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Abstract

The isovector axial vector form factors of N → � transition are calculated by employing Light-cone 
QCD sum rules. The analytical results are analyzed by both the conventional method, and also by a 
Monte Carlo based approach which allows one to scan all of the parameter space. The predictions are 
also compared with the results in the literature, where available. Although the Monte Carlo analysis pre-
dicts large uncertainties in the predicted results, the predictions obtained by the conventional analysis are in 
good agreement with other results in the literature.
© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Form factors are important properties of hadrons that contain information about their dynam-
ics and internal structure. In this work, isovector axial form factors for the N → � transition are 
studied. These form factors are also important in the pion production off the nucleon, where the 
� baryon appears as an intermediate resonance, and can strongly influence the production rates 
(see e.g. [1]). The N to � transition has the advantage that the � is the dominant, clearly acces-
sible nucleon resonance [2]. The information contained in the axial isovector N to � transition 
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form factors can be considered as supplementary to that from electromagnetic form factors. It 
is also possible to check the validity of the off-diagonal Goldberger–Treiman relation using a 
measurement of the isovector axial vector form factors for N to � transition [3,4].

The first experimental results of N → � axial vector form factors come from G0 collabora-
tions at JLAB [5] based on parity-violating electron scattering. At Q2 = 0.34 GeV2, the obtained 
value of axial form factors determined from the hydrogen asymmetry in inelastic electron–proton 
scattering is GN�

A = −0.05 ± (0.35)stat ± (0.34)sys ± (0.06)th. Furthermore, several theoretical 
investigations of N → � axial vector form factors are carried out, on lattice QCD [2], in quark 
models [6], using light-cone QCD sum rules [3], chiral perturbation theory (χPT) [7,8] or weak 
single pion production [4,1,9].

To study form factors, a non-perturbative method is necessary. The light cone QCD sum rules 
(LCSR) is one of these non-perturbative methods that has been successfully applied to study 
non-perturbative hadronic properties [10–12]. In LCSR, the properties of the hadron under study 
are expressed in terms of the properties of the vacuum and the light cone distribution amplitudes 
(DAs) of the hadron.

Since the form factors are expressed in terms of the properties of the vacuum and DAs of the 
hadron, any uncertainty in these parameters should be reflected in the obtained predictions, on 
top of any other uncertainties inherent in the sum rules approach. A Monte Carlo based approach
is proposed to estimate the errors due to the uncertainties of these parameters by scanning the 
parameter space in [13]. In this work, LCSR will be used to study the N → � transition and the 
Monte Carlo based method will be applied to estimate the errors in the form factors by extending 
the method proposed in [13] to the study of form factors.

The paper is organized as follows. In section 2, the calculation of the sum rules in LCSR will 
be presented. In section 3, Monte Carlo analysis to estimate the uncertainties in the predictions 
due to the input parameters will be presented. In the last section, we conclude our work with a 
discussion of our results.

2. Formulation of baryon axial form factors

The LCSR for axial form factors of N → � transition is derived from the following vacuum 
to nucleon correlation function:

�μν(p,q) = i

∫
d4xeiqx〈0|T [J�

μ (0)A3
ν(x)]|N(p, s)〉, (1)

where J�
μ (x) is an interpolating current for the �, and A3

ν is an axial vector–isovector current 
defined as

A3
ν(x) = 1

2

(
ū(x)γνγ5u(x) − d̄(x)γνγ5d(x)

)
(2)

The correlation function given in Eq. (1) can be calculated in terms of hadronic properties, 
the so called hadronic representation, if p2 > 0 and (p + q)2 > 0, and also in terms of QCD 
parameters and several distribution amplitudes (DAs) of the N baryon, the so called QCD repre-
sentation, in the deep Euclidean region p2 → −∞ and (p + q)2 → −∞.

The hadronic representation of the correlation function can be obtained by inserting a com-
plete set of states with the same quantum numbers as the interpolating currents.
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�μν(p,q) =
∑
s′

〈0|j�
μ |�(p′, s′)〉〈�(p′, s′)|A3

ν |N(p, s)〉
M2

� − p′ 2
+ ... (3)

where M� is the mass of the � baryon. The N → � matrix element appearing in Eq. (3) can be 
written in terms of four invariant form factors as follows [14–16];

〈�(p′, s′)|A3
ν |N(p, s)〉

= iυλ(p′, s′)
[{

CN�
3 (q2)

MN

γμ + CN�
4 (q2)

M2
N

p′
μ

}
(gλνgρμ − gλρgμν)q

ρ

+ CN�
5 (q2)gλν + CN�

6 (q2)

M2
N

qλqν

]
N(p, s) (4)

where MN is the mass of the nucleon, and q = p − p′.
The remaining matrix element, that of the interpolating current 〈0|J�

μ |�(p′, s′)〉 is defined as

〈0|J�
μ |�(p′, s′)〉 = λ�υμ(p′, s′)

where λ� is overlap amplitude of � baryon and υμ(p′, s′) is the � baryon spinor. Summation 
over spins of � baryon is defined as:

∑
s′

υμ(p′, s′)υν(p
′, s′) = −(/p′ + M�)

[
gμν − 1

3
γμγν − 2p′

μp′
ν

3M2
�

+ p′
μγν − p′

νγμ

3M�

]
(5)

Inserting Eq. (4) into Eq. (3) and using Eq. (5), the correlation function Eq. (1) can be expressed 
in terms of the form factors as follows:

�μν(p,q) = −i
λ�

M2
� − p′ 2

[
CN�

3 (q2)

{
1 − M�

MN

}
(qμγν − gμν/q)

+
{

CN�
5 (q2) + CA

4 (q2)
p′.q
M2

N

}
gμν/q

+ CN�
3 (q2)

MN

(qμγν − gμν/q)/q

+
{

−2CN�
3 (q2)

MN

− CN�
4 (q2)

MN

(1 + M�

MN

)

}
(qμp′

ν − gμνp
′.q)

+
{
CN�

5 (q2)(M� + MN)
}

gμν

+
{

CN�
6 (q2)(

M� + MN

M2
N

)

}
qμqν −

{
CN�

4 (q2)

M2
N

}
qμp′

ν/q

+
{

CN�
6 (q2)

M2
N

}
qμqν/q

]
(6)

In this expression, only the contribution of the spin-3/2 � baryon is shown. In principle, the 
correlation function can also receive contributions from spin-1/2 particles. The overlap of the 
spin-1/2 particles with the J�

μ current can be written as
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〈1/2(p′)|J�
μ |0〉 = (

Ap′
μ + Bγμ

)
u(p′) (7)

where u(p′) is the spinor describing the spin-1/2 particle. Hence, if in the correlation function, 
the γμ matrix is carried to the left, only the terms that are proportional to p′

μ or contain a γμ at 
the far left receive contributions from the spin-1/2 particles. Following this observation, we will 
order the gamma matrices as γμγν/q/p′. The /p′ matrix can be eliminated using the equation of 
motion. After these steps, any structure that is not proportional to p′

μ, or that does not contain a 
γμ receives contributions from the spin-3/2 particles only [17,18].

To obtain the expression of the correlation function in terms of the QCD parameters and the 
DAs, an explicit form for the interpolating current of the � baryon needs to be chosen. In this 
work, the interpolating current is chosen as follows:

J�
μ (x) = 1√

3
εabc[2(uaT (x)Cγμdb(x))uc(x) + (uaT (x)Cγμub(x))dc(x)] (8)

Here a, b, c are color indices and C denotes charge conjugation. After contracting one pair of 
the light quark operators, the correlation function becomes:

(
�μν

)
λη

= i

8
√

3

∫
d4xeiqx (Cγμ)αβ(γνγ5)ρσ

{
4εabc〈0|q1

a
σ (0)q2

b
θ (x)q3

c
φ(0)|N(p, s)〉

[
2δη

αδθ
σ δ

φ
βS(−x)λρ + 2δ

η
λδθ

σ δ
φ
βS(−x)αρ

+ δη
αδθ

σ δ
φ
λ S(−x)βρ + δ

η
βδθ

σ δλ
φS(−x)αρ

]

− 4εabc〈0|q1
a
σ (0)q2

b
θ (0)q3

c
φ(x)|N(p, s)〉[

2δη
αδθ

λδφ
σ S(−x)βρ + δη

αδθ
βδφ

σ S(−x)λρ

]}
(9)

where λ and η are spinor indices, and S(x) represents the light-quark propagator and is given by:

Sq(x) = i/x

2π2x4
− 〈qq̄〉

12

(
1 + m2

0x
2

16

)

− igs

1∫
0

dυ

[
/x

16π2x4
Gμνσ

μν − υxμGμνγ
ν i

4π2x2

]
. (10)

In this expression, 〈qq̄〉 is the quark condensate, m0 is defined in terms of the mixed quark 
gluon condensate as 〈q̄gsG

μνσμνq〉 ≡ m2
0〈q̄q〉 and gs is the strong coupling constant. The terms 

proportional to Gμν arise from the interaction of the propagating quark with the external glu-
onic field and lead to contributions from the four-particle nucleon distribution amplitudes. Such 
corrections from higher Fock space components of the nucleon wave function are not expected 
to play an important role [19], and hence we would not take them into account. Additionally, 
the terms proportional to quark condensates are removed by Borel transformations. Hence the 
first term, which contains the hard light-quark propagator, will be considered for our discus-
sion. To proceed with the calculation of the correlation function, the matrix element of the local 
three-quark operator 4εabc〈0|qa (a1x)qb (a2x)qc (a3x)|N(p, s)〉 is needed. The light-cone dis-
1α 2β 3γ
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tribution amplitudes of the nucleon, which we use in our work to extract the axial form factors, 
are presented in Ref. [20] up to twist six on the basis of QCD conformal partial wave expansion. 
The expansion is in terms of increasing twist, where the twist of a DA is defined as the difference 
between the dimension and spin of the operators contributing to that DA. We refer the reader to 
Ref. [20] for a detailed analysis of the distribution amplitudes of the nucleon. Using the most 
general decomposition of the matrix element (see Eq. (2.3) in Ref. [21]) and taking the Fourier 
transformations appearing in Eq. (9), the QCD representation of the correlation function can be 
obtained.

Note that the hadronic representation, Eq. (6), and the QCD representation are obtained in 
different kinematical regions. The two expressions can be related to each other by using the 
spectral representation of the correlation functions. Quite generally, the coefficients of various 
structures in the correlation function can be written as:

�(p2,p′ 2;Q2) =
∞∫

0

ds1ds2
ρ(s1, s2;Q2)

(s1 − p2)(s2 − p′ 2)
+ polynomials in p2 or p′ 2 (11)

where ρ is called the spectral density. The spectral density can be calculated both using the 
hadronic representation of the correlation function, ρh, or using the QCD representation, ρQCD . 
Once ρ is obtained, the spectral representation allows one to evaluate the correlation function in 
all kinematical regions for p2 and p′ 2.

The LCSR are obtained by matching the expression of the correlation function in terms 
of QCD parameters to its expression in terms of the hadronic properties, using their spectral 
representation. In order to do this, we choose the structures proportional to qμγν/q , qμp′

ν/q , 
(gμν/q − qμγν/q) and qμqν/q for the form factors CN�

3 , CN�
4 , CN�

5 and CN�
6 , respectively. For 

the N → � transition form factors, we obtain:

CN�
3 (Q2)

λ�

M2
� − p′ 2

= −M3
N√
3

1∫
0

dα
(1 − α)

(q − pα)4
[F9(α) − F10(α)]

+ MN√
3

1∫
0

dxi

1

(q − pxi)2
[2F11(xi) − F12(xi)]

− M3
N√
3

1∫
0

dxi

1

(q − pxi)4
[2F13(xi) − F14(xi)]

− M3
N√
3

1∫
0

dβ
1

(q − pβ)4
[2F15(β) − F16(α)] (12)

CN�
4 (Q2)

λ�

M2
� − p′ 2

= −M5
N√
3

1∫
0

dβ
(1 − β)2

(q − pβ)6
[4F5(β) − 2F7(β)]

+ M3
N√
3

1∫
dα

(1 − α)

(q − pα)4
[2F6(α) + F8(α)] (13)
o
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CN�
5 (Q2)

λ�

M2
� − p′ 2

= M3
N√
3

1∫
0

dβ
1

(q − pβ)4
[F17(β) − F18(β)]

− M3
N√
3

1∫
0

dxi

1

(q − pxi)4
[F19(xi) + F20(xi)]

+ MN√
3

1∫
0

dxi

1

(q − pxi)2
[F21(xi) − F22(xi)]

− M3
N√
3

1∫
0

dβ
2

(q − pβ)4
[F23(β) − F24(β)]

+ MN√
3

1∫
0

dxi

1 − xi

(q − pxi)2
[F25(xi) − F26(xi)]

− M3
N√
3

1∫
0

dxi

1

(q − pxi)4
[F27(xi) − F28(xi)]

+ M3
N√
3

1∫
0

dβ
1 − β

(q − pβ)4
[F29(β) − F30(β)]

+ M3
N√
3

1∫
0

dα
1 − α

(q − pα)4
[F31(α) − F32(α)]

− MN√
3

1∫
0

dxi

1

(q − pxi)2
[2F33(xi) − F34(xi)]

+ M3
N√
3

1∫
0

dxi

1

(q − pxi)4
[2F35(xi) + F36(xi)]

+ M3
N√
3

1∫
0

dβ
1

(q − pβ)2
[2F37(β) − F38(β)]

+ M3
N√
3

1∫
0

dβ
1 − β

(q − pβ)4
[2F39(β) + F40(β)]

− MN√
3

1∫
dα

1

(q − pα)2
[F41(α) + F42(α)] (14)
0
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CN�
6 (Q2)

λ�

M2
� − p′ 2

= M5
N√
3

1∫
0

dβ
(1 − β)2

(q − pβ)6
[4F1(β) + 2F3(β)]

− M3
N√
3

1∫
o

dα
(1 − α)

(q − pα)4
[F2(α) − F4(α)] (15)

The explicit forms of the functions that appear in the above sum rules in terms of the DAs 
of the nucleon are given in Appendix A. In these expressions, the left hand side is actually 
a sum over the contributions of all spin-3/2 baryons. The sum rules are obtained by carrying 
out Borel transformation to eliminate any polynomials that arise during the matching. Further-
more, Borel transformation also suppresses the contributions of higher states and continuum. 
After Borel transformations, Eqs. (12)–(15) take the form

CN�
i (Q2)e

− m2
�

M2 =
1∫

0

dxρi(x)e
− s(x)

M2 i = 3, 4, 5, or 6 (16)

where

s(x) = (1 − x)M2
N + 1 − x

x
Q2,

with Q2 = −q2 and M is the Borel parameter.

3. Traditional analysis vs. Monte Carlo analysis

In the traditional analysis of sum rules, the spectral density of the higher states and the 
continuum are parameterized using quark hadron duality. In this approach, it is assumed that 
ρh(s) = ρQCD(s) when s > s0, i.e. the contribution of the higher states and continuum to the 
spectral density is approximated by the spectral density expressed in terms of the QCD param-
eters. Both the Borel transformation and the subtraction of the higher states and the continuum 
are carried out using the following substitution rules (see e.g. [20]):

∫
dx

ρ(x)

(q − xp)2
→ −

1∫
x0

dx

x
ρ(x)e−s(x)/M2

,

∫
dx

ρ(x)

(q − xp)4
→ 1

M2

1∫
x0

dx

x2
ρ(x)e−s(x)/M2 + ρ(x0)

Q2 + x2
0M2

N

e−s0/M
2
,

∫
dx

ρ(x)

(q − xp)6
→ − 1

2M4

1∫
x0

dx

x3
ρ(x)e−s(x)/M2 − 1

2M2

ρ(x0)

x0(Q2 + x2
0M2

N)
e−s0/M

2

+ 1

2

x2
0

Q2 + x2
0M2

N

[
d

dx0

ρ(x0)

x0(Q2 + x2
0M2

N)

]
e−s0/M

2
, (17)

where x0 is the solution of the quadratic equation for s = s0:
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x0 =
[√

(Q2 + s0 − M2
N)2 + 4M2

NQ2 − (Q2 + s0 − M2
N)

]
/(2M2

N),

where s0 is the continuum threshold. s0 → ∞ (x0 = 0) limit corresponds to Borel transformation 
without subtraction.

An alternative approach to analyze the sum rules using Monte Carlo methods is presented 
in [13]. The method has the advantage that it allows for a more reliable estimate of the error bars. 
In this method, one chooses random values for the uncertain parameters appearing in the sum 
rules within their error bars. For each set of values of the parameters, one obtains a numerical 
prediction for quantity under study. The obtained results are then analyzed statistically to obtain 
the central value and the error bars (see [13] for details). In [13], the method has been used for 
mass sum rules, and in [22,23], it has been applied to calculating coupling constants. Here we 
generalize that method to analyze the form factors. The steps of the analysis can be summarized
as follows:

1. Let pi denote one of the input parameters whose central value is p̄i and whose error is σi . 
We will assume that pi is a normally distributed random variable with variance σi . Let {pk}
denote a possible set of input parameters. Choose N such sets. In this work, N is chosen to 
be N = 1000.

2. Let �{pk}(Q2, M2) be the correlation function calculated using the set {pk} of input param-
eters for the fixed values of M2 and Q2. Denote the average and the standard deviation of 
these values by �̄(Q2, M2) and σ�(Q2, M2).

3. For each set {pk} of parameters, define χ2{pk} distribution for a fixed Q2 as

χ2{pk}(Q
2) =

∑
M2

(
�{pk}(Q2,M2) − �model(Q2,M2;C(Q2), an)

)2

σ�(Q2,M2)2
(18)

where the model for the correlation function depends on the form factor C(Q2) and possibly 
other parameters an.

4. Minimizing χ2{pk}(Q
2) with respect to the form factor C(Q2) and other parameter of the 

model for the correlation function yields the form factor for the given set of parameter 
C{pk}(Q2).

5. Repeating this procedure for all the parameter sets, a distribution for the value of the form 
factor at the chosen value of Q2 is obtained. The prediction for the value of the form factor 
at the chosen value of Q2 can be taken as the average of this distribution and the uncertainty 
as the standard deviation of this distribution.

6. This procedure is repeated for various values of Q2 to obtain the value and the uncertainty 
of the value of the form factor can be obtained.

In this work, the correlation has been modelled as

� = a0C
N�(Q2)e

− M2
�

M2 + a1e
− m2

1
M2 + a2e

− m2
2

M2 (19)

where we imposed the constraint m2 > m1 > M�. Both a triple exponential (TE) and a double 
exponential (DE) fit (by setting a2 = 0) have been performed.
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Table 1
The values of the parameters entering the DAs of N . The upper panel shows the dimen-
sionful parameters N. In the lower panel we list the values of the five parameters that 
determine the shape of the DAs.

fN (GeV2) λ1 (GeV2) λ2 (GeV2)

0.005 ± 0.0005 −0.027 ± 0.009 0.054 ± 0.019

V d
1 Au

1 f d
1 f d

2 f u
1

0.23 ± 0.03 0.38 ± 0.15 0.40 ± 0.05 0.22 ± 0.05 0.07 ± 0.05

4. Results and conclusion

To obtain a numerical prediction for the form factors, first one needs the expressions for the 
distribution amplitudes of the nucleon [20], the distribution amplitudes can be expressed in terms 
of several parameters. Not all of the parameters are independent. The independent parameters and 
their numerical values are presented in Table 1 [20]. Another non-perturbative parameter that is 
required is the residue of the � baryon λ�. This residue is obtained from the mass sum rules for 
the � baryons to be λ� = 0.038 GeV3 [24–26].

In the conventional analysis, the obtained predictions for the form factors depend on two 
auxiliary parameters: the Borel parameter M2, and the continuum threshold s0. The continuum 
threshold signals the energy the scale at which, the excited states and continuum start to con-
tribute to the correlation function. There are various proposal on how to determine this parameter. 
One approach is to vary this parameter in a reasonable range, until a Borel window appears in 
which the predictions are independent of the Borel parameter [27]. Another recent proposal is to 
choose s0 as a function of the Borel parameter and to determine the functional dependence by 
requiring the independence of the mass prediction on the Borel parameter [28]. The mass of the 
� baryon can be obtained from Eq. (16) using the relation:

M2
� = M4 ∂

∂M2
ln

(
CN�

i (Q2)e
− M2

�

M2

)
(20)

But the generally accepted rule of thumb to determine this parameter is to assume that s0 

(M� + 0.3 GeV)2 and check the dependence of the results on slight variations of this parameter. 
To estimate the reliability of this determination of s0, in Fig. 1, we present the M� predictions 
obtained from the form factor sum rules for s0 = 2.0 GeV2, s0 = 2.5 GeV2 and s0 = 3.0 GeV2

at Q2 = 2.0 GeV2. As can be seen from the figures, the predictions for the mass of M� are 
within about 20% for all of the sum rules. Also, as can also be seen from the figures, within the 
considered range of M2, the mass predictions are almost independent of the Borel parameter. 
Hence, a possible M2 dependence of s0 is not necessary within this range.

The Borel parameter is an unphysical parameter, and the predictions on the form factors 
should be independent of the value of this parameter. Due to the approximations made to ob-
tain the sum rules, a residual dependence on M2 remains and for this reason, a region in which 
the predictions are practically independent of the value of the Borel parameter needs to be cho-
sen. In Fig. 2, we plot the dependencies of the form factors on M2 for two fixed values of Q2

and for various values of s0 in the range 2.0 GeV2 ≤ s0 ≤ 4 GeV2. As can be seen from these 
figures, for M2 ≥ 3.0 GeV2, there is negligible dependence of the Borel parameter. Hence, in the 
traditional analysis, this range of M2 is used.
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Fig. 1. The M� predictions obtained from the form factor sum rules for s0 = 2.0 GeV2, s0 = 2.5 GeV2 and s0 =
3.0 GeV2 at Q2 = 2.0 GeV2, (a) for CN�

3 form factors, (b) for CN�
4 form factors, (c) for CN�

5 form factors, (d) for 
CN�

6 form factors.

To analyze the convergence of the twist expansion, in Fig. 3, the contribution from definite 
twists to the form factors is presented at fixed Q2 = 2.0 GeV2 and s0 = 2.5 GeV2 values. As can 
be seen from the figures, the dominant contribution to the form factors is from twist-4 DAs. Form 
factors CN�

4 , CN�
5 and CN�

6 receive negligible contributions from other DAs. In the case of the 
CN�

3 form factors, the contributions of all the twists are comparable, and hence, one can not talk 
about the convergence of the twist expansion. Note that, for the case of CN�

3 , although the twist 
expansion does not seem to converge, the mass predicted by the sum rules for the CN�

3 form 
factor is quite accurate as can be seen from Fig. 1(a). Indeed, the prediction of M� using the 
sum rules for CN�

3 is more accurate than the predictions obtained from the sum rules for CN�
4

and CN�
5 . This can be interpreted as an indication in favor of the reliability of the predictions on 

the form factors for CN�
3 . The baryon mass corrections to the DAs contribute only to the form 

factors CN�
3 and CN�

5 . The contribution of these corrections to CN�
5 is negligible, whereas, 

the contribution to CN�
3 is twice the final result. This means that the baryon mass correction 

contribution to this form factors even changes the sign of the form factor and hence can not be 
neglected.

In Fig. 4, we present the Q2 dependence of the form factors obtained using two different types 
of analysis. The results of the conventional sum rules analysis are presented with lines for the 
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Fig. 2. The dependence of the form factors; on the Borel parameter squared M2 for the values of the continuum threshold 
s0 = 2.0 GeV2, s0 = 2.5 GeV2, s0 = 3.0 GeV2, s0 = 3.5 GeV2, s0 = 4.0 GeV2 and Q2 = 2.0 GeV2, 4.0 GeV2 (a) and 
(b) for CN�

3 form factor, (c) and (d) for CN�
4 form factor, (e) and (f) for CN�

5 form factor and (g) and (h) for CN�
6

form factor. (Note the different scales used for the vertical axis.)
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Fig. 3. The contribution to the form factors at Q2 = 2.0 GeV2 from various twists. (a) for CN�
3 form factors, (b) for 

CN�
4 form factors, (c) for CN�

5 form factors, (d) for CN�
6 form factors. The T3, T4, T5, T6 and M are twist-3, twist-4, 

twist-5, twist-6 and mass correction contributions, respectively.

central values of the parameters appearing in Table 1. The circles and squares with error bars 
are the results of the Monte Carlo analysis. The results obtained by both a double exponential 
(DE) and a triple exponential (TE) model of the correlation function are presented. It is observed 
that for the form factors CN�

3 (Q2), CN�
4 (Q2) and CN�

6 (Q2), Monte Carlo analysis and the 
prediction for the conventional sum rules analysis agree with each other at large values of Q2, 
but deviate from each other for small values of Q2. In the case of CN�

5 (Q2), we observe that 
predictions for the central values agree at small Q2, but deviate from each other for large values 
of Q2. Also, it is seen that although with the conventional sum rules analysis, one predicts value 
for form factor CN�

3 (Q2) that is very close to zero, the Monte Carlo analysis shows that this 
form factor is consistent with significant non-zero values. In the case of CN�

4 (Q2), although 
the conventional sum rules analysis leads to a value that is significantly away from zero, the 
Monte Carlo analysis shows that this form factor is almost consistent with zero.

The values of the form factors at zero momentum transfer Q2 = 0 define the corresponding 
charges. The sum rules method is only reliable at large enough values of Q2, which is typi-
cally assumed to be Q2 > 1 GeV2. To obtain the value at Q2 = 0, the predictions have to be 
extrapolated.

The function that is typically used in the literature for the extrapolation has the form (see 
e.g. [4])

CN�
i (Q2) = CN�

i (0)

2 2 n
(21)
(1 + Q /mA)
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Fig. 4. The dependence of the form factors on Q2. The results of the Monte Carlo analysis are shown by symbols and 
error bars. Results of conventional analysis (calculated at M2 = 3.0 GeV2) are shown by lines. (a) for CN�

3 form factor, 
(b) for CN�

4 form factor, (c) for CN�
5 form factor and (d) for CN�

6 form factor.

where n = 2. The axial mass mA is the free parameter which has been found experimentally to 
be [29]

mA = 1.28+0.08
−0.10. (22)

This value is used to fit our predictions to obtain CN�
i , i = 3, 4, 5 or 6. The obtained predictions 

on the axial charges are presented in Table 2.
Although this function gives a reasonable fit to our predictions on CN�

3 , CN�
4 and CN�

5 using 
the conventional analysis, it fits poorly to the form factor CN�

6 . For this form factor, a better fit 
is obtained for n = 4. Furthermore, close to Q2 = 1 GeV2, the predictions of the form factor 
from sum rules deviate from a pole form significantly. This can be interpreted as a failure of the 
sum rules at such low values of Q2. For this reason, we fit the form factors only in the region 
Q2 > 2 GeV2.

At Q2 = 0, experimentally the most easily accessible form factor is CN�
5 [4]. This form 

factor also determines the axial charge of the transition N − �. Various predictions for this 
axial charge are as follows: the off-diagonal Goldberger–Treiman relation predicts that the axial 
charge is CN�

5 (0) 
 1.20, the prediction of quark model ranges from CN�
5 (0) = 0.81 to 1.53

(see e.g. [6] and reference therein), in the case of chiral perturbation theory it is estimated to be 
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Table 2
The values of dipole fit parameters, CN�

i
(0) for axial form factor obtained from the conventional analysis, MC analysis 

using DE (MCDE) and MC analysis using TE (MCTE).

Form factor CN�
i

(0) (GeV−2)

(conventional analysis)
CN�

i
(0) (GeV−2)

(MCDE)
CN�

i
(0) (GeV−2)

(MCTE)

C3 0.11 ± 0.03 0.41 ± 0.12 0.22 ± 0.07
C4 0.27 ± 0.09 0.13 ± 0.02 0.10 ± 0.02
C5 1.14 ± 0.20 0.59 ± 0.11 0.45 ± 0.09
C6 −1.65 ± 0.46 −1.88 ± 0.15 −1.96 ± 0.16

CN�
5 (0) = 1.16 [7], lattice QCD predicts CN�

5 (0) = 0.9 ± 0.02 [2] and the results from weak 
pion production are CN�

5 (0) = 1.08 ± 0.1 [4] and CN�
5 (0) = 1.19 ± 0.08 [9]. Although these 

values are consistent with our prediction on CN�
5 (0) using the conventional analysis within error 

bars, the Monte Carlo analysis predicts smaller values. We can also compare our results with
Adler’s model predictions [14]. There, the axial form factors for the N → � transition have been 
parameterized as

CA
j (Q2) = CA

j (0)(1 − ajQ
2/(bf − Q2))

(1 − Q2/m2
A)2

; j = 3,4,5 (23)

with

CN�
3 (0) = 0, CN�

4 (0) = −CN�
5 (0)

4 = −0.3 and CN�
5 (0) = 1.2

a3 = b3 = 0, a4 = a5 = −1.21, b4 = b5 = 2 GeV2.

We see the predictions of the conventional analysis are consistent with the predictions of 
Adler’s model except of the CN�

3 , however, the predictions of the Monte Carlo methods are not 
consistent.

In [5], GN�
A , defined as:

GN�
A (Q2) = 1

2

[
M2

N − M2
� + Q2

]
CA

4 (Q2) − M2
NCA

5 (Q2), (24)

is measured to be GN�
A (Q2 = 0.34 GeV2) = −0.05 ± (0.35)stat ± (0.34)sys ± (0.06)theory . Us-

ing the values in Table 2, GN�
A = −1.04 ± 0.19, GN�

A = −0.54 ± 0.10, GN�
A = −0.41 ± 0.08

respectively using conventional analysis, MC analysis with DE, and MC analysis with TE. Note 
that, the experimental measurement has large error bars, but is consistent with GN�

A = 0. The 
predictions of both the conventional analysis and MC analysis are consistent with the experi-
mental value of GN�

A (within error bars), but the MC analysis predicts a much smaller value 
for GN�

A .
In conclusion, we have extracted the isovector axial-vector form factors of N-� transition 

by applying the LCSR. The Q2 dependence of form factors is obtained using the conventional 
analysis, and Monte Carlo analysis. The Monte Carlo analysis showed that the error bars in the 
predictions of the form factors are large especially in the low Q2 region. This especially implies 
that the extrapolation to Q2 = 0 is unreliable. On the other hand, it is shown that the predictions 
obtained by the conventional analysis are consistent with the results in the literature, when they 
exist.
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Appendix A. Explicit forms of the functions Fi for the N → � transition

F1 =
β∫

0

dα

1∫
α

dx2

1−x2∫
0

dx12[T1 − T3 − T4 + T6 − T7 − T8 − A1 + A2 − A3 − A4

+ A5 − A6](x1, x2,1 − x1 − x2),

F2 =
1∫

α

dx2

1−x2∫
o

dx14[A1 − A2 + A3 − T1 + T3 + T7](x1, x2,1 − x1 − x2),

F3 =
β∫

o

dα

1∫
α

dx3

1−x3∫
o

dx12[V1 − V2 − V3 − V4 − V5 + V6 + T1 − T3 − T4 + T6

− T7 − T8 + A1 − A2 + A3 + A4 − A5 + A6](x1,1 − x1 − x3, x3),

F4 =
1∫

α

dx3

1−x3∫
0

dx12[V1 − V2 − V3 + A1 − A2 + A3 + T1 − T3 − T7]

(x1,1 − x1 − x3, x3),

F5 =
β∫

o

dα

1∫
α

dx3

1−x3∫
o

dx12[T1 − T3 − T4 + T6 − T7 − T8 − A1 + A2 − A3 − A4

+ A5 − A6](x1,1 − x1 − x3, x3),

F6 =
1∫

α

dx3

1−x3∫
α

dx12[T1 − T3 − T7](x1,1 − x1 − x3, x3),

F7 =
β∫

o

dα

1∫
α

dx2

1−x2∫
o

dx12[−A1 + A2 − A3 − A4 + A5 − A6 + T1 − T3 − T4 + T6

− T7 − T8](x1, x2,1 − x1 − x2),

F8 =
1∫

α

dx2

1−x2∫
α

dx1[2V1 − 2V2 − 2V3 + 2A1 − 2A2 + 2A3 − 4T1 + 4T3 + 4T7]

(x1, x2,1 − x1 − x2),

F9 =
1∫
dx2

1−x2∫
dx1[2T1 − T3 − T4 − T7 − T8 + A3 − A4 − S1 + S2 + P1 − P2 − 2V1
α 0
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+ 2V2 + V3 + V4](x1, x2,1 − x1 − x2),

F10 =
1∫

α

dx3

1−x3∫
0

dx1[−V1 + V3 + V5 + T1 − T3 − T7 − 1/2 A1 − 1/2 A3 − 1/2 A5]

(x1,1 − x1 − x3, x3),

F11 =
1−x2∫
0

dx1[V1 − T1](x1, x2,1 − x1 − x2),

F12 =
1−x3∫
0

dx1[V1 − T1 + 1/2 A1](x1,1 − x1 − x3, x3),

F13 =
1−x2∫
0

dx1[V M
1 − T M

1 ](x1, x2,1 − x1 − x2),

F14 =
1−x3∫
0

dx1[V M
1 − T M

1 + 1/2 AM
1 ](x1,1 − x1 − x3, x3),

F15 =
β∫

0

dα

1∫
α

dx2

1−x2∫
0

dx1[T2 − T3 − T4 + T5 + T7 + T8](x1, x2,1 − x1 − x2),

F16 =
β∫

0

dα

1∫
α

dx3

1−x3∫
0

dx1[−T2 + T3 + T4 − T5 − T7 − T8](x1,1 − x1 − x3, x3),

F17 =
β∫

0

dα

1∫
α

dx2

1−x2∫
0

dx1[−T1 − T2 + 2T3 + 2T4 − T5 − T6 + 2A1 − 2A2

− 2A5 + 2A6](x1, x2,1 − x1 − x2),

F18 =
β∫

0

dα

1∫
α

dx3

1−x3∫
0

dx1[T1 − T2 − T5 + T6 − 2T7 − 2T8](x1,1 − x1 − x3, x3),

F19 =
1−x2∫
0

dx1[V M
1 − T M

1 ](x1, x2,1 − x1 − x2),

F20 =
1−x3∫
0

dx1[V M
1 ](x1,1 − x1 − x2, x3),

F21 =
1−x2∫

dx1[P1 − S1 + V1 + V2 − A1 + A2 − T3 − T7](x1, x2,1 − x1 − x2),
0
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F22 =
1−x3∫
0

dx1 [V3 − T1 − A3] (x1,1 − x1 − x3, x3),

F23 =
β∫

0

dα

1∫
α

dx2

1−x2∫
0

dx1[−T1 + T3 + T4 − T6 + T7 + T8 + A1 − A2 + A3 + A4

− A5 + A6](x1, x2,1 − x1 − x2),

F24 =
β∫

0

dα

1∫
α

dx3

1−x3∫
0

dx1[T1 − T3 − T4 + T6 − T7 − T8 + A1 − A2 + A3 + A4

− A5 + A6 + V1 − V2 − V3 − V4 − V5 + V6](x1,1 − x1 − x3, x3),

F25 =
1−x2∫
0

dx1[S1 − P1 − V3 − 2V2 − A3 + T3 + T7(x1, x2,1 − x1 − x2),

F26 =
1−x3∫
0

dx1[−V3 + T1 + T7 + A3](x1,1 − x1 − x3, x3),

F27 =
1−x2∫
0

dx1[−2V M
1 + T M

1 ](x1, x2,1 − x1 − x2),

F28 =
1−x3∫
0

dx1[T M
1 ](x1,1 − x1 − x2, x3),

F29 =
β∫

0

dα

1∫
α

dx2

1−x2∫
0

dx1[−T1 + T2 + T5 − T6 + 2T7 + 2T8](x1, x2,1 − x1 − x2),

F30 =
β∫

0

dα

1∫
α

dx3

1−x3∫
0

dx1[T2 − T3 − T4 + T5 + T7 + T8 − V1 + V2 + V3

+ V4 + V5 − V6 − A1 + A2 + A3 − A4 + A5 − A6](x1,1 − x1 − x3, x3),

F31 =
1∫

α

dx2

1−x2∫
α

dx1[2T1 − T4 − T7 − T8 + A3 − A4 − S1 + S2

+ P1 − P2 − 2V1 + 2V2 + V3 + V4](x1, x2,1 − x1 − x2),

F32 =
1∫

α

dx3

1−x3∫
α

dx1[T1 − T3 − T7 − V1 + V3 + V5 − A1 − A3 − A5]

(x1,1 − x1 − x3, x3),
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F33 =
1−x2∫
0

dx1[V1 − T1](x1, x2,1 − x1 − x2),

F34 =
1−x3∫
0

dx1[V1 − T1 + A1](x1,1 − x1 − x3, x3),

F35 =
1−x2∫
0

dx1[V M
1 − T M

1 ](x1, x2,1 − x1 − x2),

F36 =
1−x3∫
0

dx1[V M
1 − T M

1 + AM
1 ](x1,1 − x1 − x2, x3),

F37 =
β∫

0

dα

1∫
α

dx2

1−x2∫
0

dx1[T2 − T3 − T4 + T5 + T7 + T8](x1, x2,1 − x1 − x2),

F38 =
β∫

0

dα

1∫
α

dx3

1−x3∫
0

dx1[T2 − T3 − T4 + T5 + T7 + T8](x1,1 − x1 − x3, x3),

F39 =
β∫

0

dα

1∫
α

dx2

1−x2∫
0

dx1[T1 − T3 − T4 + T6 − T7 − T8 − A1 + A2

− A3 − A4 + A5 − A6](x1, x2,1 − x1 − x2),

F40 =
β∫

0

dα

1∫
α

dx3

1−x3∫
0

dx1[T1 − T3 − T4 + T6 − T7 − T8 + A1 − A2 + A3

+ A4 − A5 + A6 − V1 + V2 + V3 + V4 + V5 − V6](x1,1 − x1 − x3, x3),

F41 =
1∫

α

dx2

1−x2∫
α

dx1[A1 − A2 + A3 − V1 + V2 + V3](x1, x2,1 − x1 − x2),

F42 =
1−x3∫
α

dx1[T1 − T3 + T7](x1,1 − x1 − x3, x3).
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