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ABSTRACT

PLASTIC TORSIONAL BUCKLING OF
THIN WALLED CIRCULAR CYLINDERS

UNAL, Zarif
M.3. in NMechanical Engineering
Supervisor: Prof. Dr. Alp Esin

February 1984 , 83 Pages.

A thin-walled cylindrical shell subjected to a
twisting moment about its longitudinal axis (pure tor-
sion) exhibits plastic buckling if the material of the
shell is ductile. Although the problem of elastic buck-
ling has been investigated and substantial data is avail-
able in literature,plastic buckling of shells has not been
treated as throughly.

The present work 1s directed toward a mathematical
formulation of the plastic buckling problem. In particulan
the torgue for plastic buckling is predicted for thin-wall-
c¢d cylinders of different materials and dimensions. A com-
puter program for evaluation of the theoretical model is
developed and the resulis compaired with those obtained from
experiments.

It has been shown that the proposed equation to predict
the torsional buckling of thin-walled cylinders is in good
agreement with the experimental results. The suggested analy-
tical method is simple in form and the relevant parameters

could easily be determined by simple mechanical tests. The
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nrovnosed method is therefore highly practical and is much

more convenlent than 8 method based on limit analysis.

Key Words : Torsional buckling, Thin-Walled cylinders.
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BURMA MOMENTI UYGULANMIS INCE CIDARLI

DATRESEL KESITLI SILINDIRLERIN PLASTIK BURKULMASI

UNAL, sarif

Yiuksek [isans Tezi, Makina Mihendisligi BSlumii
Tez. Yoneticisi : Prof.Dr.Alp ESIN

Subat 1984, 83 Sayfa.

Simetri ekseni etrafinda burma momentine (tork) ta-
bl tutulan ince cidarla bir boru,malzemesi sinek olursa
plastik burkulmaya ufrar. Her ne kadar elastik burkulma ko-
nusu oldukga aragtirilmig ve literaturde bu konuda yeterin-
ce kaynek bulunabiliyorsa da, plastik burkulma yeteri kadar
ele alinmamistair.

Bu galigma plastik burkulma probleminin matematiksel
formilasyonu ile ilgilidir. Gelistirilen bu matematik mo-
delle, malzemeleri farkli ve degigik Olcllerdeki ince ci-
darli silindirlerin plastik burkulmasi ig¢in gerekli tork
hesaplanabilmektedir. Teorik modelin degerlendirilmesi
i¢in bir bilgisayar voroframi hazirlanmis ve elde edilen
sonuglar deneysel sonuglarla kargilagtirilmistar.

Ince cidarli silindirlerin plastik burkulmasi iein
gelistirilen modelden elde edilen sonuglar ile deneysel
sonuglar yakindan uyumludur. Onerilen analitik metodun kul-
lanimi basittir ve ilgili parametreleri kolayca cekme de-

neyinden elde edilebilir. Bu nedenden dolayi sunulan metod



oldukc¢a kullanigli ve bu tur problemler ig¢in Limit Analiz

iletoduna gore daha uygundur.

Anerhtar Kelimeler : Burma burkulmasi, ince Cidarli Silindir-

ler.
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CHAPTER 1

INTRODUCTION

1.1 General Remarks

In the design of machine parts or structures streng-
th, weight, and cost are the important parameters. In the
‘past, machine parts or structures were clumsy due to the
lack of knowledge, technology, and high strength materi-
als; but, later, advents in technology and in industrial
areas (eg.aerospace industry) forced the engineers to
design lighter but stronger structures.

This has placed a heavy emphasis on the design of
high strength-to-weight ratio structures; which in turn
has placed a heavier emphasis on the utilization of
thin walled members as structural elements.

A variety of machine parts or structures, therefore,
consist of or include thin walled cylinders and/or shell
panels. Shell is a body bounded by two curved surfaces
between which the distance is small compared with the oth-
er dimensions. Thin walled éylinder, on the other hand,
is a closed form of a shell., Cylinders with relatively
small diameter-to-thickness ratios are usuvally referred
to as tubes or pipes whereas cylinders with large dia-
‘meter—to—thickness ratios are called thin walled cylind-
rical shells. Cylindrical shells are used as grain stor-
age tanks, pressure vessels, etc.
| The thin walled structural elements have introduced
special problems of structural instability, which hither-
to were not of great concern. On account of this fact,
buckling has become one of the main governing factors and

a great deal of analytical and experimental work has been
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done to investigate the buckling behaviour.

In order to design efficient and reliable structures
of which thin-walled members are important components, the
engineers must understand the physics of shell buckling to
avoid unexpected catastrophic failure.

Buckling is a sudden collapse, involving very large
deformation. Contrary to plastic deformation, once buckl-
ing starts, it advances till complete failure. Consequent-
ly, it is of vital importance to be able to establish the
critical conditions that start buckling.

Buckling results fiom axial compressive stress. How-
ever, there are many cases of buckling in which the type
of loading could easily delude one to overlook the possibi-
1lity of buckling. One of such cases is the pure torsion of
thin walled cylindrical members. Experience has shown that
the buckling failure of thin walled torsional cylinders is
equally probable as the acknowledged shear failure, and
may even be more prominent in some cases.

Although the buckling tfailure may take place within
the elastic or the plastic range of a metal, it is usually
understood as the former. This is on account of the fact
that, in most engineering applications the elastic limit
of a material is taken as the basis of the load carrying
capacity of the member.

When the design efficiency is of paramount importance,
if some degree of plastic deformation is permissible and
‘the loads are not of cyclic nature, or if the so called
one cycle is very slow or the serviee life is very short,

" wtilization of the plastic properties of a material is
common practice. Under such circumstances, the ultimate
strength of the material 1s taken as the treshold of
instability or the termination of the load carrying capa-

city of the material. However, just like in the elastic

2



range, a member could fail due to buckling long before the
stresses reach the ultimate strength.

Furthermor=z, it is obvious that when the stresses
overshoot the elastic 1limit, a failure due to plastic buckl-
ing is not a remote possibility, and the ductility of the
material would not provide an extra margin of safety to the
extent implied by the ultimate strength.

It is in above respects that it was found of both
theoretical and practical interest to investigate the phe-
nomenon of plastic buckling resulting from the torsion of
thin walled cylinders.

1.2 Plastic Buckling Phenomenon

Though ordinary buckling is a well-known type of
failure, buckling of thin walled circular cylinders under
torsion is diffieult to visualize in the face of predo-
minant twisting. For the sake of clarity, and to be able
to shed light on the following sections, it was found
worthwhile to discuss this type of failure in brief.

When a cylinder is subjected to torsion, the sec-
tions are subjected to an angular deformation which re-
sults in the twisting of the member. From the classical
theories it's a well known fact that, during the twisting
action, the elements are subjected to pure shear stress-
es in transverse planes (Fig.la). From Mohr's Circle
(Fig.1lb) these stresses correspond to equal tensile and
compressive stresses along the planes which make 450
with the axis of the cylinder (Fig.lc).

The compressive stresses acting on an element A
may tend to induce a failure by buckling which proceed-
es a shear failure if the thickness-to-diameter ratio is
small. Just like the shear failure (i.e., plastic flow
of the member or complete twist off), buckling may be

observed within the elastic limit or before the final

3



'

Fig.l Pure shear due to torsion (a) is equivalent
to a biaxial state of equal tension and comp-
ression on + 45° planes (b and c).
rupture; as dictated by thickness-to-diameter ratio.

The buckling failure of a thin cylinder (Fig.?2a)in
torsion is shown in Fig.2b. One can notice that the form
of failure is similar to the collapse of a compressive
member. The failure is advanced along an approximately
450 helix. This collapse is termed '"a wave" in the re-
levant literature.

Another interesting aspect of the buckling is the
nresence of multiple waves at the onset of failure. The
general concences of opinion Dbased on different obser-

vations is that the number of waves is a minimum of two

in elastic buckling.



oa- Thin walled circular cylinder before

pbuckling

after buckling

op— Same tube in Fig.Z2a
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CHAPTER 2

PREVIOUS WORK ON BUCKLING

2.1 Introduction

Buckling failure of thin walled cylinders under pure
torsion has received considerable attention in recent
years. Although extensive investigations and volwainous
publication have been made on the subject of elastic tor-
sional buckling, plastic buckling of thin walled circular
cylindrical shells has not been treated as throughly as
the former. In fact, most of the solutions offered are a
simple modification of the elastic buckling equations by
a constant which is given the name of "Plasticity Cor-
rection Factor ".

2.2 Survey on Buckling

Although a theory of shells was first presented in
the work of G.Aron [1l] , his development was not strict-
1y correct. The inaccuracies in his theory were noticed
and corrected by E.H.Love (2], in 1888. He formulated a
theory of shells in analogy to the theory of plates of
Kirchoff [ 3 1. His set of general shell equations has
served generations of authors as the starting point for
their work. Love's shell theory was presented in the form
most frequently used today by W.Fliugge [ 4] , in 1932.

* This latter form of shell theory has appeared in the text
books by W.Fligege [ 5] , Bienzo and Grammel [ 6] , and
Timoshenko | 71 .

The most comprehensive analysis on the buckling
of thin walled cylindrical shells was presented by L.lI.
Donnell [8] , in 1933. In his work, Donnell proposed a

new simplified method of solution utilizing classical,
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small deflection shell theory. He formulated the general
differential equations for non-linear shell deflection
without any simplification except for the use of Love-
Kirchoff approximations. These simplifying approximations
permit the conversion of the plate or shell problem from
three to two dimensional case.

Donnell, then, formulated linear shell equations by
discarding the higher order terms in non-linear shell
equations, and solved for different boundary conditions
and loadings. He formulated the critical buckling stress
under torsional loading (Ref.8) for long and medium
length of fixed-ended and hinged-ended thin walled circu-
lar cylinders.

The prediction of the elastic buckling stress for
short and medium length cylinders by Donnell's method has
been shown to be greatly in error [ 9] , 1107 . 4 [11] .
On the other hand, it is quite successful when applied to
infinitely long cylinders;as has been verified by various
guthors [ 10] , |11] . However,it is cited [10] , [12]
that a method has been suggested by Batdorf [13] to extend
Donnell's method to the buckling of short circular cylinders.

Unlike Donnell, who started with general equations,
Miigge |14 ] considered different classes of shells and
developed the basic equations for each of them separa-
tely, employing the same fundamental principles. He for-
mulated differential equations for the disturbed equ-
ilibrium of the shell under general basic loadings (i.e.,
uniform normal pressure on its wall, axial compression
and shear load applied at the edges) and solved for any
specific type of loading and boundary conditions. He ob-
tained a similar expression for critical buckling stress
of a thin walled circular cylinder under elastic torsion

as given by equation 27-b of Ref.l1 15] .



In the monograph published by NASA Office of Advanced
Research and Techonology [15] , buckling of isotropic un-
stiffened cylinders, orthotropic cylinders, and sandwich
cylinders under various conditions of loadings is given in
summary. Torsional buckling of thin walled circular cylin-
ders is considered elastically and plastically, by taking
the plasticity correction factor into account.

Baker, Kovalevsky, and Rish[ 16 ] summarized several
design equations for estimating the collapse loads of
thin walled cylinders in various elastic buckling modes
as well as interactions between these modes. This book
is based on the NASA publication, "Shell Analysis
Manual" | 171 , and is claimed to Ee‘a basic tool for the
design of shells. However, C.G.Foster [18] reported an
outline of the test results conducted on cylinders loaded
in axial compression, hoop compression, torsion and
combinations of these as well, and compared his results
with the values calculated from Baker, Kovalevsky, and
Rish's equations. He pointed out that the results were

not in agreement.
Although the simplifications somewhat 1limit the

range of applicability of the Donnell's equations ( e.g.
for very short cylinders), these equations form the ba-
sis for more stability analyses in the literature than
any other set of cylindrical shell equations. Applica-
tions of the Donnell's stability equations for dif-
ferent loadings were presented by Brush and Almroth
[10] . They rederived Donnell's linear and non-linear
equilibrium equations for shallow(i.e.,very large ra-
jdius~to—thickness ratio) and non-shallow cylindrical
panels or for complete cylinders. Their solutions are
based on Donnell method for long cylindrical shell and
conditions of which have little influence on the mag-

nitude of the critical load.
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Donnell formuls for critical stress at which elastic
buckling occurs was also used by D.W.A.Rees [19] . He for-
mulated the critical buckling stress by taking the second or-
der axial strain due to the end conditions into consideration
and modified his equation for plastic case by multiplying it
by plasticity correction factor. In his work, he approximated
the state of pure shear by applying preloads to prevent the

accumulation of axial strain.
2.3 Discussion of the Previous Work on Torsional Buckling

In the present development of stability equations for
thin walled circular cylindrical shell ma jor emphasis is
placed on the relatively simple equations suggested by
Donnell in Ref. [8 ] . As was stated in section 2.2., in
the calculation of critical buckling stress, Donnell solu~
tions has formed the basis for most of the other work [ 10],
[ 11 ]. Consequently, the equations for the critical buckl-
ing stress obtained by these authors are very similar to
Donnell's equation (Table-1). He proposed the following
relationships between the critical stress and the proper-

tions of the shell, given in Ref. [11 ], as :

_ Et?14.6 + J7.8 + 1.67(JI=Vv2L2/2Rt) 3/ 2] (1)

cr
(1 - vHrn?

for clamped edges, and

Et2{2.8 +J/2.6 + 1.4 (JI=v2L%2/2Rt) 3/ 2] )

T =
Cr

(1 - v))L?

for simply supported edges, Where :

E : Young's Modulus

L : Length of the tube

R : Mean radius of the tube

t : Wall thickness of the tube

v : Poissons Ratio



Donnell equations give an excellent approximation for
very long cylinders, as noted in References [ 91 , | 101 ,

(11 ], for which critical stress is given as [10] ;

_0.272 E ,t\s,2
(l__\)z)g/u(R) “ (3)

Ter

Donnell, later, improved his 1933 study (9] and ob-
tained a new set of elastic buckling equations for long
and medium length cylinders. le concluded that the results
obtained from these equations werein good agreement with
the experimental values. Donnell also points out in Ref.

[ 9] that the number of waves around the circumference (n)
is large for short and medium length cylinders, decreas-
ing as the length increases and taking its minimum value
of two only for very long tubes. He also concludes in
Ref.[ 9] that stability equations given in Ref.[8] will
give accurate results if either the half wavelength in
the circumferential or the axial direction is smaller
than the radius. For the limiting case, i.e., for n=2,
eqn. (2) overestimates the buckling stress higher than
the actual.

The stability equations for circular cylindrical
shell were also derived by Fligge | 14] using a different
method than Donnell's (section 2.2). His resulting equa-
tion for the critical stress of thin walled circular

cylinder is identical with the equation suggested by

Timoshenko [11] , and applicable to only very long cy-
»linders.
T, - 2 (£)/2 (4)

°r 3 3(1-v2)¥/¢+ R
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It should be noted that equations (3), and (4) are
applicable only to very long cylinders, boundary conditions
of which are disregarded. I'or shorter and medium length
cylinders, however, the effect of boundary conditions can
no longer be ignored. The first investigation on this sub-
ject was again done by Donnell and his resulting elastic
buckling equations were given above (Egns. (1) and (2)).

In 1947, Batdorf worked on the same problem and sug-

gested an equation given by Ref.| 10] as

Where D, L, and k, are the mean diameter, length of the
cylinder and a non-dimensional critical stress coeffici-

ent respectively. A graph of critical stress coefficient

with respect to Batdorf Parameter ( Z-;i/fmjngf ) is
also given in Ref.[ 10 ] . Equation (5) is applicable to
cylinders with Z<10 (R/t)z. For longer cylinders, i.e.
7>10 (R/t)2

The buckling stress equation of cylinders in tor-

, eqn.(3) rather than eqn. (5) is applicable.

sion has been obtained, later, in different form by Bat-
dorf, Stein, and Schildorout [ 20 ] . The equation 1s

given in Ref.[12] as

m2E ]
12 (1-v2) (L/t) ®

TCI‘ - kS[

(6)

Where ks is a geometrical parameter given below. For
short cylinders (%<50), end conditions are of major im-

portance. The values of ks are given in Ref.|12] as

k =8.98 + 0.12 (7)

6]



if 7<50 (short cylinder), and

- 0475
k, =0.852 (8)

if 100<7<1.92(1-V) (.'g-)2

for all end conditions 7 is the Batdorf parameter as given
before.

Buckling of medium length thin-walled circular cy-
linders was also investigated by NASA, and the following
equations were reported in the monograph [15] published in
1968.

The critical buckling stress equations :
2
a) for long cylinders, for which YZ>78(%)(l—v2)

Ter 15 (E) /2 (9)

R
VT (1-v2) ¥
b) for moderate length cylinders, for which
50<yZ<78(%)%l‘v2)

3 /4
L - 0.747y%/" E (10)
R,s/v L1/
(_E)Su(ﬁ)lz

where 7 is the Batdorf parameter and y is the correlation

factor which is given in the same reference as

y3/“ = 0.67 (11)

In the book published by Baker, Kovalevsky, and
Rish |16] , on the other hand, elastic buckling stresses
for thin walled circular cylinders under torsion are given

as

n (l_\)2)3/14 R

For long cylinders, gzs7¢(8)?2 (1-y2), and
t
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T % R iy

for moderate length cylinders, lOO>Z>78(%)2(1—V2). In Equa-
tions (12) and (13), % is the Batdorf parameter, n and CS
are the plasticity correction factor which is equal to
unity for pure elastic buckling, and a non-dimensional co-
efficient given in Iig.10-11 of Ref.[16 ] , respectively.

C.G.lI'oster [ 18 1| gave a summary of comparison of
equations given by Ref.[16] and test results, and conclud-
ed that the equations given by Ref.l16] are not adequate
in actual case.

In 1982, D.W.A.Rees | 19 ] used modified Donnell equa-—
tion for hollow cylinder with clamped ends to calculate
critical plastic shear stress for buckling under torsional
load,and obtained good agreement with the test results. In

his calculations he used the expression

0.82E
s

Ts —E

)5/ (B) 1/2
cr L
(1-v_) ¥/®
P

2|t

where B, = % , and ES is the secant modulus at the point
of buckling.

It can easily be seen that equations (3), (4), (9),
and (12), which are all for long cylinders and do not con-
tain the length as a variable, differ from each other only
by modification factors. In addition, the ranges of app-
lication are also different from one another, Equations
(3) and (4), for example, are applied to only infinitely
long cylinders on which boundary effects are neglected
as mentioned previously, whereas the term "long" 1is
defined by boundaries for each of equations (9) and (12).
Although equation (1) is also for long cylinders, it is

different in form from the others, and boundary

13



conditions of loading for this equation are described. The
elastic buckling stress equations given for moderate length
thin walled circular cylinders, equations (6), (10), and
(13), however, are not similar and their ranges of applica-
tion are different. Rees' equation, Egn.(14), on the other
hand, is applicable to all lengths of thin walled circular
cylinders with clamped ends.

The foregoing equations are tabulated in Table-1 for
comparison at a glance. In the third and fourth columns, the
L. values are compared by assuming E,v 5 t, R and L values.

The equations presented to determine the critical
buckling stresses summarized in Table-1l are all for elastic
case for which the buckling stress is below the propor-
tional limit. But ifthe yielding of the cyiinder occurs
before buckling, the critical buckling stress will be be-
yond the proportional limit, i.e., on the inelastic re-
gion of the stress-strain curve of the tube material. In
this case, the elastic buckling equations are not valid.
Some authors (101, [ 161, modified their elastic buckl-
ing equations by simply multiplying them by a constant
called PLASTICITY CORRECTION FACTOR, n . This factor is
a function of the shape of the stress-strain curve, type
of Loading, type of the shell, and the boundary conditi-
ons. The equations given for this factor are usually given
in terms of Young's modulus E, tangent modulus Et’ and se-
cant modulus Es which are the values at the critical buckl -~
ing stress. For example, for very long cylinders, regard-
less of the boundary conditions and under shear loading
and axial compression as well, Bleich [21] has suggested

the following equation to determine the value of n ,

where Et is the tangent modulus at the point of buckling.
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TABI E-1 Comparison of the Elastic Buckling Equations
Using Different Values for the Material and

the Geometric Parameters.

(E=10825kg/mm2, y =0.33)

"L=300mm | L=220mm
Ref: EQUAT/IONS R -13.0 mm | Ra200mm
te0.5mm ta0.35mm
L3 4.6 + 7.8 7167 (/7T LI206)*2 ]
(8] | &= ) 2 24.00| 45.13
0.272 F Y2
(81 =" % v1)3/4( ) 13, 7L 23..32
; E £\2
(1| @ 3@(/37)3/4(?) 11.88| 20.20
2
b g,
(137 ‘G T, 4 3.75| 6.96
2
4 £
oj| @ 5/2(/—V2)(L/f)z] 21.7 | 40.47
%
V57| Com 0747 )" £ 14.45| 26.96
(R/ENH(L/R)"7
OHESE 2
e1| = e (m) 8.16| 13.87
yE £ 3/2
7 = s
) N T ( /Q) 6.96| 11.84
[16] Pt Eﬁ 18.16| 32.88
R 2%




As Et and the critical buckling stress are interdependent,
consequently, the plasticity correction factor can not be
calculated without determining the buckling stress; which
is also to be determined.

Some authors, [111],[12 ], [22] ,[023] , on the
other hand, suggested the substitution of reduced modulus

Er or tangent modulus E, instead of Young's modulus E in

elastic buckling equatizns to obtain plastic buckling
equations for colums. This in effect is another version
of the modification of E by employing the plasticity cor-
rection factor as a modification factor.

Because of the differences in the suggestéd buckl -
ing equations and the difficulties in the adaptation of
these equations to plastic case, a new method of solution
will be investigated and checked experimentally.

In this method, the buckled part of the tube is
treated as a combination of curved colums of unit width
and the buckling of the tube is considered as the re-
sultant of the buckling of these columns. Plastic case
will be introduced by replacing Young's modulus E in the
elastic buckling equation by the tangent modulus Et as

has been previously suggested by some investigators men-

tioned above.
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CHAPTER 3

THEORY

3.1 General

Yhen a circular cylindrical shaft of radius R and
length L is subjected to a twisting moment (torque) about
its longitudinal axis (Fig.3a), the stress at any radius
varies linearly with the radial distsnce from the axis of
the cylinder as shown in Fig.3b. As the torque increases

the shear stress in the outer fibers will eventually

T

AN
W. LN
Z
VAN
e L &
(b)

r

SRS

(c) ) (e)

I1g.3 Stress distribution on the transverse section of a
circular shaft.

reach the yield stress in shear of the material, Ty,

(Iig3c). As the torgue increases further, more and more

of the material will yield and the radius of the elastic

core (i.e. the radius of the cylindrical surface

seperating the regions of elastic and plastic strains)

will decrease (Iig.3d and e). For such a situation the
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stress variation would no longer be linear as in the case
of elastic behaviour, but would become non linear in some
fashion depending upon the shape of the shear stress-strain

curve of the material. In order to obtain a solution

ol

| i
N/

Fig.4. Idealized stress strain relations and corresponding
stress distributions on the shaft cross sections;(a)
elastic-linear work hardening; (b) elastic-fully
plastic.

€ (b)

to a deformation problem, it is necessary to idealize
this stress-strain relation since it may not be possible
to define stress-strain curve by an equation. The stress-
strain relations can be idealized as "elastic-linear
work hardening" for most ductile materials (Fig.4a) or
n"elastic perfectly plastic at yield stress" (Fig.4b) for
mild steel.

In addition to the shearing stress on transverse
section, a longitudinal shearing stress Ty is also induc-
ed which is perpendicular and numerically equal to the
transverse torsional shearing stress t (Fig.5a). The

free body diagram of the stress element bounded by two

parallel transverse planes, two longitudinal planes

18



Pig.5 (a) Distribution of transverse and longitudinal
shearing stress in a circular shaft under pure
torsion; (b) Stresses on a stress element of the
circular shaft under torsion.

through the axis, and two surfaces at different radii is
shown in Fig.5b.

The stress variation on the cross-section of thin-
walled circular cylinder is exactly the same as that of
solid cylinder, but since most of the cross—-section is
removed, the outermost fibre can then be brought to yiéld
stress with a small torque application. On the other
hand, since the thickness t is small compared to the
mean radius R(t/R<<1), the variation in the stress over
the thickness can be neglected.

Let us consider a homogeneous and isotropic thin
walled circular cylinder of length L, wall thickness t,
and wndeformed mean radius R. Let r, 6 , and Z denote
cylindrical coordinates in radial, tangential and axial
directions respectively (Fig.€a). Purther, let u, v, and
w be the components of displacement of a point on the sur-
face of the shell in the r,6 , and 7 directions respecti-

vely. The free body diagram of a stress element under

19



ol V. /S |z
L
(a)

FMig.6 Tree body diagram of a stress element.

general state of stresses is also shown in Fig.6b where,

aTer aTzr
o - [ =
T gr Ter-+——- de... (a) T Tzr+ dz...(d)
at az
. aT aTt
1 - 8z V- z0
T g Toz a5 de (b) LI Tze+ v dz (e) (15)
aoe acz
' = . ! = _—
o 5 06 + 26 de (c) o', oz + 2z dz (£)

when the cylinder is subjected to pure torsion about its
longitudinal axis, in accordance with the classical theory
of elasticity, most of the stress components in the st-
ress element shown in Fig.6b vanish; the only stress com-
ponents being t and T,0 which are equal in magnitude;

0z

i.e., = 1(Fig.5b).

T = T
0z z 0
From the Mohr's circle of this stress element,
which is under pure shear stresses of equal magnitude

(Fig.la),it will be seen that the principal stresses, o,

20



(tensile) and o, (compressive) acting on the element
(Fig.lc) are equal to the shear stresses as shown in
Fig.1b.

Mig.7 A thin-walled cylinder subjected to torsion.

Fig.7 shows the cross section of the thin walled
circular tube. An element of force dFS = TdA acting on
the area dA has a moment arm R to produce element of

torque 4T about the axis of the tube. Namely

dT = RdFS = RtTdA (16)

integration of Egn.l16 over the area gives the total tor-

gue acting on the cross section. That 1is

T = [ RtdA

since variation in the stress over the thickness for a
thin walled cylinder is neglected then 1t and R are cons-

tant

T = tRSdAA = TR(271Rt)
(17)
T = 27R2t)T
from which
ro= % (18)

2mR%t

lience the magnitude of the principal stresses that

cause buckling is
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Sg— (19)
l ‘ 2TR?%t

3.2 Colum Approximation

Torsional moment T acting on the tube may be resolved
into two components (Fig.8a); one perpendicular and the
other parallel to surface which cuts the axis of the tube
with 450. Component Ts strains to shear the tube on 450
cutting plane whereas Tbstrains to bend the tube about
the major axis of the ellipse formed by 450 cutting plane

(fig.8b and c¢), and the compressive and tensile principal

Ty

Fig.8 Resolution of torsional moment T

stresses on the element A (Fig.lc) of the tube are
created by these components respectively.

As the planes of principal stress are at 450 with
the planes of maximum shearing stresses on the tube,
"then the buckling deformation will theoretically be
along a helix which makes 450 with the axis of the cy-
linder. If the cylinder is cut by a plane which makes

450 with the axis, an ellipse with a minor axis b,

(b = R), is obtained (Fig.9).
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Fig.9 Stresses distribution on 450 plane.

There are four important points on this ellipse;
namely A, B, C, and D. Compressive o, and tensile o,
principal stresses act on stress elements at point A and
C, respectively; whereas pure shear stresses T act on
the elements at points B and D. For other stress elements
between these points, the state of stress is defined by a
combination of normal and shear stresses, which are small-
er in magnitude than the principal stresses 01 and Op9
and the maximum shearing stress 1 . These states of
stresses may be clearly visualized if the development of
the ellipse is drawn with the development of 450 helix
on the same coordinate axes (Fig.l10).

Since the development of the ellipse is a cosine
curve(See Appendix-A for the proof), it may then be
expressed for a unit minor axis (i.e., unit mean radius

of the tube) as
h = cosb (20)
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m

Fig.10 Development of the ellipse in Fig.9.

and the slope of this curve at any point is (Fig.l1l0)

dh

aB - " ging = - tang
from which
£ = tan” '(sinb) (21)

the angle, Y , between the tangents of the development
of the ellipse and 450 helix at any point may then be
calculated from (Fig.l1l0).

y = 45-f = 45-tan”!'(sind) (22)

A'closer examination of the Fig.l0 will also show that
v is also the angle between the normal stresses acting
on the element of the ellipse and the principal stress
directions.

Although 45° helix and 45° ellipse coincide at
point A only, they may be assumed in contact along a

segment m-n since the angle y is negligibly small in
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this region (about 10). Because of Y being negligibly small,
the normal stresses acting on the element at this point can

then be determined from Mohr's circle as

o = 0 cos2y = 0 COS 2% = 0.9994 a, (23)

: . 0
Fig.11l Cross section of a thin walled tube cut by a 45
plane after toreional buckling.

The value of normal stress acting on the element of the
ellipse at point n(or m) is 0.9994 o4 from Ign. (23).
However, it can be assumed to be equal to the principal
stress without introducing appreciable error (about
0.061 percent). For vy= lO, the angle corresponding to
point n on the ellipse (angle 8 ) can be determined using

the angle ¢ which is calculated from Egn.(22) as

1% = 45-tan”!(sino)
B = 74.95°

From the relationship between the angles 8 and B (Ap-
pendix—-A ) Eqn.l4)

cin?g = 8in?0 _ sin’74.95
l+cos?6 l+cos?74.95

R = 69.18°

Ao
!



It is also obvious that (Fig.ll) the thickness of the
ellipse cut from a thin walled circular cylinder varies
along the circumference. It is equal to the thickness, t,
of the tube at points A and C, and t/sino for points B
and D; where o is the angle of cut,

For a = 450, this variation is about 1.03333 of the
thickness at point n, which can be neglected with a maxi-
mum error of 3,333 4,

Due to the simplifying constant thickness assump-
tion, the segment m-n could be considered to be the most
critical because of the principal stresses acting along
this segment.

When one considers a segment of the ellipse of
length i-j, which has an infinitesimally small width, it
seems reasonable to assume ends fixed; naturally this is
subject to the argument that the beam should also be sub-
Jected to frictional forces on each side of the width to
simulate the existing situation. Though the friction
\should impede the onset of buckling, it is believed that
an expression developed without elaborate mathemetical
variables, friction introduced as a factor, would be of
more practical value.

In view of the above analysis and simplifying
-assumptions, it is proposed to treat the section i-j of
the undeformed ellipse as a curved bar with fixed ends
(Fig.12) for which the effective length le is m-n. The
Buler equation for the colwms having other than hinged

ends is [24 ]

2
P, = T2 (24)
(K1) 2

where E 1s the modulus of elasticity, I the second moment
of area of colum cross section, and (K1) is the length

between inflection points and 1s known as "Effective Length".
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Fig.12 Buckling of a uniform elastic column with fixed
ends; (a) straight; (b) curved

N ~ bt3
Substituting K1 = le’ 5= 175 and PCr = Ocr‘b t
into Eqn.24) and simplifying,
ZEtfz_
Ccr =l (25)
123"

It is common knowledge that the elastic buckling
phenomenon depends upon the h/1 ratio where 1 is the
length and h the thickness of the column symbolized as
t for the thin walled torsional cylinder. Ior elastic
buckling to prevail, this ratio must be very small, 1.e.,
h/l<<l. For short columns, however, the buckling pheno-
menon will not occur until the compressive stresses ex-
ceed the proportional limit of the material. Consequently
the buckling load must be determined by taking inelastic
column behaviour into account. Drawing a parallel between
the buckling phenomenon in the elastic and the plastic
region, it has been suggested by Engesser [25] to employ
Ean. (24)in the plastic region simply by substituting the
tangent modulus Et under increasing loading or double

modulus E under constant loading for Young's modulus E in

the said equation.

27



For a given mean radius R of the tube, the length of
the segment m-n is constant (Figs.9, 11). The type of co-
lum action will then depend upon the thickness of this
segment. When the thickness is small, elastic buckling
preceeds plastic buckling or vice versa. So, the thick-
ness-to-radius ratio (t/R) is an important parameter for
the type of buckling failure of thin walled circular cyl-

inders under torsional loading.
When a column is subjected to a uniaxial compressive

load, a stress element in the column is subjected to uni-

axial compressive stresses o and the strains are

€. = = % ’ € = VE_, € = Ve (26)

Provided that there is no columm action, the expressions
signify an elastic deformation (Fig.l3a). However if a
particular case of biaxial loading is considered (Fig.1l3Db),
the buckling failure can no longer be predicted by Egn.

(25). Buckling will be favored or hindered depending upon

the algebraic sign of the principal stresses.

X X
S
e
g \ ’\.‘
. I
~__] T~
~ S~
\ \
o N I
~_ s
~ P
S~
™~
r\x & f\\
Z
Y (a) y (b)

Fig.1l3 State of stresses in colum under different
loadings, (a)uniaxial loading; (b) biaxial

loading.
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Let us take a column element B under biaxial stresses
(Fig.13b); which is the same condition for the stress ele-
ment at point A of [ig.9. Let the strip in Fig.13b repre-
sent a portion of the segment i-j. The strains along the

three mutually perpendicular axes of the stress element

will be
e = 1 lo, = vio. + o )] (a)
X E X
€ = ll,o - v(o. + g)] (b) 27
\% E y X z (27)
€= l[ o - vio_ + )] (
p” E ” " Oy cee. ()

since GX 1s negative and oy = 0 (Fig.13b), then Ean.

(27a) becomes

N
o, 5 [ . voz] (28)
From Fig.9, Oy = 0,5 Egn. (28) reduces to
OX
€, = = (1tv) (29)

since the strain for buckling is fixed for a given co-

lumn, then equating the Eqns. (26) and (29),

g Ox
“E T g ()
or
o _ o (30)
X 1+v
. e _ _ in Fon. "
Substituting Tb 0X and O 9., in Ean. (30) at the

onset of buckling

[6)
A (31)

[a]

Thus the critical stress for buckling of a colum
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under biaxial stresses can be calculated by substituting

Egn. (25) into Egn.(31)

By i DOEGA (32)
1+v 2
12(1s)
since E is replaced by Et and V = 0.5 for plastic deforma-

'tian, Egn. (32) then becomes
2 2
o
e
Equation(32a) is the proposed expression to predict the
plastic torsional buckling of thin-walled circular cylin-
ders.

In order to employ Eqn.(32a),tangent modulus E, and
the effective column length le must be determined since
t is known. In determining these values a method similar
to those in Refs. [23] , and [ 24] given for elastic buckl-
ing {B=constant) will be followed; although a trial and
error procedure is suggested for inelastic buckling of a
colum of known dimensions in the same references.

When buckling phenomenon is concerned, it is well
known that the critical buckling stress is related to the
length of the colum. Consequently, the length 1 is also
related to the tangent modulus Et at this critical stress.
For example, for the same thickness of the colum, as the
length decreases the buckling stress will increase and
hence the corresponding tangent modulus will decrease as
shown in Fig.l4a. The relation between 1 and Et must then
be determined to calculate the critical buckling stress.

If the true stress versus tangent modulus (G—Et)
curve Fig.l4b is drawn by using true stress-true strain
curve, tangent modulus at any stress value can be obtain-
ed. Since 1 is constant for a given tube of mean radius
R, using the proposed equation for buckling, Egn. (32 a)

and 6~Et curve, tangent modulus versus readius-to-thickness
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Fig.14 (a) Stress-strain curve
(b) Stress-tangent modulus curve

(c) Tangent modulus - R/t ratio curve

ratio (Et - R/t) curve can be drawn (Fig.l4c), which
gives the relation between E  and R/%.

There is no method to determine the critical length,
(n-n), in the relevant literature. The following method
based on some enalytical considerations 1s suggested as
a first approximation to the solution of the problem. Thé
validity of this approach 1is going to be checked during
the experimental work. Should the result be negative, an
attempt will be made to determine the critical length
empirically.

Arc length of the development of the ellipse can

be calculated using Ean. (20) from

m/2

wn

1/4;/l+(dh/d9)gﬁ de (33)
as 0 m/2

S =//l+sin26 dae (34)
0

Eqn. (34) has no analytical solution. Then ccsine curve

of the development of the ellipse must be approximated
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by a curve for which Eqn.(33) has an analytical solution.

A parabola, the equation of which is
2
h=--2 (82 - I (35)
,n,Z
can be used instead of Egn.(20) in the calculation of

arc length with an error of 0.149 % (See Appendix-B) for
the intervalOseég- . From Egn. (20) of Appendix-B,

2 / 2

8 2 2
86 o : : ; o)
where U = — , 6 1s in radian. Substituting 74.95 =

m
1.308 rad. for 6 , arc length B-m can be calculated as

S = 1.52289
Bn

It is well worth reminding that Egn.(20) and the
following equations to approximate the peripherial
length of the ellipse were based on a radius of unity.
The actual arc length of a tube of a given diameter is
therefore the product of the above expression with the

corresponding radius.

Sgn ~ 1.52289 R (36)

Peripherial length of an ellipse can be calculated

from

P = 2n/% (a? + b?) (37)

where a and b are the major and minor axes of the el-
lipse respectively. Substitution of b = R and a=R/sin45
into Eqn.(37) results '

P = 7.6953 R (38)

From Figs.10 and 11, 8 =5,,-S5, S, = P/4, and
S = 29

- An? then the length of the segment m-n 1is
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S = (0,802 R (39)
mn

Hence, substituting 1, = Smm=o'802R into Ign.(33) yields

T, = (40)
15.4369 (R/t)?

b

Egn. (40) can be used to estimate the critical buckl-
ing stress when R/t ratio is calculated and Et is deter-
mined from the R/t - Et curve as was described and illust-

rated in the Fig.l4. But since E, and R/t values are ob-

t
tained from the equivalent stress-equivalent strain curve,
which is formed as the true stfess—true strain diagram for
pure tension, then the critical buckling stress calculated
from Eqn.(40) will be the equivalent stress for buckling.

For an isotropic strain-hardening material, Von Mises
‘vield critirion for the general state of stresses on the
stress element of the ellipse cut from the tube (Fig.l5)
185

8 o8 " gz Top) L&)

262=(op—o/)2+(og—oi)2+(ozrob)2+ 6 (12 + 12 ,+ 1%
where ¢ is the equivalen? stress and subscripts o, 8/,
and z' denote the directions of the stresses on the el-
liptical cross section of the tube cut by a 450 plane

(see Fig.15)

0
3 [
Mg.15 Coordinate axes on itransverse and 45  planes
of a circular cylinder.
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Assuming the stress-strain curves of the tube mate-
rial for tension and compression to be identical, all of
the terms on the right-hand side of Egn.(41) will vanish

except ¢ for pure compression since the element on the

Br’
ellipse is under compressive stresses. Then Eqn. (41) be-

comes

g = OB/ (42)

L o (43)

if BEqn.(41) is written for stress element on the tube

using the coordinate axes, r, 6, and Z and applied for

pure torsional loading for which oyr=0¢,=0_=1__,=1 = 0
8 "z 'r6 “zr
but 1, #0. From Egns (42) and (43).
o= A4,
6z \/5 OB (44)

Hence in order to compare the theoretical stress calculat-
ed by the proposed equation (Egn.(40))with the experimen-
tal value calculated by Egn.(19), Egn.(19) should be mul-
tiplied by ¢§ or vice versa. Then the pure shear stress

for buckling of the thin walled circular cylinders is

T2E

Ty, T T = 2 £ (45)
V3 15.4369 (R/t)?
or
0.36913 E,
T = — (46)
(R/t)?
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On the other hand, as was stated previously, the
transverse edges of the assumed column i1-j are not free,
but resisted by the adjacent colums' surfaces as illust-
rated in Fig.l6. Thus the colum action of a critical
strip is also resisted by the elements on each side,

« which will increase the buckling strength. This increase
is compensated by the decrease of buckling stress due to
the modification of Euler equation for biaxial loading

case.

\\ ;

Pig.1l6 Transverse edges of the assumed colum on the
cylinder are resisted by the adjacent columns.

Equation (46) is the proposed equation for the buckling
of a thin walled circular cylinder and can be evaluated
when (R/t) is calculated and By is determined from the
(R/t - Et> curve as was described and illustrated in the
Fig.1l4.

The experimental evaluation of the plastic buckling

stresses is going to be treated in the following chapter.
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CHAPTLER 4

EXPERIMENTAL RESULTS

The method of analysis presented in Chapter-3 was
evaluated by conducting

i- torsion test to determine the onset of buckling.

ii-tension test to obtain the mechanical properties

of the materials used in the experiments.

4.1 Torsion Test

Application of twisting load to a thin-walled
cylindrical specimen presents special problems. These
are

a- Uniform application of the twisting torque along
the circumference,

b- Gripping the specimen without crushing the ends
of the tube, which alters the end conditions.

An apparatus was designed and constructed to affect
this end. A torsiometer was also in corporated in the
apparatus to measure the angle of twist of the specimen
(FPig.17).

Crushing of the ends was prevented by inserting
plugs from both ends with slight interference. In order
to assure that there was no slippage during the experi-
ments, the plugs were knurled to bite slightly into the
épecimen.

Uniform biting was affected by employing two halv-
ed grips at the ends. The grips were first bored to the
outer diameter of the specimen then parted symmetrically.
The two halves were lightly machined to provide sufficient
clearance for the squeezing action upon tightening of the

allen screws.
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Test specimen

i 17 Test specimen with the cripping apparatus and
thie torsiometer.

Thne ends ol the plugs were machined to obtain a
rectansular prism with n square base. This was needed to
employ the four-jaw universal chucks on the torsion
tester. Besides uniform gripping, this arrangement en-
sured that the weights of the grips were totally taken by
plugs; thus avoiding anomalous bending effects creeping
into the experiments. It can be said that the tubular
specimens were subjected to pure torsion alone.

FPurthermore, a torsiometer was also incorporated
in the apparatus to measure the angle of twist of the
specimen. A dial gauge system was mounted on this appa-

ratus with which the angle of twist was accurately
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Fig.18 A.photograﬂnshowing the plastic buckling
failure of a torsion specimen.

of twist.

Fig.l9 Determining the angle

ot

36



measured in addition to the values taken from the scale
on the straining head of the testing machine.

This system consisted of two parts; a dial gauge and
a rod (Figs.17, 18). The dial gauge was fitted to the
grip at the sensing head of the machine. The cantilever
rod (rod K in Fig.l7) was fitted firmly to the grip on
the rotating end of the specimen; ensuring its parallel-
ism to the axis of the tube.bThe plunger of the dial
gavge rested on a flat plate attached to the end of the
rod. It can be followed from Fig.1l9 that the angle of
twist, 6 , is the arctangent of x/R .

The configuration that was given to the torsion spe-
cimens is shown in Fig.?20 and the dimensions are given in
Table-2. These dimensions were decided based on the fol-
lowing considerations :

1- Dimensions of the available tubes,

2— Problems involving machining, and

3- To ensure plastic buckling which is dictated by

the thickness-to-radius ratio, (t/R).

~ L .
'222&2&22\ [
o i o
- - N =™ =

777, TTTTTLZ '“ii SR /IS 1 4

All dimensions are in mm

Fig.20 Torsion Test Specimen
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TARLI~2 Dimensions of the torsion specimens (in mm)

Specimen L D d R t R/t

Ay 200 39.54 | 37.32 [19.315 | 0.91 21.23
A, 200 39.44 | 37.66 [19.275 | 0.89 21.66
Ay 120 39.30 | 37.36 [19.165 | 0.97 19.76
A, 120 39.15 | 37.30 [19.1125| 0.925 | 20.66

% B, 220 38.85 | 36.00 [18.7125| 1.425 | 13.132

o

© B, 220 39.00 | 36.30 [18.825 | 1.35 13.944
By 220 39.00 | 36.2 118.80 1.40 13.43
Cq 200 39,28 | 37.80 |19.27 0.74 26.04
C, 120 39.30 | 37.40 |19.175 | 0.95 20.185
D 120 34.65 | 33.14 ]19.9475| 0.755 | 22.45
D? 120 34.72 33.19 {16.9775| 0.765 22.20

% >

@ Dy 120 34.80 | 33.24 |[17.01 0.78 21.81
D, 120 34.65 | 33.16 |16.9525| 0.745 | 22.76
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The specimens prepared from cold drawn tubes were
annealed to relieve the internal stresses and to increase
their ductility.

To ensure the concentricity of the inner and outer
surfaces of the tube and to minimize the variations in
thickness, the tubes were machined inside and outside.
At first, the specimens were cut-off in the required
length and their internal surfaces were machined wntil
complete cylindricity was obtained. Later, using the
bore as a baseline, outside of the tubes were machined
by fitting the tube over a mandrel.

Plugs were inserted into the specimen at both ends.
The rod shown in Fig.21 was used to align the plugs dur-
ing this operation. The grips were then introduced using
the special jig shown in Fig.22 to ensure the parallel-
ism of the grips. The assembly,K consisting of grips,
plugs and torsiometer,was chucked to the torsion tester
and tested until buckling proceeded.

The testing machine used in the experiments was
4000 Nm capacity TREBEL Torsion Tester (Fig.23). This
machine is equipped with an electronic sensing head in
which the torque acting on the test specimen is convert-
ed into an electrical signal and indicated by a dial on
the control unit (Fig.23).

The machine is capable of applying torques 17105
'1/5, 1/2, and 1/1 of the full capacity which facilitated
the choice of the scale compatible with the dimensions of
the specimens. The tester 1s also equipped with an
angular displacement transducer to measure the angle of
twist. Both the applied torque and the angle of twist can
be plotted with an x-y recorder to obtain the torque-

twist diagram (Fig.?24).
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Mig.2l Alignment of plugs

Fig.22 Mounting jig for torsion
specimens
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Tig.23 Torsion Testing Machine

After moun ting the described assembly in the Macy 4
ne, torsional 1oad was applied at a rate comparable N
that of & tension test. Torque Was applied until the
buckling proceeded; which was indicated by a COHtinllOlls
decrease in the torque required to twist the specimenq
.18 shows & typical puckling failure of the SPeCimen.
The testing wWas stopped upon buckiing of the SPeci_
men and the reading on the torsiometer, the angular .
tion of the 1oading head, and the torque were recorded.
The angle of twist given by the torsiometer was useq i,
convert the plotted torque twist diagram to the ac-t;ual
Lorque twist diagram of the specimen. A close examination
of Fig.18 will indicate the necessity of this step. pq
\the torsion ‘tester measures the angular displacement .
the straining head, the angle of twist measured DY the -

cer is then indicated by the distance between the twg face
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Chickness: 7./ 5mm

- F1g.25 Tension Test Specimen

Mg.26 Tension Test Rig
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plates. Considering the geometric similarity, the actual
angle of twist of the specimen is proportional to the
plotted 6 value by an amount indicated by the torsiome-
ter.

Three sets of copper and one set of brass specimens
were used in these experiments. They were selected because
of thelr ductility; which facilitated the demonstration
of the plastic behaviour. Brass and copper specimens were
prepared from brass and copper tubes manufactured by
RABAK designated as DIN 17671 and DIN 40500 respectively.
The other set of copper specimens were prepared from the
tubes manufactured by MKE. Each set of specimens were
annealed at different temperatures, to obtain specimens
of different mechanical properties.

The results obtained from copper and brass speci-

mens are presented in Table-3.

4,2 Tension Test

In Egn. (46), which was proposed to predict the
onset of buckling, tangent modulus Et is another vari-
able which must be determined experimentally from ten-
siocn test.

Tensile test specimens (See Figs.25 and 26,

Mg, D2 of Appendix-D) were prepared from the tubes used
in torsion tests and pulled in the MONSANTO Tensometer
(Bench Tyve Tensile Tester), (Fig.26). The full details
of this tester is appended to the thesis.

| The tensile test results were later converted to
the true stress-true strain (5~g) diagrams. The §-£
“diagrams of the materials used in the torsion tests are
presented in Tigs. (27).

In the evaluation of Egn.(46), tangent modulus Et
versus radius-to-thickness ratio graph is required as was

mentioned in Chapter-3. To determine the tangent modulus
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TABLE-3 Theoretical and bxperimental Critical Buckl-
ing Stresses of Thin-Walled Circular Tubes
Under Torsion.

< T
Specimen |[Experimental| Theoretical |% error
(Kg/mm*) (é?’mml)

Al 5.1627 5.162 - 0.077
A2 5.+051 5.121 + 1.4
A4 5.164 5.212 + 0.94

e | B, | 10.782 11.017 + 2.18

o

oy

e B, | 10.685 10.947 + 2.45
B3 10.823 10.999 + 1.63
Cl 6.083 6s133 + 0.41
C2 Bl 30 6.886 + 2.21
Dl 8.344 8.010 - 4,01
D2 8.280 8.014 - 3,21

n

%)

= D, | 8.450 8.150 - 3.54
n, | 6.338 7.937 - 4.8
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o

2
(kg/mm <:>

201

E=10825 kg/mm2 for copper specimens(A,B,C)

E=9800 kg/mm2 for brass specimens(D)

e

001 0.02 € (mm/mm)

Fig. 27 True stress-True strain diagrams of the
tube materials used in the experiments.
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at any stress value, at first, the true strain-true strain
curves of the tube materials were obtained by employing

Swift's expression

G = A(B+E)" (47)

where A, B and n are constants for a given material.

These constants were determined by the method suggested
by Sivaci and Kaftanoglu [26 ] . Since the tangent mo-
dulus is the slope of the stress-strain curve defined by

Eqn. (47), it can be defined as

Qt

- na(B + 571 (48)

D.-l Qu
™

Et=

A computer program was written for the calcula-
tion of constants of Eqn. (47)j;which is given in Appen-
dix-E. The values computed for these constants are
tabulated in Table-4.

Another popular expression for the plastic behavi-
our is put forward by Ludwik. The plastic behaviours of
the materials used in the experiments were also deter-
mined according to the Ludwik's expression. In compa-
rison, Swift's expression was seen to approximate the

actual behaviour more closely.

4.3 EBvaluation of Results

The torsional load required to cause the plastic
buckling of specimens as predicted by Eqn.(46) and the
actual experimental resultswere tabulated in Table-3.

As can be seen from Table-3, all of the theoreti-
cal results are closely in agreement with the experimen-
tal results. Besides the numerical, the experimental re-
sults have also verified that some of the assumptions
made were also physically feasible.

An examination of the Iig.(28),which shows a cut

away view of the deformed specimen, indicates that
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TABLE-4 Constants of Swift's Expression for
the materials used in the experiments.

.Constants'
Materials
A B n
Copper-A 275 0-00LT2 0.2441
Copper-3 387.5 |0.19978 |1.9576
Copper-C 38.6 0.00308 0.25254
Brass-D 52.5 0.01307 0.34169

ig.28 Cut-away view of the deformed
specimen.




plastic buckling due to twisting is highly localized at a
point on this 450 plane; as is indicated by heavy bulging. A
further examination of the deformed specimen shows that
this point is coincident with the point A in Figs.(10) and
(11) of the theoretical analysis;which is a proof of the
assumption that the onset of buckling starts from the
thinnest section on the ellipse.

Though the theoretical results are closely in ag-
reement with the experimental results, slight differen-
ces between the two merit a further discussion.

The deviations between the theoretical and experi-
mental results stem from :

a- Approximations in the theoretical analysis, and

b- Experimental errors.

These are discussed in turn below.

4.3.1 Factors affecting the Theoretical Results

1- Effect of geometric parameters

The equation vproposed for the critical buckling
stress, Egn.(46), is a function of tangent modulus (Et)’
mean radius (R) of the cylinder, and the thickness (t)
of the tube wall. Since Et is determined by employing
the (R/t) ratio, as was explained in Chapter-3, (R/t)

" ratio is then a critical parameter for the buckling st-
ress equation. Both of these geometrical parameters may
vary in 0 or/and 7 directions of the tube depending
upon the precision of machining. On the other hand, mea-
suring accuracy 1is another problem. Any variations in
these dimensions effects the buckling stress considerably
since the stress is inversely proportional with the

square of the (R/t) ratio.

a- Mean Radius

The mean radii of the tubes were found to be vary-

ing from 18.7 mm to 19.4 mm for copper and from 16.94 mm
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to 17.01 mm for brass specimens as shown in Table-2.
These are the mean values of the radii measured at diffe-
rent sections of the tubes. The inaccuracies in these di-
mensions due to machining or measuring errors were found
to be not greater than 0.05 mm, depending upon the device
used. Therefore the possible inaccurate value of R will
not change the R/t ratio appreciably. Take, for instance,
the specimen-1l. If the radius is measured 0.05 mm small-
er than the actual and substituted into Eagn. (46), buckl-

ing stress decreases by 0.013 percent.
b- Thickness

Though the sensitivity of the R/t ratio to R
values 1is small, it is highly sensitive to the value of
the thickness t; as the thickness of the specimens used
in the experiments were smaller than 1 mm. Therefore a
variation in this dimension will effect the buckling
stress considerably. For example, substitution of a
thickness value into the buckling equatior 0.05 mm
smaller than the actual value will result in 2.28 % dec-
rease 1in the calculated buckling stress for specimen-l.

The change in thickness along the circumference
seldom occurs but is probable along the tube length due
to machining inaccuracy. Since buckling failure starts
at the thinnest part of the cylinder wall, then the
minimum thickness value must be found and substituted
into the proposed equation for the theoretical and ex-

perimental values to be comparable.

2- Assumption on effective length

Going back to Figs.9 and 10 of Chapter-3, the ef-
fective length employed in the theoretical results was
determired from the development of the ellipse. A seg-

ment of the ellipse and the 450 helix were assumed to

1
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be coincident for the length termed as m-n.

Obviouély the two curves are coincident at one point
only (point A in Fig.1l0). The tangents are no longer com-
mon when moved away from this point. However, as an ini-
tial assumption for the theoretical work, the deviation
between the tangents was ignored up to a value of lo. In
other words, the tangent at point A was assumed to be
common until the points m and n which were defined by
substituting 19 for vy in equation (22). Comparison be-
tween the theoretical and experimental results shows
that the error involved due to this assumption is neg-
ligibly small for practical purposes. However, substitu-
tion of O.95O in the said equation yields a closer re-
sult (See Table-5). Therefore it is suggested bto modify
the theoretical equation as follows based on the

experimental resulis.

3— Approximation of the development of the ellipse by
a_parabola

In order to facilitate the derivation of a simple
equation to predict plastic buckling of a tubular element,
the development of the ellipse, obtained by the intersec-
tion of the cylinder with a 450 plane, was approximated
by a parabola along the effective length. The error in-
velved due to this assumption was found to be about
0.1% %. The analysis pertinent to this error is present-

ed in Appendix-B of the thesis.

4~ ppproximation by Swift's Expression

The experimental stress-strain curve was converted
to true stress-true strain curve and then the resulting
curve was approximated by Swift's expression.

Though Swift's expression is a close approximation
of the actual true stress-true strain curve, a perfect

fit is impossible. By a suitable computer programming,
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TABLE-5 Percent errors between theoretical
and exverimental results for diffe-
rent Y values

Percént Errors

Speclimen y = 1o . 0.950 9 = 0.80
Al - 0.077 + 1.025 + 4.13
A2 + 1.40 + 2.30 + 5.24
A3 - 3.93 - 2.30 4+ 1400
A4 + 0.94 + 2.43 + 4.96

&

o

8 Bl 3+ 2,18 + 2.25 + 2.85
82 + 2.45 + 2.58 + 1.85
B3 + L.63 + 1.81 + 1.70
C1 + 0.41 + 2.40 + 6.72
C? + 2.21 + 3.50 + 7.20
Dl - 4,01 - 2.90 + 1.72
D2 - 3.21 - 1.50 + 2.96

wn

p]

é D3 - 3.54 - 2.57 + 2.03

m
D4 = Ok - 3.59 + 1.00
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experlmental points were compared with the points obtain-
ed from the Swift's equation. The computer results ap-
pended to the thesis shows that, at certain points on the
curve, there may be an error. Therefore if the critical
puckling stress is at a value where the analytical exp-
ression does not fit the actual curve accurately, criti-
cal stress predicted by the buckling equation will natu-
rally deviate from the experimental result.

Fortunately this error reflects to the Et - R/t
curve at a smaller magnitude. However, all workers in-
vestigating plastic buckling should be conscious of this
fact and muct check the degree of agreement between the
true stress-true strain curve and the analytical expres-

sion for the plastic curve.

Anomalous effects

Ul
|

One of the assumptions made in the theoretical
analysis was the uniformity of stress acting on the sec-
tion of the tube. Though this is a permissible approxima-
tion in calculating the torque resistance of thin tabular
cylindrical members, in actual case, the shear stress, no
matter how slight, varies across the section. Consequ-
ently, it may be said that & certain amount of error
creeps into theoretical annalyses due to this assumption.
v The magnitude of error involved increases with the inc-
fease in thickness t.

The material parameter Et is known to be anisotro-
pic for parts which are produced by heavy rolling. In
the theoretical analysis, Et value was determined from
the specimens machined in the axial direction. However,
the buckling element of the tube is aligned at 450
vith the longitudinal axis. If a material exhibits di-
rectionality, the actual vealue of Et must be determined
accordingly.
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Cutting specimens Irom the tubes in the direction of
buckling was practically impossible. However, to gain an
insight to the error involved, @& microscopic examination
was done. The results of the microscopic examination
revealed heavy directionality for copper tubes as shown
in Mig.(29). The effect was not so pronounced in brass
apecimens, in Fig.(30). From relevant studies on aniso-
tropy of sheet materials [27],for heavily rolled copper
sheets,the Young's modulus measured at 450 to the roll-
ing axis has been shown to be about 80 % of the nominal
value. This explains why the theoretical results obtain-
ed for copper tubes overestimated the actual buckling
stress. Since no appreciable directionality was observed
for brass specimens, the theoretical results are consist-—
ently below the experimental values.

The simplified principal stress equation (Eqn.1l9
in Chapter-3) for thin cylinders ignors the polar moment
of inertia term in the classical shear stress equation
for torsion. For thin cylinders the simplifying assump-
tion is accepted not to cause appreciable error. However,
undoubtedly this simplifying assumption is also respon-
sible for the deviation between the theoretical and ex-

perimental results.

4.3.2 Factors affecting the experimental results

1l- Loading

The experimental results are sensitive to end
conditions during loading as well. Though great care
wag exerciged to apply pure torsion to the mpecimens, it
was impossible to eliminate some of the insidious effects.
According to Saint Venant's theory, the end conditions do
not influence the character of loading at points beyond a
distance which is greater than the maximum cross-sectional

dimension of the specimen. Irn this work the pure torsion
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(b)

Fig.29 Microscopic examination of copper
specimens,

(a) on transverse cross section,

(b) on longitudinal cross section.

27



(b)

Fig.30 Microscopic examination of brass
specimens

(a) on transverse cross section,

(b) on longitudinal cross section.
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exists only in the mid-portion of the cylinder equal in
length to I-2R; where L is the distance between the plugs.
Consequently, for short specimens more irregular results
were obtained as compared with the longer specimens.

True stress-true strain curves of the materials used
in the experiments were obtained by replotting the expe-
rimental tensile curves. These curves were later convert-
ed to analytical expressions by employing Swift's equa-
tion. The tangent moduli were determined at various
points on the plastic curve by differentiating the analy-
tical expression, Eqn.(48).Thé values thus obtained were
substituted into the proposed buckling stress equation
and the corresponding R/t values were determined. Finally
these R/t values were plotted against Et’ Thus for a
given specimen, i.e., R/t value, this graph was used to
determine the corresponding Eg value. When the given R/t
and thus determined Et values were substituted into the
critical stress equation, the buckling stress was hence
obtained. .

Obviously, depending upon the size of the graph,
the Et value corresponding to the given R/t value is
subject to a certain amount of error. For example, if
the tangent modulus is read 1.00 kg/mm2 higher than the
actual, based on the data for specimen-1l, the error in-
volved is about 2.07 %.

Employing a curve for this purpose is a great ex-
ﬁedient. However, it is subject to reading errors as
outlined. An attempt was therefore made to express
these curves analytically. From the log-log plot,the
curves, as numbered in Fig.(3l), can be expressed

analytically as follows :
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Material Eguations

A B, = 54.2412(R/8)1" 2
= By = 39,163 (R/4) 27
C B, = 40.845([{/“1.7674
D Et - 124.2(R/t)l'3462

Within the region of interest, the values of Et
corresponding to various R/t ratios were checked with
the values from the graph. It was seen that the diffe-

rences were negligibly small.

4.4, Conclusions

Plastic buckling equation of thin walled circular
cylinders is determined by considering the buckled part
of the cylinder as a fixed-ended curved colum and by
applying the well known Euler buckling formula with
some modifications.

Plasticity is introduced into this equation simply
by replacing the Young's modulus by the tangent modulus.
The resulting equation satisfies the actual conditions
of thin walled cylinders under torsional loading. Thus,
a simple tension test is all that is required to deter-
mine the material parameter (Et) of the given equation,
since the other parameters, i.e., R and t, are known
for a given tube.

' By comparing the results from the proposed equa-
tion and the experiments, the following results are
coneluded:

1- The proposed equation satisfies the experimen-
tal values quite well (maximum error is 3.93 %) for the

thin walled circular cylinders of finite length.
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2—- The deviation between the theoretical and the ex-
perimental results increases due to the end disturbances
as the length of the tube decreases (See Table-3).

3- Both material (Et) and geometrical (R and t) para-
meters must be determined accurately to obtain consistent
results.

4—- The tube material should be ductile and its mec-
hanical properties in tension and compression must be
equal to employ the vproposed equation; or else its comp-

ressive properties must alsc be determined.
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CHAPTER 5

SUGGESTED EXTENSION OF THE WORK DONE

[

An interesting extension of the work done could be
to study the plastic torsional buckling of thin walled
tubes based on the deformation of plastic hinges.

Though this method wouldn't yield a simple solution
as compared with the selected approach, it would bhe of
academic interest.

The plas®%ic buckling phenomenon can be approximated
to an equivalent system of deformation in which plastic
and to elasto-plastic hinges are assumed to form. The ex-
ternal energy expended to bend these hinges is the appli-
ed torque.

The success of this approach would depend upon how
well the limit analysis, pertinent to the geometry, could
be carried out. It is necessary to determine in which
parts of the hinges of the tube must form to effect ins-
tability.

This analysis must then be combined with an equi-
librium study to determine what external loads are need-
ed to exceed the resistance of the material at hinges.

Equations exist for elasto-plastic and plastic
hinges in the relevant literature [28] . However, these
equations are based on the assumption that the material
1s elastic and fully plastic. Obviously these equations
must be modified to represent the real behaviour of the
materials which exhibit work hardening.

An attempt was also made to determine the possible
ninge points on the deformed specimen. This is illustra-
ted in Fig.32. This figure is based on the analysis of

the deformed specimen. If the cross section of the
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i) : : ;
deformed tube, cut by 45 plane, is examined, for points
under large deformation will be observed (Fig.32). Hence
the real situation may be approximated to a deformation

consisting of

Fig. 32 Eguivalent hinge deformation of the tube cross
section cut by 45° plane.

Case 1 : two plastic hinges at points B and C, and two

elastic-plastic hinges at points A and D,

Case_2 : three plastic hinges at points B, C and D,

one elastic-plastic hinge at point A,

and the portions between which are assumed to be rigid.

Though this geometric analysis sounds feasible, the
exact worth of +this reasoning can not be evaluated without
a detailed limit analysis based on energy balance. It's
felt that ar alternative solution could be put forward by
a detailed limit analysis. ilowever, such an analysis would
be rather detailed and wouldn't be as practicle as app-

rodch assumed in this thesis.
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APPENDIX-A
DETERMINATION O THE EQUATION FOR THE DEVELOPMENT OF AN

FLLIPSE

A

Fleg.d

Equation of an ellipse is
2 2
X + y_ = 1 (l)
a2 b2
As 1n this analysis the ellipse is formed by the inter-
section of the tube with a 450 plane, substituting

b=1l, and a=l/sin 45 (Fig.A ) into Eqn.(l) gives



and from Egqns. (2) and (3)

x =/2/12- 1 (4)
from the figure

cosB = % (5)

Substituting Egqn. (4) into Egn. (5) and solving for 1
2

12 & =l (6)
2-cos?p
From triangle OP'P
1% = 1 & B*

h* = 1% -1
Substituting LEgn. (6) into Eqn. (7) gives

. 2
. _cos‘B (8)
l+sin?B

On the other hand,

h2

sinB = % (9)
and
sinf = % (10)

From Egns. (9) and (10),

1 » 220D (11)
sinp
or
12 = sin?@ (12)
sin?B

Equating Egns. (6) and (12) give the relationship be-

_tween B and 9 as

L2
sin%@ = 2sin”B (13)
2-cos?B
or
sin?#9
sin?pg = == (14)
l+cos?8

using the trigonometric relationships

69



cos?B = 1 - sin?B

sin?9 1 - cos?8p
iqgn. (8) can be written as

K2 = Aosin o 1-{l-cos8)/(l+cos?8)
l+sin®B 1 (l-cos?6)/(l+cos?9)

2o 1 2 2
_ l+tcos®6 - 1+cos®6 _ 2co§ 6 _ coalp
l+cos?6 + 1-cos?0

which consequently yields

h = cosh (15)
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APPLENDIX-1

B-1 DETERMINATIOR OF Tilli ARC LENGTH OF AN ELLIPSE

The development of an ellipse (cosine curve) may be
approximated by a parabola (Fig.B)for the critical sec-

tion. The equation of the parabola is

- 2 _m?
L = “‘;(9 T) (16)
m
7

for the interval - 7 <6<
Arc length of Egn. (16) for any point in the inter-

val Oseg% can be calculated from
0
S =dfv/1+(dh/de)2 de (17)
0

Differentiating Egn. (16) with respect to 6 first and
then substituting into Egn. (17) yields

o) , Ban. (18) becomes

wE e
g = ﬂgjﬁ/l+u2 du (19)

0

Integrating Ean. (19) yields

2 VP
s = T (22N v g (ur /1rud)) (20)

2 2

E#
(]
o
ct
H.
o]

o]
<
il

o

B-2 ERROR ANALYSIS

Peripherial length of an ellipse is

P = 2w\//% (a%+ b?) (21)

Since b=l and a = 1/sin 45, Egn. (21) then gives

P = 7.6953 (22)

Consequently, the arc length of the guarter of an
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ellipse of unit minor axis cut from a cylinder by a 450
plane 1s

= = 1.9238 (23)
However, the arc length of a quarter ellipse, for o=
and as calculated from Egn. (20) is ’

S =1.92667 (24)

Thus, the error introduced over the total length of a
quarter ellipse is

_1.92667 - 1.9238
1.9238

[e)
S E

x 100 = 0.1492%

Obviously the error will be smaller for the arc lengths

smaller than the length of the quarter ellipse.

Parabola

Cosine curve




APPENDIX - C
DETERMINATION OF THE THICKNESS OF AN ELLIPSE CUT FROM A
THIN WALLLD TUBE

The equation of an ellipse in rectangular coordinate

system is

2 2
X+ L =3 (25)
ac bF

or in polar coordinate
2 2 2 L4 2
r‘cos’f , r'sin B _ 1 (26)
g* B*

. . . 2 .
Substituting cosQB =1 -sin"g into Egn.(26) and re-

arranging gives

£ = ab (27)
Jb2+(a?-b?)sin’B

2

But a2 = (b/sin 45)2= 2b“, [Egn.(27) becomes

r = = (28)

S 1+sin?B

Consider the ellipse shown in Fig. C is formed by
cutting a thin-walled cylinder by a 450 plane. Designat-—
ing the inner and outer ellipses by subscripts i and o,
respectively, the dimension t (Fig.C ) at any point can be

calculated from

t'" = —————— (a_ - a,) (29)
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fan rgen ¢

PMg.C

T4



= _qz = |
= tany £30)

From Egn. (25)
y = b\/1l-x%/a? (31)

Differentiating Egn. (31)

QX:-—b——.—_—é“-—'—‘ (32)
6 az\/l—xz/a2
From Egns. (30) and (32)
b X
tany = — —————— (33)
a’ \/1-x?/a?
or in polar coordinates
tany = B, r _cosB (34)
a* /1. rlcos’s
a2
re-arranging Eqn. (34)
tany = 2 cosB (35)
a? //;L _ _cos’B
V re2 az2
From Egqn. {26)
1 _ cos?B_ sin’B (36)

e a* b*

Substituting Eqn. (36) and a? = 2v2 into Egn. (35) and

simplifying

tany = SO (37)
or

p = tan”! (S2EE) (38)
From Fig.(C)

£, = t'sin(|y]| + B) (38)



APPENDIX~D

TENSOMETER

Tension tests were conducted hy a MONSANTO tensome-—
ter (Fig.Dl) which can also be used for shear, compression,
and bend tests. Force is applied to the specimen by the
spring beams ranging from 31.5 kg to 2000 kg, the latter
beins the maximum load of the machine for each type of

test.

Fig.DL

A hand or motor driven gear box of high mechanical
adventage applies the force to the test piece held in
chucks. The force deflects the spring beam and this def-
lection operates a level acting on a piston in a cylin-
der containing mercury-driving mercury up to a glass
tube which is calibrated to show the applied force with
respect to beam deflection.

Although in most circumstances hand operation 1is

usually used, the machine,can be motor driven (Fig.Dl)
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when a constant rate of extension is essential or where
materials with usually large extensions have to be tested.
Force-elongation graph can be plotted either by puncturing
the graph paper with a manually operated cursor or by an
automatic recorder when tests made at high speeds or when

forces change rapidly (Fig.D2).

Fig. D2

The recording graph is mounted on a cylindrical
drum connected directly to the main drive. The drum-drive
has three alternative gear ratios and thus the magnifica-
tion of elongation may be varied between 16:1, 8:1,,and
4:1.

The overall dimensions of the machine are as fol-
lows :

Length : 965 mm

lieight : 230 mm

width : 235 mm.
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APPENDIX-E

CONPUTER PROGRAM FOR THE EVALUATION OF TENSION TESTS

NI MeNs TUN DELILIOD) $5STRESS(L00) wSTRAIN{LCO) »£QST(1C0)
LeyeQSTRUELOU )
ZEL(lOd)vFL(LOO’vFURLE(100)9FARK(100)05(500)1F(500)
39S5SUMACLOO) »
QQUMU(LOU)vSUMtN(luO)vSFL(lOU)vAL(lOO)vEQT(100)
SeLEIRELIO0)YSALIEL100)

DIMENSTIUN S{100)yS5S{100) 9X(100)sY(100)9ST(100)
leSTELOO) DY 100)
ZVUIFF(ZUO)'tN(lUO)vJX(100)vbw(100)QERROR(ZOO)'STRT(lOU)
3. TANMUNDCSU) 3 BEPSISO) y THISO)ySRISDISRTTRIS0)

NDEL (L) IS THE HORIZUNMTAL DISTANCE DOF A POINT OF THE

FURLE=-EXTeNSIIN CURVFE O THE TENSCGMETER GRAPH PAPER

C 15 IHMe GQUATION NDF THE CHARACTERITICS CURVE OF

THE SPRING oEAM USED

ELC IS THE CONSTANT I THE PRGPUSED EQUATION FOR

R/T RATIO

REAU(IS 9 2) NyAKEAs BOY s YMyCoeELC yFUR WL

CORMAT (I3 9F TeatsFba29FB8a21FTe59FL1a99Fbe2y12)

QtAO(Dvl)(D&L(I)vl:LQN)

FURMAT(LOFT3)

WKITE(6y3IL

FURMAT(Z2DXy 'DATA NO="'4T124/)

VUL=BUuY=AKEA

AKAT=0a0625

SME1)=0.

SMI2)=D.

EQST(L)Y=D.

WRTITELS &)
Fu%mAl(ZSx,'I',LZX.‘X'.L?X.'Y'.Lox.'FN'.Qx.'SM'/.
124X 455('=" 1))

Du S5 I=1leN

FURCE(T)=FDOR+[%2eD

STRESS(L)=FURCE(T)/AREA

FARK( L )=CxFURLE(T)

S =Del (D) =FARK(T)

SEL(T)=AKAT=EL(])

STRAINCLY=SeL(I)/B0Y

SS{1)=1+STRATINIT)

FLSTOLI=STRESSEL)=2SSE1) /1000
CUSTRIT) =ALUG(SS (L))

DETERMINATIUN DF THE CONSTANTS UF LUDWIK'S EXPRESSION

[FlietWel) GO TU 5
X(I)=ALUGLEJQSTI(I))

Y(I)=ALJGIEJSTR(T))

IF(lLTe3) OGN TJ 5
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o

DYCLI=Y(l)=-Y(2)
DXCEYI=X(T)=-x(2)

ENCIY=DY (L) /X1
SMOL)=SMUL-L) N

WRTITECEH) L XOLDY o YIT) o EN(TYSM(T)

5 CONTILiele
W TIELGE T OL v FORCE(T )Y 9 STRESSOI) WEQSTUT)
LedTRAINCT ) yeQoTROLY yI=1,4N)

T FOURMAT(Z2S X T 9 IXy "FORCE(L) "4 2X sy *STRESS(T) " 94Xy
LPEDSTET) " oS5Xe "STRAINCL) " 96Xy "ENSTRILI Y9/ ¢24Xe64( =)/
e 023X 0 I392X 317029 3X3F 90891 XsFllebe2XvE130e591X9EL1346))

6 FURMATIZ3Av I3 y0XKeF Ll a7 92X eF1lla792X9FeT42X9079.7)

NHEiN

L=2

M=tS /2

N=NS=-|

FNL=SMINS)/INL~2)

Salill=0.

DU v K=Z2eNS

STIRKI=EGSTRIK Yt L

ALIR)=EGSTIRI/STIRY

NN=K=1

SALIK)I=5ALINNI+AL (K)
9 CUuNTINUe

NK=K~-1

ALTI=SALINKI/(NK)

QU v U=l NS

ESTOJI=ALL=ST(Y)

DIFFLUY=EQSTLUN-E5T L)

ERRUGRIJI=IDIFFLG) /ELSTHUY =100
9 CJMNTINUE

WRITELAYLUO) (JebSTUU) 2w FEGSTUYY WDIFFLJ) sERROR{ ) 9 J=2¢NS )
1D FURMAT (25X e ' JaaX g "EST " 9B8Xe'"FUST " y9Xe'DIFF*9yTXy 'ERRUR Y,

1/924X9500 =) o/ 3 (23X 13 42X0EBe293X0EBaZ2sS5X9EBa292X0ELLe5))

CUMSTANTS OF LUODWLIK®'S EXPRESSINON

WRITE(A, 1L eNLeaLL
11 FURMAT(OSAK"VALUES ORTALINED USING LUDWIK EXPRESSIUN?,

l//'éGXV'N:"El705'SXV’A:'QE15.3)

PRIOGRAM FUR CURVE FITTING (SWIFT*S EXPRESSTUNI

T=0.1

T s IHe INITIAL ASSUMED VALUE FOR EQUJATIOUN 13

IN REFERKFENCE 26

EuMLze 3o TIM)} /e QST L)

EWNL=cQSTINY/=QST (L)

EM=zALUGIEGMLY /ALDG (eRNL)
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KN=1

H{l)l=vue.v
E{LI=(LEQSTRINI/FQSTRIL ) Y#HEM) =L ELSTRIM)/EQSTRIL))
DG 12 [=1,1000

[F(l.cQel) GO TU 12
BUT)=80I-1)+0.002/ (1N euiKN)

BEPS1I=8(T1) +£QSTRIL)

AEPS2=B () +eQ5TKIM)

REPS3=3(1)+eQSTKIN)

B2l=BEP52/8EPSL

831=8=zPS3/BEPSI

EWUATION ¢1 OF KEFe 27 (B31%x=EM=R21)
FOI)=o3luuxtM-02l
ORAN=(FIT)=FLI=-1))/LFCT)+F(I=1))

[FABSTURAN) «LT0.0u0001) GO TO 13

IF([.EQe1) 6D TU 12

TFOF(I) Gl e0eUeANDF(I=1)alTeCeOeURF(T)elTo040
Fe ANUCF(L=1)e0GTa040) GO TO 14

Cu 1IN 1¢

KN=KN+1

FII)=r(1-1)

B(I)=cll-1)

CONTINUE

Rl=g (1)

BLEPSL=vl ¢EWSTRIIL)

3LEPSM=01+EQSTRIM)

BLEPSN=pD1+EQSTRIN)

BNL=BLEPSN/B1lePSL

*N' CAN BE FOUNU FROM FUN. 22 0OF REFERENCE 26
ENL=ALOGOEQNL) /ALUGIBNL)

A CAN RE FOUND FRGO™M SwIFT'S EMPIRICAL FORMULA
ALL=EeSTIL)/(BlEPSL=x=ENL)

AL2=ELSTIM) /{BleMsMuENL)
AL3=EuSTIN)/ (Bl EPSNE=ENT)

Al=(ALL+AL2¢AL3)/3

INITIAL VALJES OF CUNSTANTS OF SWIFT'S EXPRESSTUN
WRITE(H,19) AL BlyENL

FURMAT 125Xy AL="eE15.695X9"31="yFLl0H,35Xy *ENL="F10.6)
NUW CALCULATE THE FINAL VALUES UF AyBsNsUSING
EGNS«eLl3y15417 AND 18 OF REF. 26

APl=AL1/1000.

SUMA( 1) =0,

SUMu(L)=0.

SUMcNI1)=0U.

DU L6 T=24N>
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(@]

16

20

18
22

21

23

EPSLLI=1+EQSTR(])

BRPEN=cPS 11 %uENL

BPENLI=EPSL1x=(ENL=1)
AEPS=ALJGLEPSLT)
EPSL=EQST(I)-1000=APL=BPEN
SUMACTL)=SUMA(TI=-L1)+EPSL=gPEN

SUME (DY =SuUMB(L-1)+FPSL=BPENL=APL=EN]
SUMEN(T)I=5UMEN(I-L)+EPS L=APLl==AEPSHBPEN
CUNTIwWUE

GRAUVDIENTS WiTH KESPECT T0D A8 AND N (EQNSe v o
AND y IN ReFe 27)
AGRAD=-20UN%=SUMAL(])
BURAD==-2000:5SUM3 ()
ENGRAU==-2000U=SUMENCT)

CALL TBUL(EUSTyEQSTRINS yAGRADYBGRAD s ENGRADAL AP
Ly lyEinl,T)

AP2=AP1-T=AGRAD

32=81-T=BGRAD

ENZ=ENL1-T=ENGRAD

IFLABSTAPZ) WGTLABS(B2)) GO TO 17
IF(ABS(2) oGT  ABSIENZ))Y GU TO 18

Gu T0 19

TFIABSIAPZ)Y GTCABSIENZ)Y) GO TU 20
IFICABS(ENZ=—ENL)«LTe0.00001) GO TO 21
G TO 22

[F(ABS (APZ=APL) L T0.000901) GU TD 21
Gu TO 2¢

IFIABS (B82-31).LT.0.00001) GO TO 21
APLl=AP?2

Rl=u?

ENL=ENZ

SU TQ 20

Al2=aP2%=10U00

ANZ=ElN2-1]

WRITE(H,23)

FURMAT (25X "1 94X ' cQSTUL) "ySXa ' STRT(EIL) 9 TXe"DIFF"y

Xy "ERKRIR T 9/ 923%952('="1))
DU ¢4 T=14NS

—

DIFF(IY=ABS(EQST(I)N=STRT(I))
FRRIR(TI)=(DIFF(L)/EGSTCIN)=100

WRITE(Ay25) [9ELSTCI) o STRT(L) yOIFF(L) yERRORI(T)
BEPS(1)=82+EQ5TR(T)
TMOL)=ENZ2=A2= (BEPS ) AN2)

TANMOOD( [)=YM=TM(T)/TM(1)
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—

EWCSTH Y2 QST =1000.
SRUIY=SURTOTANMUDIT) /05T D))

BTTel Iy =6 0SSR

Covilivie

ARTT S UGy 20)

FURMAT LZOSA 9 ' T g Xy "eQoT T} yAX " TANMODIL) ' 10X,
TRAT Y/ 23X 530 =)

AR TIE L 27V 0T USTOLY y TANADDOLY g RTTRELI) 9T =14NS)
S AT L3 A I d s A Rker Ted b Xy Bl e T T XaF3e4)

FURMATL LGAa sl 32 X9 Teh g3 X efFQeb 33X b 0H32X0F1Leb)
WRITE(A 24V A2 3y eNe

FURMAT I ZOX e YA y P C e e lDNA A" 3 FU oD e LNXy "Nz yF 50}
STy

B

T VALUE DeETEAMINGATTIAON UsING THS YeTH2D uF STREPEST
TESCEANT WiTr LARGE S5TeP ALGURITHY(REF J29)
SUR«TDuTiNe TRULLE LS T e 0o TR eNSyAGRAND,NGRAD
yCdORAD y AL yaP Ll yENTL,T)

DIMeH>TUN EGSTULOU)Y o 5QSTROTOM)

Aeal NDRTAK

[CDNT =29

SuMat g,
Su“osK=0,.
SuMNK =0,

STGAK=0.

STOLK=0.

ST haK=9,

[N T=T0OnT 1

RIVERPES A S B

AR TAR=ZAP L=-TmAaGRAD

PR TAR =0l ToHRGRADCREGSTR ()
MURITAR=ZENL-THENGRAD
AUNUR=ZNURT AKNIR T AK
ANWDR=ZADRT aKaNIR [ AR
ApTK=ALUG(IJRTAK)
AUNTLI=AURTAKSE(NURTAK-1)
BUNTL=z280RTARESINIRKTAK =1}
NUNT2=DURTV AR { NORKTAK=-2)
BUNET=BURT AR 2R WIRTAK~1)
Uuhe T e = 0K TAK S (23NJIRTAK- 2)
FUNC T UNRTAK S (22N T AR
ABEGN=ALGRAUEGINS
AnzadRTAKEAURT AR
AGET=ALRAUTSINT ]

AGIUM= AURADEBUNUR
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(]

27

ALONG=ANDOR=8ON2THb0RAU

ABON=AORTAK:=BUNUR

ARBoG=NIRTAK=BONT L =3GRAD

ABGU=AGONT LxoNNT 2= b5RAL

AGBU=INORTAK=BONZT=83GRAD
ALGORB=ALRADHAJURT AR NINZ T

RUBOR=NUNLT 22 5GR A O

AURGT L=ADORTAKHBUNT L

AORB2T=AORTAK=AQRTAK=BON2T
ORTAK=EGSTINI=100U=ADKTAK=8UNOR

"SUMAK® MEANS EWUN. 40

SUMAK=SUMAK +DRTAK:==BRUNUR
SUMUK=SUMoK+0ORTAK=BUNT 12 ANOR
SUMNK=SUMYNK+ORTAK=AURTAK=ABTK=BUNCGR

TUAK'Y MpANS GRACIENT UF A AT'K'TH STEP
GAK==2000%=SUMAK

GBK==2000:SyuMusK

GMNK==2000=SUMNK
FUNL=GAKZAGRAD+ GRK =GR AD ¢ GNK=ENGRAD
STOAK=STGAK+(E2ISTIN)=URBBG-1000:( ABGN+2::ABDKG)
STOEK=STGuK+(EASTINI=(AGART+ARGD)-1000x:(2=AG0URY
LeAAL(2NORTAK=1) %
EAUBGR) VENURTAK+eNGRADE(EDSTIN)I=AOQRBTLI-1000x:A0R

STONK=STONK ¢ £QST(N) = ( AGRUNCACRTAK#0RBRG)I~2000=

LOADRTAK=ABGN AA:

CAGBDY ) HABTK#(EDSTIN)IHANRATI-1000=ANRA2T ) =B6GKRAD
CONTIWUe

ToAR=2000x:STGAK

TOBR=¢2000:x=STGsK

TOUNK=200UN::STGNK
TRUNC=TLAKTAGRAD+ TGoK =R GRAND+ TONK=eNGRAD
TL=T-t+UNC/ TFUNC
TF(ABSIT=T1)eLEL0.000001) GJ T3 30

T=T1

IFCLICUNTeERelUuD) GO Tu 31

GU T2 100

WRITE(AHe32)

FURMAT(*TULONT TS NAOT EMOUGH")

CUNTINUE

RCTURN

EiND
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)
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