a panic
situation, each person in the crowd may move in different
directions or in the same direction. Therefore, the MII must
be invariant to the direction of movement, as well as it must
be discriminative enough so that the normal and abnormal
events can be separated at every time frame. For example,
in Fig. 2 (a), whenwe look at the first and third images, we can
observe that each person is moving (e.g. scattering) mostly
towards different directions. On the other hand, in the second
image in Fig. 2(a), everyone is moving towards the same
direction (i.e. to the right side). All of these situations are
panic and escape situation despite the direction of movement
of each person (whether everyonemoves in different direction
or same direction). Thus, the MII must be invariant to the
direction of motion, and it must be discriminative so that the
normal and abnormal events can be identified at every time
frame.

In an unusual situation, people panic and scatter around.
In such a situation, we observe that, especially in motion
areas, the angle difference between the optical flow vectors

FIGURE 1. Optical flow angle difference. (a) Observed behaviour in
abnormal situation, (b) and in normal situation.

in consecutive frames increases at each pixel location. The
angle difference between two vectors, at each pixel location,
is calculated as follows:

θt (x, y)

= arccos

 (ut−1 (x, y) .ut (x, y)+ vt−1 (x, y) .vt (x, y))(√
u2t−1(x, y)+v

2
t−1 (x, y).

√
u2t (x, y)+v

2
t (x, y)

)

(1)

where−−→ot−1 (x, y) = (ut−1 (x, y) , vt−1 (x, y)) and
−→ot (x, y) =

(ut (x, y) , vt (x, y)) are optical flow vectors, respectively,
in the previous frame (t − 1) and in the current frame (t) at
each pixel location (x, y). θt is the angle difference at the cur-
rent frame. The optical flow angle difference between these
two vectors is also shown in Fig. 1 (a) and (b). To our obser-
vation, the angle difference appears to be higher, as shown
in Fig. 1 (a), when there is an abnormal behaviour (i.e. Escape
or panic situation), and the angle difference is smaller as
in Fig. 1 (b) when the behavior is normal. However, there are
also some optical flow measurements appear on the image
not because of object motion but because of noise or lighting
change in still areas (no motion areas). In still areas, under
ideal conditions, optical flow measurements should be zero
(magnitude is zero, and angle difference is zero). However
in practical applications, on real world images, optical flow
measurements usually appear to have small optical flowmag-
nitude in still areas because of noise or lighting change. The
angle difference between the vectors in consecutive frames
may be higher in still areas. We don’t want these noisy
measurements to affect our observation since MIIs are based
on angle difference of vectors in consecutive frames. To over-
come this problem, the angle difference is multiplied with
the optical flow magnitude computed in the current frame as
illustrated below,

It (x, y) =
√
u2t (x, y)+ v

2
t (x, y).θ t (x, y) (2)

where
√
u2t (x, y)+ v

2
t (x, y) is the optical flow magnitude in

the current frame (t) at each pixel location (x, y). θt (x, y)
is the angle difference calculated in Equation 1. It repre-
sents the motion information image (MII) for the current
frame (t). If magnitude and angle difference values are high,
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FIGURE 2. Some example frames representing abnormal and normal
behaviours and their corresponding MIIs.

the multiplication output will be high as well (this is a case
for motion regions). If magnitude is small and the angle
difference is high, the multiplication output will be smaller
(this may be a case for still regions). If magnitude is small and
the angle difference is small, the multiplication output will
be even smaller. Therefore, multiplying magnitude with the
angle difference generates differences on MIIs. This process
generates a significant difference between the abnormal and
normalMotion Information Images (MIIs). In Section IV (E),
we demonstrate that this multiplication improves the perfor-
mance considerably.

Fig. 2 (a) shows some example frames representing abnor-
mal behaviour, and their corresponding MII. On the other

FIGURE 3. The CNN structure.

hand, Fig. 2 (b) illustrates some example frames representing
normal behaviour and their corresponding MII. All of the
MIIs are resized to have dimensions 75 × 75 that will be
input to a CNN. In addition, for better illustration, the MIIs
are inverted in Fig. 2. It can be observed that MIIs produced
by abnormal behaviours are significantly different than the
MIIs produced by normal behaviours.

III. CNN TRAINING AND CLASSIFICATION
We use a simple 2D CNN structure, and train the CNN net-
work with MIIs to achieve abnormal crowd behavior detec-
tion. In the CNN network, there are two classes: Normal and
Abnormal behavior.

A. CNN ARCHITECTURE AND TRAINING
MIIs are experimented with simple CNN architectures with
varying number of convolutional layers and channels, various
filter sizes, and pooling layers to achieve the best accuracy in
both datasets. We observe that the CNN architecture that uses
MIIs for abnormal crowd behavior detection can be the one
with three convolutional layers as shown in Fig. 3. It is also
important to note that we also tested the MIIs with popular
deep networks in image recognition, where the results are
presented in Section IV-C.

In the simple CNN structure, shown in Fig. 3, MII inputs
are resized to have dimensions 75×75. The first convolution
layer uses 5×5 filters with 8 channels. After that we perform a
batch normalization, a rectified linear unit (ReLu) activation,
and a max pooling (with 3×3) operation. The second convo-
lutional layer uses 3×3 filters with 16 feature maps followed
by a batch normalization, a ReLu activation, and 3 × 3 max
pooling. The last convolutional layer utilizes 3 × 3 filters
with 32 feature maps followed by a batch normalization,
a ReLu, and 2 × 2 max pooling. Then, we form a fully con-
nected layer with two nodes since we have two classes, and
finally employ the softmax layer for predictions. The input
MII image is recognized as normal or abnormal using the
classification layer. During the training a stochastic gradient
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TABLE 1. Analysis of the CNN network.

descent with momentum method is used as a solver. The
learning rate is 0.01, mini-batch size is 50, and the maximum
number of epoches is 10. These parameter values are deter-
mined experimentally to achieve the best performances with
the proposed MIIs. The same CNN structure and parameter
values are utilized both in UMN and PETS2009 datasets.
TABLE 1 also shows the details of the network such as activa-
tion map resolutions at each layer, total learnable parameters
at each layer, and in the whole network.

B. CLASSIFICATION USING THE MIIs AND CNN
The MIIs of test frames are obtained as it is explained in
Section II. In the UMN dataset, the test frame is recognized
using the 28-by-28 neighbourhood frames that means the
window size is 57 (including the test frame). Each of the
frames in the window is labelled with the CNN classifier, and
then the most frequent class represents the behaviour (normal
or abnormal) of the test frame. On the other hand, in the PETS
2009 dataset, the test frame is recognized using the 21-by-21

neighbourhood frames that means that the window size is
43 (including the test frame). Each frame in the window is
labelled with CNN classifier, and then the most frequent class
represents the behaviour (normal or abnormal) of the test
frame. The window size for the UMN and PETS datasets
are determined experimentally that will be discussed in the
evaluations section.

IV. EVALUATION AND RESULTS
Experiments are performed on commonly used, and publicly
available two different datasets in this domain: UMN and
PETS2009 datasets. The proposed work is also compared
to the existing works in this domain (global anomaly detec-
tion) such as Optical Flow Features (OFF) [14], the method
based on Bayesian model (BM) [18], sparse reconstruction
cost (SRC) [1], chaotic invariants (CI) [11], the social force
model (SF) [7], the force field model (FF) [33], behaviour
Entropymodel (BE) [13], distribution of magnitude of optical
flow (DMOF) [19], context location and motion-rich spatio-
temporal volumes (CL andMSV) [20], generative adversarial
nets GAN [21], temporal CNN Pattern (TCP) [22], global
event influencemodel (GEIM) [23], and histograms of optical
flow orientation and magnitude (HOFO) [24]. We measure
the accuracy of the methods, which is the percentage of
correctly classified frames in comparison to the ground truth.
The same accuracy measurement has been employed by the
methods above. It is also important to note that, recently,
Sultani et al. [34] also proposed a framework for anomaly
detection. However, they need a large dataset for training
since they use the complex C3D [35] network to learn spa-
tiotemporal features with 3D convolutions. They constructed
a large datasets (1900 videos) consisting of surveillance
videos for abnormal events. However, the anomalies, in their
dataset, involve behaviors by individuals (one or a few people
performing abnormal actions such as one person abusing an
animal, one person breaking the class of a shop, two persons
stealing something from a car). Their dataset is not about
crowd behavior. Although the method looks effective in their
dataset, they did not experiment their work on UMN [29] and
PETS2009 [30] for crowd behavior analysis mainly because
they need large datasets for training.

A. EVALUATION ON UMN DATASET
The UMN dataset [29] consist of 11 videos, and each video
contains normal and abnormal crowd behaviors. There are
three different scenes in this dataset (two outdoor scenes and
one indoor scene). Scene 1 is an outdoor scene that consist of
two videos (e.g. Video 1 andVideo 2). For testing the Video 1,
we use the MIIs of Video 2 to train the CNN. Similarly, for
testing the Video 2, the MIIs of Video 1 are used for training
the CNN.

Scene 2 consists of six videos that are captured in an indoor
environment. While testing a particular video in scene 2,
we leave the testing video out, and use the MIIs of the rest
of the videos in scene 2 to train the CNN.
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TABLE 2. Accuracy comparison of methods in the UMN dataset.

FIGURE 4. Crowd escape behaviour detection results for Scene #1 in the
UMN dataset. (a) Ground truth, (b) detection by the proposed work,
(c) detection by OFF, (d) detection by BM, (e) detection by FF, (f) detection
by CI, (g) detection by SF, (h) detection by SRC, (i) detection by DMOF, and
(k) detection by GEIM.

Scene 3 has three videos that are captured in an outdoor
environment. While testing a particular video in scene 3,
we leave the testing video out, and use the MIIs of the rest
of the videos in scene 3 for training purpose.

TABLE 2 illustrates the accuracy of twelve methods for
three different scenes. In overall, the proposed method (MII
+ CNN) outperforms the existing methods in UMN dataset
with accuracy 99.08 %. The overall accuracy of proposed
method is better than the recently published works such as
GAN (99 %), BE (99 %), TCP (98.8 %), GEIM (98.47 %)
and DMOF (98.42%). GAN, TCP and BE methods did not
provide their performances for individual scenes. Our earlier
work, OFF, achieves 97.32 %. We improve the performance
of the earlier work, as well as perform better than the older
works in this dataset such as the accuracy of BM (96.40%),
FF (81.04%), CI (87.91%), SF (85.09%) and SRC (84.70%)
stay below the proposed method.

To summarize, our work provides the best results in UMN
dataset. In addition to these results, visual accuracy com-
parisons of methods for the UMN dataset are illustrated
in Fig. 4 and Fig. 5. These illustrations show that our work
performs very accurate segmentation in comparison to other

FIGURE 5. Crowd escape behaviour detection results for Scene #2 in the
UMN dataset. (a) Ground truth, (b) detection by the proposed work,
(c) detection by OFF, (d) detection by BM, (e) detection by FF, (f) detection
by CI, (g) detection by SF, (h) detection by SRC, and (i) detection by GEIM.

works. The proposed method can detect the start and the end
times of the abnormal event very well.

B. EVALUATION ON PETS DATASET
In PETS2009 dataset [30], there is one scenario about abnor-
mal crowd behaviour. This scenario was captured from four
different cameras location (four different viewpoints), result-
ing in 4 videos. In this scenario, people come to centre
from different directions, wait there for a while and suddenly
they start to run around in random directions. Although the
same action is performed, there are significant differences
because of different viewpoints. For example, the distance
between camera and the crowd appears to be different for
each viewpoint, the lighting conditions, distribution and loca-
tion of people and objects appear to be different as well.
Therefore, we evaluate the accuracy for these four different
viewpoints. Each video consist of 374 frames. For testing
view #1 video of the scenario, the MIIs of the other views are
used for training the CNN. For testing view #2 of the scenario,
the MIIs of the other views are used for training the CNN.
Similarly, we test view #3 and view #4.

TABLE 3 illustrates the accuracy of seven methods for
this scenario. In overall, our work (MII+ CNN) outperforms
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TABLE 3. Accuracy comparison of the methods in the PETS2009 dataset.

FIGURE 6. Crowd escape behaviour detection results for view #2 video of
PETS2009 dataset. (a) Ground truth, (b) detection by the proposed work,
(c) detection by OFF, (d) detection by BM, (e) detection by FF, (f) detection
by CI and (g) detection by SF.

the other methods with accuracy 98.39 %. Other methods
OFF (96.72%) BM (94.22%), FF (87.66%), CI (92.62%),
SF (84.97%) and DMOF (96.44%) achieves worse than
the proposed method. Only in view #4, our work ranked
slightly behind the FF method. This is mainly because of
the resolution problem in view #4. In view #4, there is a low
resolution problem, and this is why almost all of the methods
have a lower performance there in comparison to other views.

A visual accuracy comparison is also illustrated in Fig. 6
for the PETS2009 dataset. Our work performs very accurate
anomaly detection in comparison to existing methods.

C. EVALUATION OF MIIs WITH OTHER NETWORKS
We also evaluate the proposed MIIs with popular deep net-
works for Anomaly detection such as with ResNet-50 [36],
GoogleNet-V3 [37], DenseNet-250 [38], and the CNN net-
work proposed by Oquab et al. [39] that is the improved
version of AlexNet proposed by Krizhevsky et al. [40].
We performed transfer learning to tune the network param-
eters for two possible classes: Normal and Abnormal actions.
Overall accuracy results both in UMN and PETS datasets
are presented below in TABLE 4. We also included results
with the simple CNN presented in Section III. During the
transfer learning, particularly we adjusted the input image

TABLE 4. The proposed MIIs with different networks.

size according to a pre-trained network, and replace the final
layers to have only two classes. Results show that all networks
achieve similar results with the MIIs.

D. THE IMPACT OF WINDOW SIZE
In both UMN and PETS2009 datasets, the impact of changing
window size is evaluated. Fig. 7 (a) and (b) show the overall
performance of proposed method with changing window size
in UMN and PETS2009 datasets, respectively. It is seen that
the best window size for our approach (MII + CNN) in the
UMNdataset is 57. In PETS2009 dataset, the optimal window
size for MII + CNN is 43.

E. THE INFLUENCE OF ANGLE DIFFERENCE
AND OPTICAL FLOW MAGNITUDE
We experiment the effect of angle difference and optical flow
magnitude on detection accuracy and compare with the com-
bination. In particular, we expect to observe higher detection
accuracy for combination of optical flow angle difference and
optical flow angle magnitude (i.e. multiplication of them as
shown in Equation 2), in comparison to only using angle dif-
ference or only usingmagnitude. Results for the UMNdataset
are presented in TABLE 5. Only angle difference performs
91.30%, only optical flow magnitude performs 94.34%, and
the combination performs 99.08%. These results show that
the combination increases the accuracy remarkably.

Results for PETS2009 dataset are presented in TABLE 4.
Only angle difference performs 93.25%, only optical flow
magnitude performs 85.49% and the combination performs
98.39%. Similar to the results in the UMN dataset, results
in the PETS2009 dataset also confirm that the combination
improves the accuracy significantly.
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FIGURE 7. The effect of window size on accuracy. (a) UMN dataset.
(b) PETS2009 dataset.

TABLE 5. The influence of angle difference and optical flow magnitude
on accuracy (%) in the UMN dataset.

TABLE 6. The influence of angle difference and optical flow magnitude
on accuracy (%) in the PETS dataset.

F. COMPUTATION TIME
The computational time for each phase of our method in both
UMN and PETS2009 datasets are shown in TABLE 7 and
TABLE 8, respectively. Results are obtained using Matlab

TABLE 7. Computation time on UMN dataset.

TABLE 8. Computation time on PETS2009 dataset.

2018 on a Windows 7 Operating System with Intel Core
i7-6700, 2.60GHz and 16GB RAM. Results show that MII
formation needs considerable amount of time comparing to
other stages. In addition, we observe that once the CNN is
trained, the testing stage is very fast.

V. CONCLUSIONS
We presented an approach for abnormal crowd behaviour
detection. The proposed approach is based on a new Motion
Information Image (MII) model that is formulated using opti-
cal flow. The MII depends on the angle difference calculated
between the optical flow vectors in consecutive frames. There
are also some optical flow measurements that are small, and
their angle difference may affect the observation. To over-
come this problem, the angle difference is multiplied with the
optical flow magnitude in the current frame to generate the
MIIs. A convolutional neural network (CNN) is used to learn
normal and abnormal events, and when a test sample is input
to the CNN, it is assigned to one of the two classes (Normal
or Abnormal). Evaluations are conducted on publicly avail-
able UMN and PETS2009 datasets. Results indicate that the
proposed work is very effective.
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