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Superviser:Prof.Dr.Bilgin Kaftanoglu

September 1987, 160 Pages

In connection with the formability of metals, the process
of wire-drawing has been the subject of extensive
theoretical and experimental investigations.An exact theory
of wire—-drawing has not yet been realized and all the
theories make some assumptions about the deformation and the
extent of the plastic region.In the complete solution of the
problem the stresses and the mode of deformation must be
compatible,as yet,no axisymmetric problems have been exactly
solved.

This thesis is concerned with the development of the
theory for wire—drawing and presents a further development
for the analysis and modelling of the process.Since the
deformation is not homogenous and extra work is expanded in
distortions which do not contribute to the final reduction
in diaméter yl.e.,as redundant deformation,in the modelling
technique the effects of the shearing in the entire plastic
region is included.

Governing plasticity equations plus the material
behaviour and the mode of deformations are all inherently
non—linear in form. These lead to a mathematical problems
which is rather intractable for an analytical soclution.This
makes the use of numerical methods to be inevitable.A
numerical algorithm is developed to determine the plastic
stresses and resulting deformations in the drawing region. It

consists of a finite difference technique which solves the
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plasticity equations to compute the space variation of the
stresses and strains.The problem is treated as a three-
dimensional stress—-strain case for an anisotropic and
strain—hardening material model.

Detailed description of the development of the theory
and the algorithm for the numerical method of solution are
presented. The analytical solution is also obtained by using
Sachs, Siebel and Vhitton equations to compare with the

numerical solution.

Key Vords:Vire—-drawing, plastic deformation, numerical

solution
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TEL-CEKME ISLEMININ BILGISAYAR YARDIMIYLA
ANALIZI VE MODELLESTIRILMESI

Cihat Aksaoy
Master tezi;Mak.Mih.Bdlumu
Tez Yoneticisi:Prof.Dr.Bilgin Kaftanoglu
Eylil 1987 , 160 Sayfa

Malzemelerin sekillendirilmesi ySntemlerinden tel-cekme
iglemi,bircok teorik ve deneysel arastirmaya konu clmustur.
Gelistirilen tiim teorilerde plastik bdlgedeki sekil
degistirmeler konusunda birtakim varsayimlar yapilmis ve tam

bir teori heniliz gelistirilmemistir.Problemin tamamlanmis

ct
|

¢Oziminde gerilimler ve gekil deistirmeler birbirleriyle
uyumlu olmalidirlar ki;heniiz eksenel simetrili bdyle
problemler g¢dziimlenmemistir.

Bu tez, tel-¢cekme islemine iliskin teorinin
gelistirilmesini konu almakta ve islemin yeni bir model
olusturularak analizi icin ileri bhir adim teskil ’
etmektedir.Model olusturulurken;plastic bdlgedeki tim sekil
degistirmelerin ayni olmamasi,fazladan is harcanmasini
gerektiren ve tel ¢apinin azaltilmasina herhangi bir faydas:
olmayan sekil degistirmelerin (redundant deformaticn>
bulunmasi nedeniyle kayma birim-sekil degistirmeler de
dikkate alinmistir.

Plastisite denklemleri,malzeme davranislari ve plastik
sekil defistirmeler dofrusal olmayan bir yapiva
sahiptirler.Bu yapiya sahip matamatiksel bir problemin ise
analitik ¢Szlminli kontrol etmek mimkiin deg§ildir.Bu durumda
sayisal ¢Ozlm metodlarinin kullanim ka¢inilmazdir.

Bu ¢alismada da cekme bdlgesindeki plastik gerilim ve

sekil degistirmelerin bulunmasi i¢in sayisal bir ¢dzim
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gelistirilmistir. Sayisal ¢dzim,sonlu farklar ydntemini
kullanmakta ve plastisite denklemleri aracilig:i ile tel-
cekme bdlgesindeki gerilme ve birim sekil degistirmeleri
konuma bagl:i olarak incelemektedir.Problem ¢ boyutlu bir
gerilme prolemi olarak ele alinmis,izotropik olmayan ve
gekil degistirme ile peklesen bir malzeme modeli
kullanilmistir.

Bu tezde, tel-gekme islemi i¢in gelistirilen teori, ¢dzim
ybntemleri ve elde edilen bulgular anlatilmakta,ayrica
karsilastirma amaci ile Sachs,Siebel ve Whitton denklemleri

kullanilarak analitik ¢dzim elde edilmektedir.

Anabhtar kelimeler:Tel ¢ekme,plastik sekil—deéistirme,

sayisal ¢dzim
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CHAPTER I

INTRODUCTION

Wire-drawing 1is the process whereby wire is progressively
reduced in crossection by pulling it through dies to produce a
wire of a specified size and shape.Circular wire is most often
drawn. The reduction is achieved by using a die with a tapered
bore.

The pull on the wire at exit from the die,and the pressure
developed between the wire and conical surface of the die (the
"nip* of the die) are sufficient together to stress the metal
s0 that it is plastic within the confines of the die.

The reduction in size per pass is limited by the amount of
pull that can be applied without breaking the wire,so that
many passes have usually made.The drawing process starts from
«wire rod» conventionally at 5 S.¥.G. (5.220 mm> but lately
the trend has been to thicker rod up to 5/16 in (7.94 mm
diameter.,VWire as fine as 0.0004 in. (0.11 mm) in diameter is
drawn. The reduction of cross-sectional area per pass 1s
generally within 10-45 percent where percentage reduction is
defined as (1-A2/A1)5100,Al1 being the initial A2 the final
cross sectional area of the wire, with 15-25 percent prevalent
in the drawing of the fine wires,and 20-45 percent preferred
for the coarser sizes.The progressive reductions are usually
made in tandom on "multi-hole" wire drawing machines which may
have from 5 to 21 dies.The pull for each die is supplied by a
raotating capstan, which may also serve as a storage drum to
reconcile the output from one die with the input to the next
{1].Fur example, the manufacture of 0.001 in diameter copper
wire from 1/4 in. hot rolled rod may involve some fifty
consecutive passes.Drawing speeds range from 100 to 8000
ft/min, depending on size and metal and the particular pass of
a continous machine [2]. Since wire drawing is a cold-forming

process,an intermadiate anneal is often required before the



final diameter 1is reached. Controlled athosphere furnaces are
common equipment in a wire—drawing plant.The hardness and
ductility of the finished wire are controlled by the amount of
reduction effected from the last recrystallization anneal to
final product.Final heat treatment and coating can be given to
the wire if desired [3]1.In the early days the shaping and
hardening of the dies,and the choice of succesive passes to
give maximum reduction without annealing or breaking the wire
were closely-guarded secrets.Later these practical limitations
became translated into the standart wire gauges. Modern
practice enables the same reductions to be achieved in fewer
passes, owing to improvements in quality of the wire, hardness

and accuracy of dies and reduction in friction [11.
1.1 Wire Drawing Die

The total die angle can have values between 5° and 25° and
the length of the cylindrical portion varies from nil to two
wire diameters. A total die angle of less then 15° has been
considered safe against the defect even with the lightest
reductions {41.The use of a bearing (short cylindrical
extension of the die cone) has been recommended.The single
pass wire drawing tests give evidence of the two stages(crack
nucleation and crack propagation? of any ductile fracture with
high values for the die angles and slight reductions internal
axial defects were developed but fracture did not occur.
Fracture took place when the die angle exceeded 24° and for
intermadiate reductions.Without back tension a draft of 33%
reduction and A=2.6 (ratio of the circular arc spanning the
midpoints of the die face to the length of contact between
wire and die) did not produce fracture;it was reasoned that
nucleation was not possible due to the law hydrostatic
tension. When the same draft was done under back-tension the

wire fractured because nucleation was then possible.



In industrial practice,the die has a trumpet-shaped bore,
but since the curvature near the working surface is small, this
may be simplified here into a conical portion which serves to
deform the wire and a cylindrical portion which is meant to
preserve the size of the bore in the face of wear. Different
materials are used for dies [3].For the larger dimensions,
economic considerations dictate the use of hardened tool
steels. Medium sizes are made of carbides.For the very small
sizes ultimate hardness and wear resistance are required, and
diamond dies are used.Diamond, the hardest known material,is
one hundred times as hard as aluminium and twenty-six times as
hafd as steel;its use dates from 1819, when its advantages for
the drawing of wire first became known [85].Diamond dies are
now used almost exclusively for the drawing of fine wire,while
heavier gauge raund and shaped wire is generally drawn with
tungsten carbide tocls.Refractcry materials are becoiaing more
common as they are made tougher, more resistant to breakage,
and less expensive. Also,dies of steel can now be lined with
hard refractory material on the working faces to combine the
wear resistance of the lining with the toughness of the steel
support and with minimum use of the more expensive refractory.
Thus larger and larger diameters can benefit from the
advantages of refractory materials. Refractory materials of
higher and higher hardness and wear resistance qualities are
being developed.Since they are cheaper than diamonds, they are
used for still'smaller and smaller diameters. After a die has
been worn on its conical face,it is ground or polished to
restore its geometry and smoothness faor further use.As the
cylndirical pdrtion is worn, the die is ground and polished.
increasing the size to the next diameter,and used again.Quite
specialized equipment is used in the production and

maintanence of drawing dies. (Figure.l, 1>



1.2 Lubrication in Wire-Drawing Process

The two main problems in controlling the wire drawing
process are removing the heat developed by plastic deformation
and friction,and wear of the dies,which effects size and
shape.Lubrication is therefore important. Traditionally the
two principal methods are “"wet" and "dry" drawing, which differ
as regards preparation of wire, lubrication,and design of
machine. In wet drawing,the entire drawing apparatus is usually
submerged in a bath of liquid or and the wire is allowed to
slip on the drawing capstans [2] [86].In dry drawing,soap
powders, plcked up by the moving wire from a container placed
ahead of the die,are commonly employed as lubricants,and the
capstans are lapped by the wire a sufficient number of times
to ensure that no tangential slip occurs.Fine wires,i.e.
below,say, 1/32 in. in diameter,are invariaktly drawn wet,and sc
is copper and its alloys in all sizes.The dry method is
prevalent in the drawing of most other metals and alloys, from
rod to intermadiate sizes (though much aluminium wire is still
drawn with liquid lubricants.)ferrous alloys,notably the
harder ones,are usually precoated with soft metals or with
inorganic compounds, such as zinc phosphates,oxalates, or
ferrous hydroxides; when they are to be dry drawn,they are also
given a wash of lime borax,or one or two other alkaline
substances, reputedly to facilitate the pick-up of the soap
powder {(whence the term "lubricant carrier"). (Table.l1l.1).

In the production of bar,rod and wire products, surface
removal i3 an important final step [7].From the time that an
ingot of steel is poured,all subsequent processing tends to
produce twa basic deleterious conditions : decarburization and
surface flows.Decarburization results from repeated reheatings
that the semi-finished product is subjected to during
processing. If one wants to take advantage of the benefical

work—-hardening associated with cold drawing, it corrects the



[2] BuimeJag—aJd M U} HLV UD}32}d3 JO 3UBID1 434900

40 senj|wA

(ropdA L ~-1T3EHL

m.h -m mﬂ t ¢ s LI it mm.ﬁ
EG°@ ——— 201 splguesn 93 | ydrun su | ] ol
g1'e 6 e e 'y (] P21 psl1ualed
. t ¢t
Nm 5] e ' Q.ﬂom Ejmvom @NA m mmﬂrm U W.Mm c&
$0°0 ——— 0al apjqude) |srsJn aw ac
83RJIRALS
ﬁ om e 4 . P
220°0 0| Yags ep1g4ey wnyo ey suia F-IBH (983 Blth
" Bep (10
31 °8-62°0 e Y . uotl s nws
t ®BUU 38R J
80 °0~92°2 —— o 070" suoN | pel H seug
50 °8~-£0 "0 e 5°€ apiq4rs | OROS wnipog
e "B~20°0 1 9 2935 | JB893S Wnipog aUO} ae Jaddo)
S1°0 e o 19835
f1°Q ——— ' sptgJaen j1to goise) SO 3308 LMQQQU
et-e ———— S puowe | (]
Hm_mDwa_ ( Zows mxu
INOHLIM v e
o 53ssHd |(UHYY) o THIYILHW
40°ON | 033dS | WHIN3LHW 3Id ANBOIHEM ANI1H0D ‘S°LN ]




decarburization defects.The main functions of wire-drawing is

to produce wire of specified size with a good surface finish,

1.3 Industrial Applications

Nowadays extremely large quantities of wire are drawn from
all the metals and metal alloys used in industry and the
articles made from wire range from-the humble paperclip to the
highly sophisticated egquipment used in satellites.It is in
fact impossible to imagine the modern world without wire.
Copper may be cited as a typical example:in Western Germany
approximately 400 000 tonnes of copper wire are produced and
fabricatd every year;the sphere of application ranges from the
generation and distribution of electrical emnergy to transport
and the transmission of communication and the smallest
domestic appliances.Production ranges from overhead wire
weighing up to 1100 kg per km for electrified railways to
superfine wire 0.01 mm diameter weighing only just over 1 kg
per 1400 km and destined for the manufacture of electronic

componets.
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CHAPTER II

SURVEY OF LITERATURE

2.1 Historical Background of Placticity Theory

The theories of elasticity and plasticity describe the
mechanice of deformation of most engineering solids. Both
theories,as applied to metals and alloys,are based on
experimental studies of the relations between stress and
strain in a polycrystalline aggregate under simple loading
conditions. Thus they are of a phenomenological nature aon the
macroscopic scale and,as yet,owe little to a knowledge of the
stracture of a metal.Swaging and drawing processes were
already known and widely used in 16th.century.Other processes
such as extrusion,rolling,metal machining, sheet and tube
drawing which generally need more energy than a single person
can supply,emerged as a consequence of the industrial

innovations of the 19th century.

2.1.1.Theoretical Studies

Scientific studies in the theory of plasticity may justly
be regarded as having started in 1864.In that year Tresca [11],
{8] published a preliminary account of experiments on punching
and extrusion,which led him to state that metals yield when
the maximum shear stress attains a critical value.A similar
criteria for the yielding of plastic sclids has been
proviously proposed by Coulomb in 1773.Tresca's yvield criteria
was first applied by St.Venant in 1870 to determine the
stresses in partly plastic cylinders subjected to torsion or
bending.He set up a system of five governing stress—-strain
relationships for a two dimensional flow and clamed that the

directions of maximum rate of shear strain coincide with the



directions of maximum shear stresses.lLevy adapted St. Venant's
conception of an ideal plastic material,and proposed three
dimensional relationships among the components of stress and
plastic strain increments in 1871.This rule was re-discovered
by Von-Mises in 1913 and these relationships are now recalled
as the “"levy-Mises" equations. The most satisfactory yield
criterion was proposed by Von Mises in 1913.It was based on
pure mathemstics and was further interpreted by Hencky some
years later.In 1921 Prandtl showed that the nature of the
two—dimensional plasticity problem is hyperbolic.The general
theory, covering also Prandtl's special solution was supplied
by Hencky in 1923.He also discovered simple geometrical
properties of the field cof slip lines for the condition of
plane plastic strain.

Theory of plasticity was first effectively applied in 1225
to industrial processes by Karman who analvsed the state of
stress in rolling by an elemantary method. Siebel, and soon
afterwards Sachs suggested similar theories for wire—-drawing.
Reuss allowed the elastic com@onent of strain to appear in
Levy-Mises equations in 1930.Vork-hardening of materials under
plastic deformation was firstly incorporated with these
eguations by Prandtl and then by Schmidt in 1932.Thus, by the
end of 19232 the general theory was obtained for an isotropic
material at ordinary temperatures.Theories describing
anisotropic behaviour have been proposed by Jackson [8],[101
[113,Hi11 [12) and Dormn [131.Much of this work was produced
between 1939 and 1945. Sokolovsky analysed various practical
problems in plastic deformation of metals and also wrote an
appraisal about the studies being made in Russia [9]1.Prager
[14] re-formulated the stress—strain laws of the mathemetical
theory of plasticity.Geiringer [15] gave some recent results
for ideally plastic bodies.Drucker [1€] introduced the limit
analysis and compared the stress-strain relations with

experimental data [17].Shapiro [181 analysed the propogation



of disturbances in in non-linear plastic media.Rebinder
[19], Freudenthal [20] and Hodge [21] gave seperately, the
recent mathemetical analysis of theory of plasticity.Hopkins
[22] introduced the dynamical analysis of non-linear problems

in non—linear plastic media.
2.1.2. Experimental Studies

Fundamental tests such as the uni-axial tension test and
plain strain compression test were developed to asses the
basics of plastic—-flow rule and to obtain basic information
for the formability of materials [23] [24] [25]1. Such tests
gave useful information also about other properties such as
material anisotropy.The variation of tensile stress with
orientation had been studied earlier by Cook.Palmer and Smith
[25) had studied it for brass. Additional experimental
information was supplied by Baldwin and et.al.[26]1 for copper,
and by Klinger [27] for alumipium. Recently Mellor [281 gave a
detailed appraisal on this subject.He found that the
coefficient of anisotropy R,remains constant at a particular
oriantation at all stages‘of the deformation. Fundamental
tests were also made to asses the hardening behaviour of
plastic materials,Ludwig proposed a strain hardening law based
upon his extensive experimental research. He related the
eguivalent stress to equivalent strain by a simple power
formula.Similar suggestions were made by Voce [28] and Swift
(301.

In full scale tests,it is a common practice to engrave a
suitable grid to the part of the measure the plastic strains
after the deformation.Using square grids scribed on the blank
and then determining the resulting change in unit area of the
grid elements after the blank had been pressed in to the
desired shape.Keeler [31] firstly introduced the concept of

"Forming limit diagrams" in 1965. Three years later,He [32]



zlaimed that his proposal of using a grid system which
consisted of circles with small diameters gave very
satisiactory results in full scale tTesting of sheet metals.
Alexander [ 33] adapted a suitable method of engraving and
measuring grids in experimental plasticity.In certain
industrial aplications such as rolling,the grid can be
integrated in the meterial.For sheet metals,the general
experience is to engrave the grid lines on the metarial
surface. There are various definitions of strain in the
literature: Goodwin [ 341 calculated the major strains by
measuring the change in length of the axes of the so formed
ellipses after the deformation of orginally circular grid

elements.
2.1.3.Progress in Methods of Sclutiomns

Analytical solutions of certain simple problems have been
suggested by many authors:Complete solutions for symmetrically
loaded circular plates were given by Hopkins and Prager [351,
Sawczuk considered a circular orthotropic plate using
linearized yield conditions.Analytical solutions related with
industrial processes is not so easy to obtain and has not yet
been developed éompletely.Mﬁrva [36]1 introduced the
variational principles to the theory of plasticity in 1947.
Variational principles were later used in finite element
solutions for certain industrial processes,since governing
plasticity equations are non-linear and usually the meterial
properties are also non-linear together with the physical
boundary conditions.This makes much more difficult to achilieve
a complete analytical solution for complex industrial
processes.

Numerical solutions: With the advantages offered by
computers, numerical formulations of the continuum which were

suggested long before thus effectively entered into practice.



Although numerical solutions are considered to be approximste
solutions, very accurate results can be obtained for most of
the engineering problems.

Successful applications began in early fifties,first with
the analysis of linear steady problems [37].Relevant continium
equations'either in the form of differential or integral
simultaneous equations were solved.The method principally
consists of decomposing the medium into a2 fine mesh of grids
and is termed as "Finite Difference Method".In practice,
geymmetrical and rather uniform problems can be solved in
cartesian or cylindirical co-ordinates.lee,Mallet and Keeing
[38] gave an updated appraisal in relation with the finite
difference applications in press-shop operations. Spancer [32]
developed the methodology for axially symmetric plastic flow
problems,

Before finite element methods entered into the field of
numerical solutions,there was only one competing numerical
technique namely the Rayleigh-Ritz-Galerkin method.This is a
general procedure forvobtainiﬁg approximate solutions of
problems expressed in variational form. This method ocffers a
more suitable algorithm and methodology for practical
problems. Martin [40] dealt with structures with large
deflections and obtain a solution for a linear, rectangular
ﬁlate bending problem loaded in compression at all edges.
Wolf [41) attempted to derive a generalized finite element
analysis of linear theory of elasticity.Gurkok and Akay [42]
developed a generalized finite element analysis program for
linear, plane,axi-symmetric solid elasticity problems. Agyris
and at.al.l43] proposed new techniques to handle static,
geometrically and material non-linear problems. Yamada and
et.al.[44] used the Prandtl-Reuss equations in plasticity
theory and treated the elastic-plastic problems in a pliecewise
approach.Lee and Kobayashi solved the axisymmetric flat punch

identation probtlem by making an analogy with the



solution of elasticity.Bruce and Welch [45] developed a three
dimensional finite element program to predict the large and
inelastic deformations of automobile structures. Hibbitt and
at.al. [46] firstly formulated an algorithm for problems of
large strain and large displacements. Stricklin analysed
stiffened shells of revolution and Backlund solved the
stretch-forming problem for a steel strip clamped at its ends.
In spite of these attempts,no complete solution has been
achived yet in the analysis of non-linear plasticity problems.
Perzyna [47] recently suggested a new method which is known as
the "flow approach" or simply "viscoplasticity" where an
analogy between the plastic flow in the deforming material and
the flow of a fluid of non-newtonion kind is made.

Slip-line field analysis: Prandtl's consideration of the
identation of a semi-infinite block using slip-line field was
perhaps the first attempt for a practical problem. Nadai
adapted this solution to consider the crushing of blunt edges
in 1921.Henky stated the well known equations in 1923.
Geiringer firstly formulated tﬁe velocity equations. Russian
scientists such as Tomlenov and Unshow made various
contributions to the slip-line theory and its applications.
Hill and Tupper [63]1 introduced the subject to practical
problems by applying the slip-line method to wire—-drawing.
Today,slip—line field solutions are used in many practical
problems including many forming processes such as compression
between parallel or inclined dies and identation.Ho and Brewer
[49] suggested a slip-line field solution for machining with
discontinous chips.Johnson analysed and formulated the
extrusion problem through wedged shaped dies.Tomlenov [59]
explained the plastic flow in the deforming sheet metals with

comlex shapes.



Jobhnson and Sowerby [51] gave a detailed appraisal on the
industrial applications of slip line field solutions.In spite
of the merits of slip-line solutions they do not predict the
onset of plastic instabilities and the solutions are rather

confined to steady state problems with field geometry.



2.2 Investigations on Vire-Drawing
z2.2.1 Theoretical and Experimental Studies

There is an abundant literature on wire—-drawing,but until
recently, the predominant concern has been wiht the
relationships of drawing force and power on the various
conditions of a rod passing through a die.[52]

One of the earliest articles is that of Smith in 1887.
Except for Musiol's work in 1900 no discussion appears on
wire—drawing until that Lewis [53] [54] imn 1915, and than
later in 1933 and 1938, where he attempted to relate power used
with the dimensions and properties of the wire by emprical
factors. Except for Elder's [55] extension of lLewis's work to
include strain hardening,little occurs in American literature
up to 1944 regarding wire—drawing,especially forces in dies.
Following 1944,one finds several articles on the theory of
wire—drawing in American and English literature.

In England, Alkins and Cartwright investigated relative
reductions of concentric copper tubuler layers built omn a
so0lid core.Alkins reports tests conducted on 0.435 in.
diameter annealed copper rod and found that when the reduction
is affected by éuccesive drafts, the tensile strengthse attained
for any given reduction of the original area are lower, the
lighter the drafting,that is,the more numerous the stages by
which the reduction is carried out.Dies with a straight taper
of 5° were lubricated with vegetable o0il when the short rods
were pulled.Up to 15 percent nominal reduction of area, the
sequence had no effect on a plot of nominal tensile strength
versus reduction of area;from a reduction of area at 15 per
cent and beyond there was no longer a linear relationship and
the tensile strengths were higher for single drafts then five
successive drafts. It was lowest for nine successive drafts. No

"reverse" sequence was investigated.Alkins concluded that
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there was a fundamental differance between reductions by cold-
drawing of less than 15 percent and those which exceed this
amount.

Thompson and Francis [561,[571,1[58]1,(591,[60]1 give an
account of the drawing of nonferrous wires appaximately 0.08
in. diameter. Several conclusions were drawn from tests on
aluminium, copper, bronze 70:30 brass,?7 percent nickel-brass,
and 20 percent nickel-brass.They have shown that the force
necessary to draw wire is proportional to the reduction of
area and for ferrous metals this proportionality extends to =a
reduction of about 30 percent,after which the necessary pull
increases less rapidly.For nonferrous metals,the linearity of
the curves remains up to a reduction of 50 to 60 percent.This
same relation has been found alst by Giraud and Brown.In
various graphs of drawing force versus reduction of area, they
show that the experimental points fall on a straigth line
which will cut the force axes at some finite value. This seems
to indicate that a certaimn force is required for mno reduction
of area.Thompson and Francis [57] [58] also show that a
reduction in the drawing force is obtained if a back—-tension
of a considerable magnitude is applied.

Lewis in a discussion of a foregoing paper comments that
the coefficient of frictiom is irregular in the first draft
and higher while the film is being established than in
subsequent drafts.

Several investigators have attempted to analyze the wire-
drawing problem from a mathemetical standpoint. Probably the
first work of this kind was done by Sachs(1927>[61].He
obtained. expressions for the force necassary to draw a wire
through a given die and for the pressure stress distribution
along the die as the wire 1s being drawn.Sachs computed
friction coefficient from a knowledge of the ideal drawing
stress,actual drawing stress,value of yield strength and the

die dimensions.His basic equation was one of the statics,



summing forces along the rod axis.Die angles of 2,4,8,16 and
32 degree were investigated.All dies had an average value of
about 0.08 for the friction coeffiicient. Horsburgh has
developed similar expressions which are comparable with those
of Sachs.The theory has presented by Sachs will appear as a
special case of the present development.

Korber and Eichinger improved on Sachs work by considering
the direction of the greatest principal strains as directed
toward the die—cone vertex,as well as Davis and Dokos [56] who
considered strain hardening effects.They also work out
equations for sheet drawing,so that their theory can be tested
by comparing it with the rigorous Hill-Tupper—Green
analysis.One finds that the Korber—-Eichinger analysis grossly
overestimates redundant deformation in the absence of friction
and also exaggerates the attenuating effect of friction.

The force reguired to draw a wire through a die depends
upon several factors,the two most important of which are the
friction of the wire on the walls of the die and the
resistance of the die wire to plastic deformation.The latter
factor will depend upon the stress—strain relations of the
wire.In most previous mathemetical treatments, the material to
be drawn was assumed to be ideally plastic.An ideally plastic
material has a finite yvield point at which the material flows
continously without any increase in the applied stress.Unlike
previcus mathemetical treatments where the metals were assumed
to be ideally plastic,Davis and Dokos considered the strain
hardening 0f the wire being drawn and the mathematical
expressions used have been adjusted to take care of the large
strains encountered in the process of wire—drawing.

Lunt and Maclellan [62] and MacLellan [63] have discussed
and generalized the theory originated by Sachs.The split-die
technique suggested by Maclellan(l952, 1953) was used to
ascertain the mean die pressure.The die was in two halves and

the forces tending to separate the two halves was measured



concurrently with the drawing force,then the mean coefficient
of friction and the mean die pressure can be calculated
directly from measurement, without recourse to wire—drawing
theory [€]1.In the past the coefficient of friction has been
treated as a parameter which could be adjusted to give the
best correlation between theory and experiment. Its derivation
from experiment is therefore an important development.The
measurement of the splitting force presents some difficulty,
for the die halves must remain in contact during the
experiment; otherwise fins are formed on the wire which
vitiates the prescribed conditions of drawing [64].Though he
did not succeed in getting good results by this method,
reputedly because of penetration of lubricant into the
"split".The effect of cylindirical extension on the pull has
been calculated by Maclellan,on the assumption that there is
no transverse variation in the langitudinal stresses at the
die exit,that the wire remains in contact with the bore
throughout,and that in the cylindrical extension it is in a
state of incipient plastic fléw.His tests of the formula were
inconclusive owing to uncertainty about the magnitude of the
friction and the precise length of the cylindirical extension.
Vistreich [2],obtained reasonable data adapting Maclelian's
experimental teéhnique.The most detalled investigation into
the mechanics of wire-drawing has been carried out by
Vistreich(1955).The investigation was limited to the slow
drawing of round wire,without back-pull, through dies with
bores in the shape of truncated cones. Wistreich has reported
an extensive experimental study to determinate the effects of
reduction and cone angle on drawing stress.In his
investigation, Vistreich used mainly light drawn electrolytic
copper wire,since it was easy to lubricate well and did not
cause rapid wear of the steel dies.Also the material in this
condition does not work-harden rapidly and it is a good

appoximation in any theory to take account of the work-



hardening by assuming a mean yleld stress.As a result of other
experiments, it was concluded that the deformation is
independant of the properties of the metal except in the case
of annealed wire drawn with very light reductions. The
lubricant was sodium stearate,special care being taken to
apply it evenly and so minimize frictional variations. The
value of coefficient of frictiom under these conditions
averaged 0,02 to 0.03 and it did not vary significiently with
die pressure.Majors(l95%),in his tests, measured the
coefficient of friction directly for the drawing of steel
rods, and obtained much higher values,ranging from 0.08 to
0.2.For certain combinations of the die angle and reduction,
the die pressure greately exceeded the values of yield stress.
It was also established from further tests that,other things
being equal,the greater the friction,the lower the die
pressure.

Split dies were used for the drawing stress,and the drawing
force and the separation force exerted on the two halves of
the die were measured [3]1.The measurement of the splitting
force presented some difficulty,since the die halves must
remain in contact during the experiment,or fins will form on
the wire.VWistriech was able to obtain a measure of the
splitting force at all points during the draw.The tests were
terminated after appreciable separation(0.003 to 0.005 in>,
and the drawn wire was gauged in the plane normal to that of
seperation by means of a fiducal micrometer.This procedure,
while workable, requires sophisticated equipment and is
difficult to carry out accurately.

Yang used a similar "split-die” technigue for mzasuring
friction coefficient in the drawing of pure aluminium and zinc
wires.His method, howewer,was to enclose a split die in a die
plate with a curved opening near the periphery.Into this
curved opening he than placed a thin ring of aluminium alloy

on which for vertical strain gauges were attached and used to



measure the separating force.Yang believes that the split die
opened in his tests to a much smaller gap than in Vistreich's
test.Reasonably good results were obtained.Tne'efféctvof the
land or parallel portion in the die on the coefficient of
friction was indicated in the results.Its importance was
emphasized. A theoretical eguation of the drawing stress with
the effect of land considered was derived.Using the.
coefficient of friction obtained by the split—-die method,
drawing stresses were calculated from the derived equafion.A
comparison the theoretical and experimental drawing stresses
was made. It was concluded that including the land in the
analysis of wire—drawing is important and further research in
analysing the shear deformation must be pursued in order to
get a close agreement between theoretical analysis and
experimental results [85].

According to Shield's theory,the material is assumed to be
non-work—hardening, and tpe frictional drag between die and
wire is taken as constant [1].The plastic region within the
die is bounded by spherical surfaces at the entry and exit
sections, the material within moving in the direction of the
virtual apex of the die.This analysis ignores the redundant
shear at entry and exit,so that it may be in error for small
passes and large die angles.The sudden change of motion from
entirely axial to partly radial at entry and back again to
entirely axial at exit is assumed to take place by shear at
these sections only,so that all redundant shear is
concentrated in these inlet and exit boundaries, and the
reduction in cross—section is then looked upon as a
homogeneous extension.The die pressure exceeds the yield
stress near the die inlet and falls progressively toward the
outlet,at a rate decreasing with distance from inlet.The
longitudinal stresses vary lateraly as well as longitudinally;
the transverse varition is roughly parabolic,with a2 maximum on

the axis.Shear stresses are present throghout the plastic



region and increase progressively from nil on the axis to uq
at the interface. Close to the inlet,the longitudinal stresses
are compressive in the outer layers of the wire.Shield's
numerical data are of little praticle value in wire—-drawing so
long as it is not known within what range of die geometries
the end effects are insignificient.

In,Hill-Tugger—-Green theory of sheet drawing, the problem
treated is that of the two-dimensipnal (plane strain) analoque
of wire drawing.Solutions have been obtained for a wide range
0of die angles and reductions,without and with friction,for a
non-work-hardening solid obeying the Von Mises yield criterion
and rigid within the elastic range of loading.A method has
also been devised for extending the use of the data for the
pull to metals that work-harden.The effect of dimensional
change, internal distortion,and friction,are not additive,and
the stress and motion of a particle within the shest is a
function not only of its distance from the die inlet but also
of the reductiomn,die angle,and friction between sheet and die.
Redundant deformation contributes significiantly to the work
done. Boundries of the region of plastic deformation are cusp-—
shaped and the material flows in a markedly uneven manner. As a
consequence, plane cross—-sections of the original sheet are
distored by passage through the die.The mean die pressure may
exceed the yield stress up to about two and a half times,
locally, it never exceeds the inlet value, but otherwise it
follows a variaty of courses,each of which is associated with
a well-defined range of die geometries.The effect of work-
hardening on the pull can be allowed for,according to Hill &
Tupper, by assuming that the mean gtrain impartsed bty drawing
depends only on the parameters so far considered and not on
the hardening charecteristics of the metal.

Siebel (1947) has proposed a theory of wire-drawing in which
he assumes that the effects of homogenous deformation,friction

and non—-useful distortion are additive.He assumes that the



plastic region within the die is bounded by spherical caps
with centres at the virtual apex of the cone.As the wire
enters and leaves the die it 1s sheared instantenously along
these surfaces and within the die the metal moves towards the
virtual apex of the cone.The stress distribution is, generally,
which shows several striking similarities with the results of
Shield's rigorous analysis, notably,a transverse variation of
the longitudinal stresses with a maximum on the axis of the
wire, and an inlet die pressure in excess of the yield stress
together with . a compressive longitudinal surface stress at die
entry. Siebel and Huhne have shown, by means of engraved models,
the Strainndistribution and the distortion of the individual
cross sections of the material as it passes through the die.
Thompson and Barton [66] have carried out photoelastic tests
of various shaped dies.Although their tests were two-
dimensional in character,they indicate clearly the directions
of thé principal stresses.How complately this method and the
one used by Siebel and Huhne agree with the conditions
actually occuring in the wire—arawing process is somewhat
gquestionable. Howewer, it can b? stated that,for the smaller
angles of reduction,the distortion of the cross—sectional
planes will be less and that,for a mathematical treatment,it
will be convenient to assume that the original cross sections
remain planes.Siebel [3] has pointed out that if hard wire
with little remanent ductility is drawn through a die with a
large value of A,the drawing stress on the axis of the wire
may exceed the cohesive strength of the metal,even though the
unit pull is below the yield stress on the drawing wire;
consequently,the wire may repeatedly fracture at the centre
and yet continue to be drawn.

V¥hitton<1958) has compared the drawing forces based on the
theories(Sachs, Siebel) with experimental values obtained by
Vistreich. A coefficlent of friction 0.0Z5 was adapted and

relevant values of mean yield stress were taken from the same



experimental source.The mean yield stress is taken as the
average of the values before and after drawing.It will be
noticed that the Sachs equation gives good correlation for a
die of semi-angle 2.29° but that for a die of semi-angle

15.2° it under-estimates the drawing force,especially at low
reductions. This is,0f course, because the Sachs equation does
not allow for the non-useful distortion,the effect of which
increases with increasing die angle,and which is attenuated by
increasing reduction.On the other hand,the Siebel equation
overestimates the redundant shearing and therefore the drawing.
force,and is only in good agreement with experiment at low
values of reduction.In an attempt to get closer correlation
with the experimental results, Whitton devised an emprical
formula.

The expenditure of redundant work and the creation of
redundant strain in wire and bar drawing has been the subject
of later papers.In Caddell and Atkins's study(1968),values of
the redundant work factor in rod drawing were determined
experimentally for four metals over a wide range of variables;
none of the metals were strain hardened prior to drawing. The
method of superpesition of stress—strain curves before and
after drawing was used,and an expression for the redundant
work factor was found to be related to the strain hardening
charecteristics of the metal being drawn.Use of this factor
was made to predict certain mechanical properties of the drawn
metals; these agreed quite well with the values measured
experimentally.

Siebel's(1947) and Korber and Eichinger's(1940) formulae
can be recommended for rough calculations over the entire
range 0f die geometries commenly employed in wire-drawing.If
the reduction exceeds 8«x/{1+0.04a)> percent,the formula Sachs
(19275 1is suitable for hard—-drawn wires,the formula of Davis

and Dokos(1944) for annealed wires.



The only trustworthy formula for calculating the mean die
pressure is that based aon Siebel's(1947) theory.Howewer,in
practice, it is more caonvenient to calculate it from a
knowledge or estimate of drawing force and coefficient of

friction.



CHAPTER II I
OBJECT OF PRESENT INVESTIGATICN

An exact theory of wire drawing has not yet been realized
and all the theories make arbitrary assumptions about the
deformation and the extent of the plastic region. In the
complete solution of the problem the stresses and the mode
of deformation must be oompatible,és yvet,no axisymmetric
problems have been solved.

An interactive procedure on the computer is developed for
the modelling of the wire-drawing process through an
axisymmetrical die.Material model is such that strain-
hardening, plastic anisotropy can be incorporated.The user
can enter the geometrical,material and process parameters on
an interactive basis.Then the develcped algorithm including
the material model and the integration of the differantial
equations will calculate the pressure distributions on the
die and the drawing force.These results can also be
displayed graphically on the screen.

Present study on its own,is beleived to be an initiation
and innovation in this field with respect to the philosophy
of approach,method of solutions and the results aobtained. It
was found out that a complete assessment of the problem is
only possible if different aspects of investigations are
realized. These are:theoretical analysis,experimental
research and method of solutions.

The governing plasticity equations plus the material
behaviour and the mode of deformations are all inherently
non—-linear in form.This lead to mathematical problem which
is rather intractable for an analytical solution.This
conclusion is not surprising since similar situations often
arise in connection with much more simple linear problems.

This makes the use of numerical methods to be inevitable.



Finite element techiniques seem to be more popular due to
their flexibility and adaptability to complex shapes. There
appears no complete variational formulation of the wire-
drawing problem and seem to be unachievable in the near
future. As a consequence, finite difference techniques seem to
be the only alternative for a numerical solution.

The analytical solution is also obtained to compare with
the numerical soluticn for the wire—-drawing process.

The object of thesis is to develop a more realistic model
of wire-drawing process.In previous analysis the redundant
shear is ignared and deformation within the plastic region
is treated as homogenous and all redundant deformation is
concentrated on the inlet and cutlet boundries of the
region. In general, the deformations is not homogenous; plane
sections do not remain plane on passing through the die,and
extra work is expanded in distortions which do not
contribute to the final reduction in diameter, i.e.,as
redundant deformation.The modelling technique for wire-—
drawing allows for observation of effects of the shearing in
the entire plastic region.The proposed method incorporates
the strain—hardening and plastic anisotropy properties of
the wire material and also allows for optimization of the
process such that for a given reduction,the die profile can
be optimized with different materials and frictional

conditions.



CHAPTER Iwv

THEORY

Plasticity can be defined as "the property which enables
a material to be deformed continously and permanently
without rupture during the applications of stresses
exceeding those necessary to cause yielding of the
material"”.In plasticity, the deformations are large and
permanent and these current deformations depend upon the
previous deformations or in other words; the strain
history.The plasticity theory is most commonly applied to
metals. The nature of plastic deformation is attributed tao
the sliding of atoms over each other and moving away towards
less stressed regions in the material.Such movement can
occur in oblique planes to the principal stress directions
and only with a shear type of strain.Due to material
continuity the plastic deformation takes place at constant
volume. There are two important contradictions to the ideal
metarial model.These are:

i— Material hardens during the coarse of plastic
deformation.

ii— Isotropy of the material may be destroyed after large

deformations.

4.1.Basic Equations of Plasticity

The plastic deformation of an element must obey and

and spaces compatibility, hardening law, imposed boundary
conditions and geometrical restrictions [8].S8ince large
plastic deformations are involved,elastic strains are
usually neglected.The general relation between stress and

strain must contain:



1. The elastic stress-strain relations
2.The stress condition (yield criterion) which indicates

onset of plastic flow.

3.The plastic stress—-strain or stress-strain increment

relations.
4.1.1 Plastic Yield Criteria

The state of stress at a point in material is uniquely
determined by three stress components in principal
directions which are the roots of the following cubic
equation (81]:

3

2z
S~ 1,8- 1,8 -1 4.1>

I
o

The invariants of the stress tensor I‘,Izand I3 are

defined as: (independent of the direction of the axis chosen?

I,= Pit 4.2.aJ

2
I,= 1/2CPij¥ - 1/2¢Pii> 4.2.b

2 3
I,= 1/3 PijPJkPki - 1/2Pij Pkk + 1/6(Pii) 4.2.cD

A possible yield criterion could be a symmetric function

in stress:

£¢1,,I,,I,> =0

3

For a wide of range materials,a yield function quadratic in

stresses Plj is satisfactory:

§CI,0 = 0



From the tensor notation for I, and for an orthogonal system

of co-ordinates:

2
(Pxx - Pyyf + (Pyy - Pzz¥ + (Pzz - Pxx¥ + 6 (Pxy + P§z + PEx
= 6K = P? 4.3)

This is Von-Mises yield criterion for a material point
defined in a cartesian system of co-ordinates.
In terms of principal stresses P,,P, and P,:

2 2 2 _ 2 _=2
(Py= P> + (Pp— Py) + (P;- P, ) = 6k =P 4.4

P is the equivalent stress for a uniaxial tensile stress
state.The constant k can be easily interpreted in terms of

yield strength Y in simple tension. (Fp= F= 0,F, =Y = P

-2 2 2
2P, = 2P = 2Y = 6k

solving for k

k = Y/(@T 4.5)

Considering a pure shear case <P2= 0,R|=€% )

2 2 2

Py + P+ 2F = 6k
Then: P,= —B,= k = Y3 4.6
S0 k is the yield stress in pure shear.

An Anisotropic Yield Criterion:All metals exhibit anistropy
to a greater or lesser degree when deformed at room
temperature, that is,the mechanical properties of the metal

vary in different directions.



Theories describing anistropic behaviour have been
proposed by Jackson,Smith and Lankford(1948)>,Hill(1948> and
Dorn(1949>.The theory of Hill(1948-1950) will be used here
to describe a state of simple orthotropic anisotropy, that
is,there are three mutually orthogonal planes of symmetry at
every point.The intersections of these planes are known as
the principal axis of anisotropy.The yield criterion

proposed by Hill when referred tc these axis has the form

2§ (P13)=F(Pyy - Pzz)’ + G(Pzz -Pxx) + H(Pxx - Pyy) + 2LPyz +
+ 2MPzx + 2NPxy = 1 4.7>

where F,G,H,L, M, N are parameters charecteristics of the
current state of anisotropy.It is assumed that there is no
Bauschinger effect and that a hydrostatic stress does not
infiuence yielding.The conditions for planar isotropy
(rotational symmetry about the z-—axis) are determined by
noting that the above equation must remain invariant for

arbitrary <(x,y> axes of reference.It can be shown that
N=F +2H=G + 2H, L = M.

For complete isotropy

Vhen anisotropy is vanishingly small the expression reduces

to the Von Misses criterion [6].
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4.1.2 Definitions of Plastic Strains

The study of strain is the study of the displacement of
points in a body relative to one another when the body is
deformed. It is not concerned with rigid body movements.
Plastic strains can be classified into two groups:

i— Direct(normal) strains
{i— Shear strains

The plastic strains are often evaluated using equations
derived for a homogenous plastic strain field.This can be
Justified if the region of a non—homogenous strain field is
subdivided into very small elements where in each of the
element the plastic flow is "sufficiently homogenous".
Consequently concept of incremental plastic strains is
introduced [8].

Normal Strains:The current normal strains can be related to
the original length for a homogenous strain field where the
normal unit elongations are small enough to remain in the

elastic range:

e =— — 4.8>
1,

This is the well known Langrangian <(engineering)
definition of elastic strain.A second definition is the

Eulerian strain:

ef = 4.9

The tensorial definition of Langrangian strain is:



l; —1°
—————— 4.10

To describe the plastic deformation,natural or
logarithmic strain is used.Consider an element of original

length of 1l,,strained in m steps to a final lengh of 1.The

increment of strain at the n th. step is:

1n-lag 61
4.11>

in analogous to Langrangian definition.
The incremental steps should be further subdivided intoc jJ

steps each:

k
$,1
(4£.12)

dl 1n
<4.13)

1n-1
Then the total strain that has taken up to the m.th. step

0f deformation process will be

(4.14

Plastic strain definition is approximately equal to
Langrangian definition of elastic strain for diminishingly

small magnitudes.
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Shear Strains: An element with corners A,B,C and D as shown

in Figure ..l assumes a new configurations after a certain

distortion. The angular distortion at point A will be:

Su Sv
+

St SR

Yyag= ( > 4.15)

The deformation is called a shear deformation when the

distortion takes place without any change in area.For
infinitesimally small strains:

tan yyu= Y= du/da

R

Su/sa (4.16>

R

tan ¥g = VB= dv/dp Ev/88 4.17>

A shear strain is considered to be positive 1f the current

substended angle B'A D' is less than the original one taking

into account this sign convention:

Y
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Figure.4.l An elastically deforming element under pure shear



Yag=tanyu+tanyg

This is the engineering notation of the shear strain at
peint A.In this case the strain matrix consists of nine
components in a three-dimensional co—-ordinate system. This
matrix includes the rigid body rotation components and
therefore it is not symmetrical.If the components of rigid
body rotation are not considered then the symmetric strain

components in shear are obtained: »
exp=l/2 (Su/Sa + Ev/ER) : (4.18>

This is the tensor notation of the elastic shear

strain. Comparing equations <4.15) and <4.18)
e“B=1/2 Yog d, 12

For large and arbitrary deformations, the strain field is not
homogenous anymore and the sides of infinitesimal elements
become curvilinear and oblique.Figure 4.2 shows one of the
edges of such an element. Angle generated by anticlockwise
rotation of the lines are taken to be positive.

Partial incremental plastic shear strains associated with

the o« and B-lines are defined as follows:
S¥g=tan &yg ' 4.20.a>
¥y =tan Sy (4.20.b)
The total incremental plastic shear strain at point A is:

n+1
(GXBuln %~=<tan Syg —tan &y, 4.2



In tensor notation, the incremental plastic shear strain will

be:
Sey, =1/2<(tan Swj—tan sy, > (4.22)

The current slopes of o and f-lines at point A are:

n+1

} n+1 n
Sa I, =dy/dx |, =tan y, =tan (y, +8y,> (4.23

A-B
where:
tan y:+tan<6yu)

n
tandy, +8y, 0= Py (4.24)
l1-tan y,tand{Syy)

for relatively small incremental angle changes, the

denominator of above equation is close to unity.

Y B g,
| B’ 4\(4-\\/5 ANGLES

S*a, 1/ S« o DI (STAG'E=I1+1)
—

B-LINE
b (sTAGE=n)
e NHBRFOXRESB N L - D, (unoEFoRMED ELEMENT)
/A
/I\
PURE TRANSLATION
Ao W X

Figure.4.2 Plastic incremental shear strain nomenclature

for a largely deforming grid element



Then:

n+t n
Sc =tan y, +ttandsy,) 4.25)>

using equation 4.23

n n
tan y, =Sx 4.
finally:
n+1 n
Sa =Sat+tan(Sy,? 4.

and similarly: ,

1 n
Sp =Sg+tan (Syg) .

Inserting equations 4.27 and 4.28 into equation 4.22

n+1

)

€1k A k' I=p

k=ot

It will be convenient to write above equation in the

nsl n+d n n+4 n
6€BMlA -1/2[(SB SB>+(Su SM>] 4.
where:
s _axsay d vi 4
=dx and vice versa. .
e Vip g

_ n+1__n _ n+1__ n
l —1/2[(SJ SI) (Sk S, 01 4.

26)

28)

292

form of

30

3L

Total shear strain will be direct sum of the incremental

shear strains:

lnn EE’S ln
o’ T peo” B p

From equation 4.30

n+1 n+t o 1l o
~ > — -
EB&IA 1/._.((Sa SB)+(Sa Soady
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For an initially rectangular element with sides parallel to

the co-ordinate axes:

n+1
EBoL'A

~1/2¢sh +s&H 4.32>
For curvilinear lines,definitions of normal strains over
the arc length becomes more complicated.Summing up the
individual,infinitesimal, linear, plastic strains, one can
obtain an average direct strain in association with the
given arc length.,Nevertheless,it can be suggested that this
average strain takes place at the mid-point of the arc.

Then:

_n+l o N _ —

Segp !A_b, =8egg [c =Ln(A-D'/A-D> 4.33>
1 N

65';; 'A-e‘ =é‘€2:d lE =Ln(A-B'/A-B> (4.34)>

Constancy of Volume

Volume of metallic materials remain practically constant
even after large plastic deformations

SeyotSegy t8E, =0 (4.35>

88 {4

Shear strain terms automatically drop out since shear
strains do not create any change in volume.Equation <4.35)

can be extended to total plastic strains:

fact fgg T €gx =0 4.36
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4.1.4 Plastic Flow Rule for Anisotropic Materilal

The incremental strains are derived by partially

differentiating §F<(Pij> with respect to Pij.Since [6]

. ]
2§ (Pij)=F (Poa~Pyy) +G(Pyy—Poc) +H(Poc—Pgp ) +2LPpa +
+ 2MPyo+2NPap

§§/8Paa=G (Paa—Pyy +H (Paa—Pge ) (4.38>

and hence

depoux

=dx (4.39)>
G (Poaax—Pygy ) +H{(Poax—Pgp >

Vhere dx is constant of proportionality.
Similar expressions are obtained for the other components

of the strain increment and can be written down as,

P

dega=anl H{(Paa—-Pgp ) +G (Poox—Pyy 21 4.40. a7
P

dsmg=dA[F(PBg~P33>+H<PBB—Paa)J (4.40. B

de%y =N G (Pys ~Poa) +F (Pgg —Pgp )] (4.40.c)
p

degy =A% L Ppy (4.40.4d)
P
P

dsap=dk N Pap 4.40. %>

These expressions of course satisfy the incompressibility
condition déaa+déaa+d555=0~
For a material subjected to plane stress,with rotational

symmetry about a—axis,so that [6]



H=G and FrG = F/H = R 4.41)

equations (4.40.a>,(4.40.b> and (4.40.c) reduce to

d€;u=dXG[(Paa—PBB)+(Paa—Pxx>J (4.42. 8>
p

degg =AXGI R<(Pgg ~Pyy >+ (Pyy —~Pocd ] (4.42.Db>
P

d£5z=dXG[(ng—Paa)+R(P35-ng>J (4.42.¢)

If anisotropic material is subjected to forces in the plane
of material,the (x, > plane,then Pay and Fygwill be zero.l 6]
&x is not a constant property of material,it varies from
point to point within the plastically deforming material.
Furthermore,it also varies with time for a given point.Due
to this inconvenience, sometimes arbitrarily defined stress

ratios are employed to eliminate &hi:

" Ppp
X = (4.43)
Poo
Pry
Poox
Fpx
A P (4.45)>
Pox
Using 4.42a,4.42b & 4.4Z2c
dega 1-X0> + (1-KD
= (4.46)

deBB R{(X-XK> + X-1>



déxe  (1-X) + (1-K)

= {4.47)>
de gy (K-1> + R<XK-XO
dege G )
= [ C1-X0 + (1-K>1 (4.48>
d¥ga N Z
It can be shown that:
20— (F+G> N
R4?= or =(Ry5et1/72) (1+Rp /Ryy) (4.49)>
2(F+G> G

RO’Rﬁ and Ry, indicate R-values along,at forty-five degrees
and ninety degrees respectively to the direction of

drawing. Assuming R,=Rg,

N
—= 2R+1 (4.50>
G

Then the equation 4.48 becomes

deyy 1
= [(1-X> + (1-K>1
d¥px (2R+10Z

By using 4.46 & 4.47:

(d€ny /dégp 2+ (deyy /A gy IR+ (deyy /degs DR
K=X

(deu_“ /dEaK )+ (dexat /dEn‘g JR+ (dEoux/dEaQ )R

(deoy/deyy )~ (deEgn/degg 7
+

(dEOLOL/dGUU DR+ (deq_q/dega IR+ (deu“/dexx > 4.51
Let's take

deu“ dEm dx 8oL
=P ; =Q H =R
de gg deyy dega




Then:
P+QR+PR Q-F
K =X +
Q+QR+FR QR+PR+Q
and take
P+QR+PR @—-P
Q+QR+PR QR+PR+Q
K=XS+T (4.52)
Ppa=Fgp . 4 (at interface of wire and die)
Ppo=X Poo u
= PR«
= u X = Z=u X (4.53>
Pao
Substituting the above equation into equation 4.48:
1
Z= E——[ (1-XDO+(1-K>]
2R+1
(4.54)

K=2-X[L 1+ {(u/E)(2R+1)1]

By using equation 4.52 equation 4.54:



P-Q
2 +

Q+QR+FR
X = (4.55.a>

P+QR+PR u

(——— ) + (1 +— (2R+11>

Q+QR+PR E
K=XS+T (4.55. b
Z'—-}J X (4.855. )

4.1.5.Generalized Stress and Strain Relations for

Anisotropic VWork Hardening Material

Hill (1950) has proposed that the equvalent stress should
be defined as [€&]

F(Pgg—Ppy > + G(Pys ~Baxax) + H(Pox—Pgg) + 2NPgs+2MPyey
+2LP&5
P=[372 I 1
F+G+H

1/2

(4.56)

where it is understood that only ratios of the anisotropic
parameters, not the absolute values,will be considered.
Since Pay and Pygp is equal to zero and there exists

rotational symmetry about o—axis,so that

R(Ppg —Pyy > +(Pys-Pacd +(Paa—Pgg ) +2NP§Q/7 .
B=[372 I %4, 57>
2+R

The generalized strain increment,dé,can be defined from

dw = Pde = dx

as



) dx 2 Gdepg ~Hdexy Fdeqo—Hde xx 2
dE =-— =/2/3 [F+G+HY [ F( >  + G ¢ )
P FG+GH+HF FG+GH+HF
Fdeaa -Gde 2dy>
BR Bot
+H 2y — g2
FG+GH+HF N

4.58>
Because of rotational symmetry,equation <(4.58) reduces to:

2+R . 2
dé = /2/3 [————— {(deyy ~Rdeqod +(depg ~Rdepe) +
(1+2R)

+R (degg —~deyy O 11'/2 (4.59)
4.1.6 Laws of Material Hardening

Plasticity theory assumes that the onset of plastic
yield takes place either suddenly at zero straindrigid-
plastic material model)or frdm.a finite elastic -
strain(elastic-plastic material model).After the initial
yield, most of the materials harden upon further application
of the deforming loads.

Work-hardening hypothesis:The current value of the yield
stress P is a function of the plastic work done per unit
volume of the material, and independent of the strain

history:
B = 5w

Strain-hardening hypothesis:ln'this~hypothesis,hardening and
thus the plastic work depends upon the strain history:
€
P = " =g </‘§d§*>

0



Above equation gives the functional relationship between P

€.
P = ?:{dg*

(o]

and

m)

It would be convenient to express the function f”* in a
mathematical form. A mathematical form was first given by
Ludwig:

5 = A.en 0 ¢« n ¢ 1

Constants A and n are the material properties to be
determined from uniaxial tensile tests. It does not
explicitly include the effects of strain-bardening rate and
its variation with time.Voce suggested anocther equation:

P = at+(c-a){l-c )
This equation is too complicated for numerical analysis.

Swift proposed a simpler but equivalently comprehensive

formula for isotropic materials:

P = aB+a)" (4.60)
Here,B is the amount of pre-strain.Exponent n determines the
rate of strain-hardening with respect to the equivalent
strain.Coefficient A has the units of stress.

A form of expression proposed by Prager is

P = Ytanh(Ee/V)

By using Swift's Law and equations 4.57 & 4.59



R (XPao-KPao) + (KPao—Pao) + (Pac—XPaad® + 2NZ2Pdp

172
\/3/2 [ 1%

2+R

=AL,[2/3 [ ((2+R)/(1+2R)>? > {(deyy ~Rdex® + (degg ~Rdege) +

2, "

+R(degg ~deyy 2 37
\/575 Pact (RCE-KF + (k-1 + (1-X07 + 28>/ 2+m) 7%
=AC \/2_/_3“ [ (24R)/ (1+2R)? {(deys ~Rdeyy) + (degg —~Rdegey )’ +
+R (degy —degy 22 17+ B1"
» Poo=[ AL B+ [2730 (2+R)/ (1+2R)* {(deyy —Rdeyy) +(degq —~Rdego ) +

+R(depg —deygy 22 312"/ [ B72 [ (RGX-KO" +(K-1" +(1-X)* +

+2N8z%y 7/ (2+rRy1 17

(4.61>



4.1.7.8tress Equations of Equilibrium in Curvilinear

Coordinates:

In plasticity problems,it is necessary to investigate the
conditions that control the way in which the stresses vary
in a discretized but finite field of plastic deformation.
This can be appropriately achieved by considering the force
equilibrium for every material element within the field.An
orthogonal—-curvilinear co-ordinate system may be suitable to
analyse and formulate non axi-symmetric deformation problems
provided only that the sides of the grid elements remain
practically orthogonal to each other throughout the course
of deformation [11.

The spherical and cylindirical coordinates can be shown
to be special cases of general curvilinear coordinates in
which the spaces coordinates are all curved and the
curvature from one point to another is not necessarily
constant.Curvilinear coordinates are useful also in some
special elasticity problems, particularly for the stiresses at
the roo% of an elliptical notch.

The case of two dimensiocnal curvilinear coordinates will
first be dealt with.

Consider the small element ABCD oput off by neighbouring
pairs of o and B lines which differ from each other by
increments + Ax/Z and + ARB/Z along the curvilinear axes at
point O.The element has plane faces which are parallel to
the Xy plane and it is taken as of unit thickness normal to
the plane [1]. (Figure .43

Equilibrium equation for the o—direction

S§Pax s§Pap Pao—Pgg 2Pap
+ + - =

(4.62)



for the f-direction

6Ppp §Ppa Pgg ~Pox 2Ppa
+ + + = 0 (4.863>
SR (Yo Toe rp
+B
+VE
ANGLE

/‘)+ve

ANGLES

4‘ —-VE ANGLE

Figure.4.3.A curvilinear element in two dimension[1]



Curvilinear Coordinates in Three Dimensions

Figure 4.4 shows the element formed,about the peint O, of
faces with side lengths Aa,AB,AY through the curvilinear co-
ordinates equidistant from O in the «,8 and ¥ directions. The
stresses acting on the faces of this element will in gemneral
be inclined at small angles to the co-ordinate directions at
point O.They will be inclined not only parallel to a given
plane as in that case,but also in the third orthogonal plane
as well.It will be considered the equilibrium of forces in
the o—~direction at the point O.It is much easier if we take
distances +ac, +Af and +AY along the «,8 and ¥ lines through
the corner A.VWe must refer to the curvature of, for
example,the o« line at AB to both the B and ¥ directions,i.e.
the o line has radius of curvature ryg with respect to the «
B plane at O and ryy with respect tc ths «-y plane.

The equilibrium in the o-direction will now be
considered:

1) AB=ac , AF=48 , AD=aY

2) CD is slightly longer than AB.The angle between the
sides AD and BC, to a first approximation, is Acx/+rgy and
the length of CD is therefore:

(ryy tAY¥ (Aa/Iug ) At (AXAY /Ty (4.64)
The mean length in the o—-direction is therefore

Aot CAQAY / 2Tog D 4.65)

w
N/
o
g
@

length of BC is similarly obtained from

DAY/ —Tax <"“I‘Ku FAX) =AY+ (AY Aa/—rgu ) (4,686)

giving a mean length of
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B DIRECTION
AT O

Xryg

Figure. 4.4 A curvilinear element in three dimensions{1l]
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AY =AY AN/ 2Ty (4.87)

4y The area of the face ARBRCD is therefore

AcAY AY A AaY A
ot ——) (AY— —— ) =Aaay (1+ - pJ (4.68>
2 Tus 2 Ty 2 s 2 Tyor
5> The length BG=AB+{ABAc/rgn ). (4.69)

6) For the length GH, there is an increase for both the §
and ¥ directions.The side BC is longer than AD by

AY /~Iygx ) OX 4.70)

HG iz longer than BC by

(AY/+Tpg ) OB 4.71>

Finally
GH=0Y—(AYAc) /Typ )+ (OYAB/Tgp ) (4.72>

7> Accordingly CH, by cyclical permutation is
CH=AB+(ABAx/ T ) — (ABAY /TRy ? (4.73
8> The area af face, BCHG
=Mean heightxmean depth

ABAac ABAY AY A AY AR
=<aB+ - > (ay - + )
Tre Z2Tpyg Txer 2rgp
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Al A

AR AY

Area=aBAY (1- +

T

Tax

- )
21758 ’ 21”88

(4.74>

The other areas can be obtained by cylic permutations.

AR AY
Area AFED = ABAY (1+ - >
2Tyg Zrig
At AR ’
Area ABGH = AcaB(l + - D)
2rgy 2yp
AB AB AN Ay
Area EFGH = AxAyY (<l + - - + )
I‘E 8 ruﬁ gruog 21‘@_3
AY AY Ao AR
Area CDEH = AcxafB<(l + - + = >
T I‘Ba 2 rau 2‘!& 8

(4,79

4.786>

4.77

(4.78)>

Next, resolve the stresses in the o direction at 0. There are
three stresses on each face.The stress is P in the
direction o at 0, and is
SPact A
Poor — —_— 4.79)
S 2
at face AFED and
SPoct Ax
Poct + e (4.80)
S 2

at face BCHG (Figure.4.5,.

For the forces, the stresses must be multiplied
appropriate areas.

Force on ABCD in direction «

by the



AY A §Ppp 2B AR SPgx AR
—-AoxAY (1+ - ) {(Pgg ) + (Pgex — -—))
21y 2o S 2 2rge §B 2
4.81>

Neglecting second order of small quantities, this is

Pag 1 8Py ax Ao
—AaaBaY - — + Ppadl+ - >}
2Ty 2 &8 2A8Bruy 2AB Ty,
4.82>
Force on BCHG
Act Ax AR AY APoa Ax At A
ARAY (1- + + = ) { (Poat )+ Pox - Papg?
g TBot 2rgp 2y St 2 2ryy Z2Tug
(4.83)>
and neglecting second order of small quantities,
1 1 AR AY S Paa Payg Pag
AcABAY {Paox(1l- + + - >+1/2 + - >
g Tpe SAOTag SAATpy Sax 2ry% ZrQB
(4.84>
Force on AFED
AY AR SPaa A A Act
—ABAY (1~ + > { (Poee— )= Poeet+ Papg?
2rgy 2Ixp Sa 2 2oyg 2rxa
giving 4.8%)
&Y AR AP Poyg Pap
—AxaABAY {Paa (1— + y—-1/2 - + )]
2oarpy Zharyg Ac 2Ty 2rap

(4.86)



Combining (4.84) and (4.886) gives

1 1 SPac Payx Pap
—AxABAY {Paox{ —— ) - - + > (4.87)>

Force on EFGH

AR a3 o AY SPgg &R AR SPop AR
—AaAY (1+ - - + > {(Pgg + )] —(Pgot+———=>12
Tgg Tap 2hxo Tax SR 2 2Yp §B 2
(4.88>
gives
P 1 6PBe 1 1 AY Ac
—AxABAY { - -PBo-Pga(~——-—)-PBt ——— +PBpot ——}
2raa 2 883 yg Taf 2ABToy 24Py
(4.89)
Combining <4.823 and (4.8%)
Pag S§PR« 1 1
—acaBay £ = - Pgo { —— —)) (4.90>

Force on ABGF

AR Pa¥e'd Pzx SPsax  AY
—-AxAB(1- + > { +Pyo——— Yy -
2ryg 2rgo —er 8Y 2
—Pyx AR Act 1 6Psax
—AcABAY {— +Pox ¢ 1— + ) }
4.91)>
Force on CDEH
AY aY PaVo' ag -AY S§Pya  AY
—~auAaf i+ - + - 2 < Py —Pyo— +
Ty Tz 2Ty 2Typ 2Iya sy 2
Giving (4.92)
—Pyy 1 8Py« 1 1 A AR
-AaABAY { - -Psax {1+ - + - >} (4.93)

21"5,1 2 &Y Iy Yoy ZAYI'BQL BAXI'O(B



B DIRECTION
oL DIRECTION

AT Q
QoL 2

Figure.4.5Stress nomenclature for a three dimensional

curvilinear element(1]

Combining (4.%1) and (4.93)

Pyx §P3s 1 1
-AcARAY { - ~Pya( >} (4.94)
Txe, &Y Txx Tax

Finally combining (4.87)>, (4.90) and (4.94> and equating
to zero the final equilibrium equations can be obtained and
given in the following page.

The sign convention in equilibrium equation

If the three curvilinear axes are chosen arbitrarily
convex to one another at the origin, so that the areas of
the faces of a curvilinear element increase in the positive

directions of the axes, then with the convention used for



shear stress direction there will be a positive contribution
to the force resolved in the direction of any axis,from each
stress component.Thus,if the curvatures of the coordinate
axes are such that the angleslare positive,and the six radii
of curvature of the three (convex to one another) axes
denoted positive,then all terms in equilibrium equations
will be zero.

If the sign convention for the angular displacement in
the positive direction along an axis shown in the Figure,
4.4 is adapted,then three of the radii of curvature of the
three {(convex to another) axes become negative, namely Tog » TRY
and ryy Hence the negative signs between the terms in

equilibrium equations.

Final Equilibrium Equations:

In the positive a—direction:

§Pacx §Pgax  6Pya Paa—-Pgpg Paa—Pyy 2 1 2 1
—t + T - —-Pap ¢——~ —) +Pay ¢—— —— =0
Sa 6B %1 The TgoL Tup  Tup Tx¥ Thy
(4.95)
In the positive B-direction:
SPppy 6Pgax 6Ppy Ppp ~Fyy FPpp —Pax 2 1 2 1
+ + + - -Pga(~——— —) +Ppa{———=—=0
(4.96)
In the positive ¥-direction:
6Pyy 6Py §Papg Pyy—Paa Pyy—Pga 2 1 2 1
+ + + - =Pyt (——— —) +Pyg (————=0
&Y Sa B Tou rgy Ty Tot Typ T
(4.97)

By using Pag=0 ; Pyp=0 ; TIgwI® ; Ing-® ; Irgy I
Equilibrium equations reduce to

a—-direction
S§Pox SPpa Poo—Pgp Poo—Pyy 2 1

+ + - -Pag(~—— ) =0 (4,98>
S SB Rt Tyot qu TsB
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i _FACE! NORMAL STRESS I SHEAR STRESS

! ! I

i ! ! SPact Ac faXed

t ! §Poat Ax ! (Pag - > <« 3
| AFED | —(Paax - —_— ! o 2 —2rxp

| i S 2 | S§Pay Ax At

I I I (Pay — y < >
I | ! Sot ] 2ryyg

! ! I

| ! !

1 i ! SPag aB A

1 I §Pao A | —(Pag + Y < )
I BCHG | (Pocx + _ [ §B 2 —2rxg

1 | Sa 2 I SPax Ax Aot

1 I I (Pay + Y < >
! I I a2 2tux

! ! !

! I I 0;

} ! SPgp 4B AR ! SPgox AR

| ABCD | (Pgg — b I —(Ppa — —_)

! | &8 2 2rae I 5B 2

| | ]

! ! ! 0;

! I SPag A8 AR I SPRpa A

| EFGH | (Pgg + ); I (Ppax + — —

| [ &3 2 2rgy ! s 2

! ! !

! ! !

! b —<Pgx — — > 1 —(Pya - P

| ABGF | &Y 2 —2rge ! &Y 2

! ! [ 0

! ! ]

I ! I

! ! SPgx A% AY I §Pye AOY

1 b —(Pyx + DK h) | (Pyo + :

I CDEF | sy 2 —2rgy | 5% 2

I I I Q

TABLE 4.1. Normal and shear stresses acting on forces of a

three dimensional curvilinear element.[1l]



B—-direction:

§Pga S§Ppa Pgp —Pyx Pgp —Poaax 2 1
+ + - +PRa( - ——>=0 (4.99>
S8 Sct Txp Tap Taee Ty
Y—direction:
Pxy —Pax Pyx —Pgg
- = 0 (4.100>
Ty gy
_— 4.101>
Ty ~Toux
Py =Paa ¥ ; Pggp =Paa X (4.102>

Figure.4.6Radius of curvature and stress nomenclature for a
deforming element in wire-drawing process



Final equilibrium equations:
a-Direction
SPax SPpu Poo-Pag 2 1

+ + -Pag(—"—--—= 0 (4.103>
S sB rg Yoy Ty

B-direction

§Ppg  6Pgx  Pgg—-KPoar  Ppg —Pox 2
+ + - +Pga(—= 0 4.104)
&8 Sx Ty T T3




4.2 Analytical Analysis of VWire-Drawing Process

Certain basic relationships can be develaoped from energy
considerations. The work done on the wire is expended in
three ways:

i/ In changing the wire dimensions.

ii/ In redundant deformation that does not appear as a
change in wire cross-section

iii/ In overcoming friction.

In wire—-drawing assumption of uniform stress throughout
the wire leads to approximately correct values of drawing
force for certain limited combinations of the die angle and
reduction {6].In general, the deformation is not homogenous;
pPlane sections do not remain plane on passing through the
die,and extra work is expended in distortions which do not
centribute to the final reduction in diameter,i.e.,as
redundant deformation.If o is the semi-angle of the die
cone, the area in contact with the die is (Al-42)/sina and
for equilibrium,equating drawing force,P,and forces due to

mean die pressure,qq,

P=(A1-A2) (l+pucotcdgm {4.10%)
If D1 is the initial diameter and D2 the final diameter
0of the wire, the length aof the wire in contact with the die
L=(D1-D2)>/2sinx and the splitting force S between the two
halves of the die is given by

S=qn{(D1+D2) /2) L (cosa—usina) 4,106

From equations (4.105) and (4.106)

1 - T(S/P)tana

u= (4.107)
tana + T(S/P)




and
qm=ﬂS/(Al—A2><cota—p) {4.108>

If it is assumed that the deformation is homogenous and
that there i3 no friction between wire and die, then the waork
expended per unit volume in reducing the area of cross-
section of the wire from Al to A2 will be Y,Ln Al/A2 where Yn
is the mean yield stress.The work done in the producing unit
length of wire is then PAZ2 and the work per unit volume is

simply the drawing stress P.Therefore
P=YmLn Al/A2 (4.109

This is the most efficient,or ideal,means of reducing the
wire diameter and it gives the unattainabtle minimum value of
the drawing stress.

The variation of the die pressure with percentage
reduction is shown in Figure .7, for three different die
angles [8&]1.

The variaticon of drawing force with percentage reduction
0f area for the same three die angles is shown in Figure.S.
It will be noticed that the curves do not pass through the
origin when extrapolated.The explanation of this appearent
intercept on the ordinate axis lies in the fact that for

very ligth reductions the wire bulges prior to its entry to
the die
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4.2.1 Derivation of Equations

Analysis for the first trial value of X
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Figure.4.9 Sketch of wire-drawing showing forces applied to
strips of infinitesimal length.[65]



Py :Longitudinal (drawing stress)

P :Formal die pressure
An equilibrium of the longitudinal forces:

(§/6%) (PyAddx — 2TrPds(sinx + pcosc) = 0 4.1100
where A is the cross-sectional area of the wire at point =x.
1651

dx/ds=cosu & ds=dx/cosa 4.111

(6/6%) (P A)=2TIrP<{(tanx + )

d (PxA)=2TIrP(tanx + pidx 4.112>

A=TIr* = dx=dA/2TNrtana (4.113)

By suﬁstituting equation <4.113> into eguation (4.112>

d (P A>=P(l+ucotaddA (4.1145

Equilibrium of the transverse forces:

F_=P(usina - cosx) (ds/dx> (4.115>
or
F= P{utana - 1) (4,116>

By substituting equation (4.116) into (4.114)>



l+pucota
d(PyA)==(—————)F dA €4.117
l1-utana
l+pcote
C =————m— (4.118>
l-ptanx
d(PxA>)=-CP- dA (4.119

Differentiating equation (4.114>
A(dPy/dA> + Bx=P(l+ucotod (4.1200

A second equation for the stresses is given by the yield
criterion of the metarial.
The Tresca yield criterion gives:

Py, P =Y 4.1210>
The yield criterion adapted will be

Py=- P = m¥Y 4.122)
Where m is a constant obtained by the method of least
squares to satisfy Von Mises' criterion. The stress,P,is

obtained from the assumed yield criterion and substituted in

the equilibrium equation 4.120,to give

dPyx dA
= 4.123
Py pcoto—m¥ (l+ucotad A
Integrating:
1
Ln{Pygpucota—mY(l+ucotad}=LnAkK (4.124)>

Hcoto



or: Rxpcota—mY<l+pcota>=<AKﬂ“°t“ 4.125>

Where K is a constant obtained by knowing that

at A=A, {(die entry),Px=0 (4.1286)
Py 1 A peate
—= (l+ — {1l = (— } (4.127)
mY HCcotx Ag
Px '
c = (4.128>
mY
and
P Px
—=— 1 = C-1 (4,129
mY mY
By introducing a stress ratio: X=P/Px {4.130>
C-1 (This is used for the first
X = trial value of X in {4.131L>
< numerical analysis.?

This equation was derived by Sachs(l1827> and in the
analysis frictional force is taken into account [651.So far,
the non-useful work of distortion has not been taken into

account.

Siebel's Theory:Slebel (1947) has praoposed a theory of wire
drawing in which he assumes that the effect of homogenous
deformation, friction and non-useful distortion are additive.
He assumes that the plastic region with the die is bounded
by spherical caps with centres at the virtual apex of the

cgone.
8
~hg e
e
H3m [Gm

Figure. 4.10. External forces acting during wire-drawing[67]




As the wire enters and leaves the die it is sheared
instantaneously along these surfaces and within the die the
metal moves towards the virtual apex of the cone.

As shown in Figure .4,10.the force on the die element,Q@,is
inclined at an angle p to the normal to the die, where

p=tan u.Resolving these forces [67].

Q=P/ (sinB+p> (4.132>

Siebel continous his analysis by saying that a fairly
accurate picture of the drawing process can be obtained by
imagining that the mean die pressure attains the yield
stress of the material Y. Since the actual area of the die is

(Ay —Ap ) /=1inB

A1—Az
Q=Y —r 4.133>
sinB

Substituting equation (4.133) into equation (4.132)

sin(B8+p>
P=Ypq (Ay Ay ) (4.134)>
sind
Pa¥ (A —Agy) (1+ (/82D (4.135>

Siebel then divides the energy of deformation into useful
energy and lost energy.By analogy with the previous
processes discussed the useful energy per unit volume is
YmIn(A{/4,;).1t can be seen from equation (4.135),after
realizing that Ym(Aq~A2>=YnA,LnA4/4,),that the energy lost
due to friction is approximately (W/8>Y¥mLniA /A,>.The energy
lost due to redundant working occurs mainly at entry and
exit,and may be determined as follows.The meterial entering

Ry shears through an angle «,and it may be assumed that



a=(R/R,>8.The work done per unit volume in shearing through
the angle o« is ka=k{(R/R4)8,where k is the yield shear
stress.

For 2 small element of length dx entering the deformation
zone the element of work done is k(R/R,>BZTRdARdx. Assuming
the Tresca criterion,the total work in entering is therefore
2/3ﬂk8R?dx,and since the volume entering ﬂﬁfdx,the redundant
energy per unit volume in entering is 2/3k8,or (Y¥/3>8.For
both entry and exit redundant shearing the lost work is
therefore 2/3Y,6.Summarizing, the total drawing stress is

given by the sum of these terms:

M A1 2
Poac = Yh[(1+ >Ln + o] (4.136>
o A, 3 '

The first term accounts for the homogenous deformation,
the second the frictional component and the third the
additional force required because of non-useful distortion.
Vhitton emprical formula: Whitton(l1958) has compered the
drawing forces based on the above theories with experimental
values obtained by VWistreich.In an attempt to get closer
correlation with the experimental results.Whitton devised

the following emprical formula [6]:
P=A, Y, (l+cot o/ w1 1- (A, /A M1 424, ¥, o (1-r)/3r
(4.137>
where r is the reduction of area (Ay~A,)>/A,.The final term
is the extra drawing force for the non—-useful distortion. The

accuracy of the formula is within *10 percent for the

experimental results.
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4.3 Numerical Solution of The Drawing Region

In order to define the deformation variables as a
function of space ,an initially orthogonal, square grid is
embedded in the material.As the deformation progress, the
grid elements turn into non-orthogonal curvilinear shape.Ilt
is necessary to follow this deformation pattern throughout
the deformation sequence because of the history dependence
of the plasticity laws.

Beginning from the original stage,to be able to solve the
next deformation stage;associated boundary conditions have
to be specified.Starting from these boundries with known
initial values, the solution can proceed in a stepwise
algorithm. After the solution is completed, the next stage can
be analysed similarly, provided that the boundary conditions

are up—dated with respect to The new configuration.
4.3.1 Boundary Conditions
1 /Axial—-symmetry line
A-Qualitative conditions:

i— Shear terms are zerc along this line.

‘Seals =6€Bu= 0 (4.138>
Similarly the total shear strain is zero:
ii €qp € = O (4.139>
Consequently:



iv— Y=0 for all points moving along this axial
symmetry line,fhroughout the deformation stage.
The slope of B-lines are identically zero at all stages of
deformation due to geometrical symmetry.As a consequence,
any associated variable has zero rate of change with respect

to B—-direction.

v— & /868 = O . (4.141>
and since Ty = @
vi— 1 / rygg= 0 (4.142>

B.Quantitive conditions:

Incremental strain in o-directicn by, ? 13 assunmed at
the beginning of numerical solution.The solution proceeds
along the beta direction until the interface between die and
wire is reached. At this final node along the beta direction,
this assumed incremental strain is checked with the radius
by comparing the coordinate of the node.If the coordinate of
the node (Beta<(I,J)) is not equal to the reduced radius, then
iteration will continue by changing the incremental strain

until Beta<{I,J> will equal to radius.
2 / Die inlet

The following deformation variables may be taken as known
parameters:

§€ oo 6‘638 yG€yxy » Pocx, Ppg , Pyy , PRex

and taken to be equal zero.This is a free boundary.

3 / Boundary at the interface between wire and die.



Pag = Pgp M (4.143>

Hp=Coefficient of friction at the interface between wire &

die.
4.3.2 Formulation of the problem

The following rules are used in formulation:
1-Material is anisotropic.
2-Material strain-hardens according to Swift's law.
3-Hill's generilized stress and strain relations for
anisotropic work—hardening material is used.
4-Stress field is three dimensional.
5-The problem is three dimensional 1in strains.

6—c—axis is a principal direction.

T

he variation of incremental direct strains alcong the
sides of any grid element are assumed to be linear.
8—Associated variations of stresses can be described by
second-order polynomials for shear.
O-Deformed elements have non-orthogonal,curvilinear sides,
each of these sides can be expressed in terms of second
order polynomials.

The following boundary conditions are given at each
increment of deformation.

i~Positions of the deformed grid elements in terms of

their coordinates along the die-inlet.The associated total
strains are also specified.

ii"€xq Value along the axial-symmetry line 1is assumed and
then checked.

These given conditions are sufficient to complete the
numerical solution.By using the above mentiocned rules and
the boundary conditions, the relevant plasticity equations

can be summarized as follows.



A-Generalized stress and strain relations for anisotropic

work hardening material:

Hill's equivalent stress equation for anisotropic work-—

hardening material: (for rotational symmetry)

- 2 2 2 2 1/2
P=\ﬁ/2 [ (R(Pga —Pgy >+ (Pygy ~Paax) +(Paa—Pgg > +2NPga) / (2+R)]

(4.144>

and generalized strain increment equation:

- 2 1/2
dejZ/S[ (2+R>/ (1+2R 5 { (deyy ~Rdeyg >+ (degp ~Rdeqq) +R (depp —de) ]

(4.145>

The stress ratios as previously defined
X=Ppp / Pacx (4.1486)
K=Pygy /Pox (4.147)
Z=Ppa/Pocx 4.148>

BE-From Plastic flow rule for anisotropic material:

(deye /degp )+ (degy /degy DR+ (Aeyy /degg IR

K = X
(d€qe, /A€ yy )+ (A€qe /AE gy YR+ (A€ qu/degp IR

(deyeo, /degy )~ (dey g /degp

(degor /deyy IR+ (deyo /QEgg IR+ (degy/deEygy ) (4.149)

2+((dequ /depg )~ (denqy /deyy ) )/ ((A€wo/deEyy I+
X = ‘
(deqa /degg )+ (dege /A€y IR+ (dEyy /degg IR M
< >+(1+ ———————(2R+1>
(Aegp /depy )+ (Aegop /degyg YR+ (dey o /depg R (dY¥Ypw/ d€an?
4.150>




Z=Xp (4.151)

C-Constancy of volume:

ey tSegp +8eyy =0 (4.152>
Consequently:
§ ¥¥=— (Sen tSepgp ) (4.153>

Using Swift Law:

P=A(B+E) 4.154)>
2+R
2 2 2. 12N
ALB+ [273( {(degy ~Rdegq ¥ +(depy ~Rdegy )* +R(degy —degy 52717
y C1+ZRP il i

*
Pao=

\/575 [CRCX-KO! + (K-1)" + (1-X0* + 2Nz2)/ (2+R>»1"?

4.155»
It Seuq,6eBB,and 8¥gy are known, the stress ratios X,K and
Z can be computed with known anisotropic material properties
R and N.Afterwords the corresponding stresses can be readily
computed for a yielding material with known strain-hardening

properties (A,B,and n.
D-Equations of equilibrium:

a-directiaon

[
td

b doy SPpx Paa—XPoax 2 1
+ + -Pap{(—~—-—>= 0 (4.156>
Sa 68 rg Yo, Ty




B—~direction

6Fgp SPpo Ppg — (K/X>PBB Pgg —Ppa 7X 2
+ + - +PRa( )= 0

§B So Ty Te Tp
(4.157)

Starting from a point where the stress-strain state is
known or already computed, these two differantial equations
can be solved by integration proviaed that the functional
variations of stresses along a finite but incremental

distance are specified.

lozx+ A x+Act o+ A o+ Aot

Poo SPpa 2 1
Pacdo=- = do +//;a3<———————9
o o B & 68 & o Ty

(4.158)
For an increment of Aa along o—line
ls=p+ad +4AB B+aB Brap
/ Pag /6P RO /’?Paa
Ppg dB=- 1- (K/X))————{l 1/7X>>dg- dag- ag
g
B 8 . 159)

For an increment of A8 along a B-line

If one wants to list all of the variables in the
equations of plasticity that are used
Poct, Ppg + Pyy » Pp 1€ »P ,A ,B ,n ,R ,N ,X ,K ,Z ,86q0 8¢y Scyy
'5'5300 Act AR, Tyy 2 Tas o+ Ty »Teg » Taoe s Top -

Here A,B,n,R,N are material properties.The stress ratios
X, K and Z can be written in terms of incremental strains.The
radius of curvatures Ty, Tgy s Tax are equal to infinity.

Then the independent unknowns can be specified as
folleows:
Unknowns=Paa,PBB,PKU,PBQ,Seua,SeBB,SEBS,SemanB,rBK,rgB
fthese eleven unknowns can not be easily solved with the
given equations of plasticity.Assume that the stress and

strain states are known at two points B and C after
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deformation.Point A4 is the neigbour point whose new
coardinates and the stress strain states are going to be
solved as shown figure 4.11.

Let the new X and y coordinates af point A differ by
amounts of du and dv respectively,from its original
coordinates.

If the curvilinear o and B-lines are assumed to be parts
of second order palynomials, the cogfficient of the
polynomials can be determined in terms of known Xps Vb s e s Ve
» ¥, Yo and the unknowns du and dv provided that the slopes
of the lines at points B and C are known. Another way of

determining the polynomials is to use two or more points.
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Figure.4.11 Solution along a pair of o and B-lines for the

unknown point A,



After the polynomials are fitted, thelr curvatures can be
readialy determined together with appropriate signs.The arc
lengths lgpand lux can be computed by a numerical integration

method where the arc length is:

Xo+du
lo= /‘/1+<dy/dx>z dx <4.160)

or Xp Xo+du
lo= \/1+<2a2x+bz>2 dx (4.161>

b
Then using equatiaon (4.31L)

el n+l n
Seqau=Ln(la/lad=f,y (dud (4.162>
and similarly
*n ~ - - ~ - —
‘igr=f, {dv? (4.163,
with the assumption of linear variation of incremental

strains over the arc lengths.

Equations 4.162 and 4.163 reduce to:

ol n
sen 1A=2Ln<1a/la)—652:; L= Fa Cdu, dv) (4.164)>
nat ny! N ael
Seha L,=2Ln 1T/ 1) ~6egy 1 =f, (dv, du) 4.165)

Incremental shear strains 652; can be computed by using
equation 4.32.

All these manipulations indicate that the independent
unknowns at point A:

Unknowns I:Paa,PBB,P%x,th,<ﬂJ,dv

This is the reduced form of unknowns where du and dv are
parameters of displacement. Assuming trial values for du and
dv, temporary Pox, Pgg, Pgy and Pgee values can be computed by

using:



i>Swift law and Hill's generilized equivelant stress and
strain relations for anisotropic work hardening material
ii>Equilibrium equation in a—direction
1ii>Equilibrium equation in B-direction
iv>The last equation is convergence criteria.The
convergence criterion is infact an implicit compatibility
equation.
After du and dv parameters are ponverged,the actual
values of Paa, Pgg,Pyy and Pga can be determined. All the

other remaining variables can be solved successively.
Method of Solutioms

An originally rectangular grid with a mesh size equal to
LO and L1 is embedded to the wire as partially shown in
Figure. 4.1l whose owrigin is at point O.Solutions start tfrom
the boundary point where Seww,S€pg ,S€yy , Pact, Pag , Pyy and Pap
are known as boundary conditions.First, the next grid point
along the axial-symmetry line is solwved.This point
corresponds to peint C in Figure.4.ll.In addition to the known
point C,point B is also known as it lies along the die
inlet.Point A is solved by an algorithm whose outline is
already given in section 4.3.2.The solution can be repeated
up to the interface between wire and die, because the nature
of the problem is same for every point.After the solution
reaches the interface ,the next point on the axial symmetry
line i1s solved and the procedure repeats itself until the

last point on the interface is solved.



i-Solution For Axial-Symmetry Line
1)Shear terms are zero along this line

Sewg =Scgs O

iid €axg=cge= O
iiid Pag=Pga= 0O
iwv? y= 0

) §/8B= 0
vio /1= O

vii)Assume incremental direct strain Seggy.

Equilibrium equations

—direction

SPox Poao—XPoxox
+ = 0
S rg

B—direction

P —(K/X)>Pge

0
T3

K=X

deya 2¢1-X

dGBB X-1

4.

4.

4.

4.

4.

(4.

(4.

(4.

4.

(4,

166>

167>

168)

169>

1702

1710

173>

174)

175



2 deotOL=—2d€BE 4.176.a>
deyy =—dexa/2 (4.176.1
2 2 2 2 i2n
Al B+ (2/3[ 2+R/ (1+2R) { (AeyyRdegy + (degg~de, ) +R (deggden 111
P&a=
[B72r2¢x-1" /@+r>1"7?
C4.177)>
Algorithm:
Step 1.Assume incremental direct strain degw.
Step 2.Assume a trial value for X
For the first trial
X=C-1/C (4.178>
where
Mcot
C=(1l+(1/pcatad ) {1-CA/4,) 2 €4.179)>

Step 3.Using Sequ compute degg and Seygy by using equation
(4.176.a, b
Step 4.Determine ﬁaa value by using equation 4.177 and known
material properties A4,B,n and R
Step 5.  Pgp=Paa/X ; Pyy =Paa/K
Step 6.Determine Paa by integrating the equation 4.173
the initial value of Pox
Paoa= (Paa)y
If the assumed value for ¥ is correct Pac and Paa will be
identical. The convergence criterion for X is defined as:
| Pa—Poetl < & 4.180)
The value of X is changed until the above condition is
satisfied.Otherwise, the procedure is repeated by starting
from step 2.
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Assume 6€oe
Assume X
For first trial,eqn.4.178

l

Determine SGBB, 8€ 5
(Eqn. 4.176.a,b)

l

Determine P&
(Eqn. 4.177)

I

Determine PX_ and

M

Pys

Integrate equilibrium egn.

along ot-line. Compute
Pxee - (Egn. 4.173)

|

Neighbour nodes along
the B-line are solved

with the other algorithm.

NO

Figure.4.12. Computer program layout for axial symmetry line.



ii—Solution along a R-line:

The two independent variables are the node displacements
du and dv.A double convergence sheme is used to determine
the exact values of the node displacements du and dv.This
fixes the new position of point A.The lines over which the
conditions of equilibrium should be satisfied are the o and
f—lines.The step—by step algorithm is as follows:

Step 1. Assume trial value for du(Outer l1ocop of the
convergence scheme)

Step 2. Assume trial value for dv{Ilnner loop of the
convergence sheme)

After step 2,the trial co-ordinates of point A will be;

A (Xo+du, y, —dV)

Step 3. Fit a second order polynomial to S8-line using points

C and A; (Appendix 4>
_ 2
X = gy +b"y-¢-c‘I (4.181>

Step é. Use a numerical integration method (Appendix C) in
the limits of (x> and (x,+du) to determine the new are
length of curvilinear line C-A (Equation 4.161)
Step 5. Determine the incremental direct strain SEBBIA
(Equation 4.165>
Step 6. The procedure given in steps 3 to B is repeated to
fit a polynomial to ao—line and eventually 6e,, 1, is
computed. (equation 4.164)

2

Y = ax +bx+tc . 4.182>
. [ 2 2

Step 7. Compute the slopes Sg and Sa at point A:

S tA=2a2<Xo+dU)+b2 (4.183.a>



Sg I, =za, (y, ~dv>+b, (4.183.b>

Step etermine Jéygi, - This completes the determination of
the temporary, incremental-orthogonal components of strain at
point A. (Equation 4.32>The strain feyy |y, 1s computed from
the principle of constancy of volume. (Equation 4.35>
Step 9. X,Z and K ratios are determined. (Equatiocn 4.43, 4.44
, 4.45)
Step 10. Compute the value of Poc by using equation 4.61.
Step 11. Detemine the values of PEB’PQX and PEa.
Step 12Z. Start to integrate the equlibrium equations along
B-line (Equation 4.159).

i—The initial wvalues at point C are known.

Poo, Fgp » Py 1 S€orens 6688, Sexy, PR, Tex s Ty -

ii—Express the variation of Pg«,X,K as second order

polynomials.

Ppoa(y)=Py y +P,y+P; in the domain y.,y, -dv (4.184.a)
X (y)=X1y2+X2y+X3 in the domain y_,y,—dv (4.184.1>
K (y)=K,y+K,y +K, in the domain Ve 1 Yo—dv (4.184.c)
Po(x) =P, X +P, X+F, in the domain x,,x tdu (4.184.4)

iti~The with the transformation of B=y and a=x,the
piecewise numerical integration along the B—line‘is
performed in the domain y. < y < y,—-dv by using the fourth-
order Runge—Kutta algorithm with the initial values of y,, X%,
and Pax |, and Pgg I (Appendix D).

This integration yields the temporary value of Fgpat
point A.
Step 13. Compare the Pgg value with P;B which is found in
step 11.Computing the difference,check the validity of the

assuned value



| Ppg~Fpp | < & 4.185)

1z this inequality holds,it means that dv is a root.
Otherwise, the whole procedure is repeated by returning back
to step Z,and a new trial value for dv is assumed.This is
the inner loop for convergence.
Step 14. Vhen the root is found,the equlibrium equation
along c—-line is integrated. (Equation 4.158)
i—The initial given values af point B are
Poao, X, K, Ppa, rx and rg

j i —Express the variations of Ppw,X,XK along o—~line with
second corder polynomials.

iii—Then with the transformation of B=y and «=x, the
piecewise numerical integration along the o~line is
performed in the domain =Xp< X <{xX,+du.This integration gives
Poao value at point A (Apeendix Dd.

Step 15. Compare this value with Pox (Equation 4.61)
»®
[ Poao—Pocx + < 6

If the inequality holds for the root du convergence
requiremént is satisfied.This completes the iteration on
outer loop.Otherwise the complate procedure is repeated by
returning step 1.After determining the permanent root which
simultaneously satisfies the inequalities,the new position

of point’A is fixed.
(x,, 3, V= (go+du, ¥, —AV) (4.166)

Step 16. Proceed to the next grid node along the same B-line
and repeat the complete procedure.

Step 17.‘After the interface between die and wire is
reached, check

" Betad(I,J>—-Rdi«(I,J> < & 4.187)



If this inequality is not satisfied then return to the
beginning (solution for axial symmetry line) and change the
assumed value of &6e,y,and repeat the complete procedure.Vhen
the inequélity holds, the solution returns back to step 1,o0f
the algorithm for the next solution along the axial symmetry
line.This procedure repeats itself until all the nodal

points in the drawing region are solved.



CHAPTER V

DESCRIPTION OF THE COMPUTER PROGRAM FOR THE NUMERICAL
SOLUTION

A computer program is developed in order to perform the
numerical procedure described in section 4.3.2.1It is written
in BASIC 4.0 language to be operated on HP 9816. It starts
from the undeformed state by reading the initial wvalues and

boundary conditions.

5.1 Computer Algorithm

Step 1 . Read the material properties A,B,n,R, the number of
intermediate stages(NS)>.Maximum number of iterations is also
specified. Nunber of grid lines to be embedded in x

direction namely M is given as input.

Step 2 . Coefficient of friction between wire and die, half
die cone—angle,initial and final reduced wire diameter are
given as input.

Step 3 . Actual grid lengths with a nominal size of LO and
L1l which are physically embedded to the specimen is computed

as following.

TfF "Tin
IL=— 5.2
tanc
LOo=L/M 5.3
Ny=INT(D1/2L0> 5.4

L1=R1/Ny (5.5)
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Step 4 . This is the outermost loop for intermediate stages
for multi~-stage wire—drawing process.The following boundary

conditions are given as input at every stage:
j—Compute the outermost grid number.
NG=INT(R1/L1>+1 (5.6

ii—The total plastic strains and stresses along B-line
(die inlet) are given as boundary condition at each nodal
roint lying on it.

iii—The co-ordinates (x,y> of the nodes are also

specified.
Step 5 . Compute rg values for every grid element along the
inlet.The radii of curvature are determined by the
subprogram by fitting a Lagrange polynomial to given three

points with known co-ordinates {(Appendix A):

2
X =a,y +tbyy +c 5.7

and the radius of curvature is computed from the equation:

&y rdx?
1/r = = 5.8>

{1+ (aysdx) »*/?

The appropriate sign convention for the radius r is
established by the rule which is given in Figure..l.The
straight line combines the initial and the last points.Its
slope is SS5.The lines shown in bold lines have a positive
curvature according to the sign convention. This condition
corresponds to the situation when the fitted polynomial has
a larger sloped(including the sign)> than SS at the last
point.Conversely, the broken lines indicate the condition

when the radius of curvature is negative.
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Y}
r <0 —— = o8
Pad 4
g 3 r>o\x=a,32+b, Y+Cy — r_<o
X - —= —=X
2 ~ Seg
3 4
-a-(SS$>0) r>o0
-b_(sS<0)

Figure.5.1 Sign convention for radius of curvature along a
B—-line.

Step 6 . This is the beginning of the loop corresponding to

clution along the axial-symmetry line.Here, the

0

tke
incremental direct strain degyyis assumed and will be checked
later.

Step 7 . Assume X, After X converges,Paa,PBB,Seuu_and 6EBB
values are determined.The new coordinates of the point is
computed from the following equation;

t+1 i
quod’? (B€ast + §€xier) Act

(5.9
Assuming a linear variation of the strain along the
infinitesimal grid length.

Here dv is identically zero due to axial-symmetry.Then the

new co-ordinates of a point such as C as shown in Figure.4.1l1.
New coordinates for point C=(X. +du,y

Step 7 . After determining the next point on axial-symmetry

line neighbour nodes along the B-line are solved.



For this assume trial value for du{QOuter loop of the
convergence)
Step ¥ . Assume trial value 1or dvilnner loop o1 the
convergence)

After this the trial coordinates of the point A will be:
A {x, +du,y,—4dv)

Step @ . Fit a second order polynomial to B-line using

points C & A (Appendix A):

2
X =a,y *b, ¥y *c, 5.100

To determine the coefficients a1,b1& <,
i~ The slope of the polynomial at point C.Starting from

the boundary line,the slope of the B-lines are known.The
slope Sf B-line along the axial symmetry line is zero.
This gstablishes the sufficient number of equations to solve
the coefficients of the unknown polynomial or,

ii—For further points along the B—line,the two previous
known points and point A is used to determine the
polynomial. The same arguments hold for o—lines also.
Step 10. Use a numerical integration method in the limits of
x, and (x,+du) to determine the new arc length of
curvilinear line C—-A. (Equation 4.161>
Step 11. Determine the incremental direct strain 6egg t, from
Equation 4.165.
Step 12. The proéedure given in steps © to 11 is repeated to
fit a polynomial to o—line and eventually 6€:2 t is
computed.

¥y = a,x +b,x+c (5.11)

2

A+l n+1

Step 13. Compute the slopes Sp and Sa at point A:



Nn+1

S o k¢= 2a§X°+du) + bz 5.12.a>
<_:M-1 — o

=g IA—- _a‘(yo—dv) + b1 (5.12.

Then compute the shear strain using Equation 4.32

n+1 n+t n
Segal, =1/2¢Sg =S« 1)

Step 14. Seyy is computed from the principle of constancy of
volume.
Step 15. X,K and Z2 ratios are determined (Equations 4.43,
4.44,4.45)
Step 16. Compute the temperory value of PEa by using
equation<4.6L>
Step 17. Determine temperory values of PEB’P;K and P§a
Ster 12. Start to integrate the equlibrium equation along B-
line(Equation 4.159>

i~The initial values at point C are known

Pow, Ppg , Pa, rex s rg

ii —Express the variation of Ppo,X,K as second order

polynomials

PRa(y) =Py y° +F, y+E in the domain y,¥,-dv (5.13.2)
X(y) =X,y +X, y+X, in the domain y,,y,—dv (5.13.b
K<y>=K1faK;y+K3 in the domain Yy 1 Yo~V (5.13. <
Pga<x)=P, x +B, x+P,  in the domain x,,x_+du (5.13.4>

If the point is a neighbour point to axial-symmetry line,
the slopes are assumed to be zero.Otherwise previous two

points and the point C is used to fit the polynomials.



iii—Then with the transiormation of B=y and o=, the
stepwise numerical integration along the B-line is performed
in the domain y, < ¥y % Yy, -dv py using the tfourth-order
Runge-Kutta algorithm with the initial values of y,,x, and

Paci and Pgpl, (Appendix D>

Cia=f<y, , Pgp p with h=m Y (5.14.a>
Cz=f<Yb+1/2h’PBB'°’*1/2q) (5.14.
Cg=§<yo+1/2h,PBBl°+l/2%> (5.14. ¢
C4=f<Yb+h’PBB'°‘+1/2%) (5.14.4>
/
Then
PBBH=P@9i5+1/6 h(c1+262+2C3+C4) (5.14.e>

This ;ntegration yields the temporary value for Pgp at point
A,

Step 19. Compare this Pgg value with ng which is found in
step 17.Computing the difference,check the validity of the

assumed dv value.
»®
{Pgg-Pgp ! < B (5. 15>

If this inequality holds,it means that dv is a
root.Otherwise ,the whole procedure is repeated by returning
back to step 8,and a new trial value for dv is aesumed;The
temporary root can be determined by the binary chapping and
inverse interpolation method (Appendix B). '

Step 20. Vhen the temporary root is found, the equilibrium
equation along o—line is integrated.

i—The 1nitial given values at point B are:



Poo, X, K, Ppa, 1y and g
i i —Express the variations of Pea,X,K along o-line with

second order polvnomials.

Ppa ()=F, x° +F, x+B, in the domain Xp, X +du (5.16.a)
X(X>=X‘x?+X2x+X3 in the domain Xp,Xgtdu (5.16. b
K(x>=K1X2+K2x+K3 in the domain Xp,Xy+du (5.16.¢)
Ppoc(y)=F y" +E, y+F, in the domain yp,y,-dv (5.16.d)

{ii~Then with the transformation of By and o=Xx, the
piecewise numerical integration along the o-line is
performed in the domain xi < x <X, ,+du.This integration gives
Poa value at point A (Appendix D).

Step 21. Compare this value with Pox (Equation.4.61)
»®
| Pac—Poxctl < & ¢5.17)

If this inequality holds for the root du convergence
requirement is satisfied.This completes the iteration on
outer lcop.Otherwise the complete procedure is repeated by
returning to step 7.

After determining the permanent root,the new position of

point A is auvtomatically fixed;
(X,, ¥, 2=E(Xpt+du,y —aV) (5.185

Step 22. Store the parmanent values of all associated
variable for point A.

Step 23. Proceed to the next grid node along the same B-line
and repeat the complete procedure as given in steps 7-23.

After the interface between die and wire is reached the



assumed value for de 1is checked by using die geometry such
that :

Beta(I,J)»-Rd4i(I,J> ¢ § 5.11
where:
Beta(I,J):Coordinate of the node after deformation
Rdi<(I,J> :Radius at that node
If this inequality is not satisfied return to step 8 and
repeat the whole procedure by changing the assumed value for
S€gqn If the inequality holds then the solution returns back
to step 7 of the algorithm for the next solution along the
axial-symmetry line.This procedure repeats itself until all
the nodal points in the drawing region are solved.
Step 24. If it is multi-stage process then return to step 4
for the solution of next stage.

Step 25. Program stops after the final stage is solved.
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START
Material Properties
A,B,n,R,N
NS:No.of intermediat
X P:D]-’Dz, o ,MN / \ Stages 77
[ o
NZ=1,NS g l

Boundary Conditions
(at die inlet) /

\Boundary Condition /

I=1,MN

| Assume S€oox|
)

[ Change &€ |
i

Compute the deformation variables for
the next node and its new co-ordinates
along the axial-symetry line :

Xe=Xg +du ; Yo =0

{  Print \
J
j=1,NG
Quter loop [ Assum]e.f‘du ]
Immer loop [ Acsume av ]
. |
Compute PE o ’P§B
]
Integrate Equilibrium Egn. along B-line
P
BB
. YES
<=
‘ NO 1
Integrate Equilibrium Eqn. alongot-1line
Pocer
@f YES
- NO
- 1
N Beta (I,J)-Rdi (I,J)<%
YES (  PRINT \
. Compute Texs T'p, Iy Stare result

]

‘ STOP >

Figure.5.2. Computer program layout for numerical solution.



5.2 Sample Solution

The computer program is used to solve a case study as
specified below:

i—~The drawing material has following properties:

A = 25 kg/nmf
B = 0.0122 mm/mm
n = 0.37

ii—An anisotropy ratio is taken as 1.2 and parameter

charecteristics of anisctropy N is taken as 1.1.
iii—Initial and final diameters of wires are 3 and 2 mm
respectively.

;V~Coéfficient of friction between wire and die is 0.05.

v—Half die cone angle is 12°.

vi—Drawing region is divided into five division in a-
direction (MN=3).Also,it is calculated that there are four
divisiontin RB—direction (NG=4).

v;;—Thé convergence criteria parameter § is chosen as 0.1
kg/nmﬁ

viii-The convergence criteria parameter 6§ used for equation
Beta<I,Rdi(I,J)<S§ is chosen as 0.2 mm.

The computer program determines the stress-strain state
at each deformed nodal point.Their new co—-ordinates are
calculated and printed.The results which are reduced and
adapted for graphical representation are given in Appendix
F.
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5.3 Program Properties

The memory requirement of the program is about 125 K
bytes. It takes about 20 iterations to converge to the root
of X for the solution of a node on the axial-symmetry line.
Converging rate for Pax and Pgg values along the B-line
largely depends upon the initial trial values of du and dv
trial values are up—-dated by the converged du and dv values
of the previus nade.The step size for variations in du and
dv are taken to be 5x10°mm for each iteration.The total
number of iterations in the nested loop for the solutions
along the B-line is about 100 iterations after all the
provisions are taken such as up-dating the trial values of
du and dv.The execution time is roughly about 50 seconds for
a node along the B-line. It drops approximately to 5 seconds
for a ncocde alcng the azxial-symmetry l1ine.The total execution

time can be expressed roughly with the following formula
t = MM x5 + (NG -~ LGN - 1) x 50 [seconds] (5.19

The program is composed of a main program and eight
subprogranms. The main program has two gption. These are
analytical and numerical solutions for wire—-drawing process.
The subprograms that are used in numerical soution are:

1 / Subprogram ALRUNG It performs the integrations along

the axial symmetry line.

2 / Subprogram COMUQZ : It specifies the functiomal

relationship

3 /7 Subprogram LANGPOL3 :It computes the radius of
curvature far the given three
nodal points and determines its

sign{langrangian’



4 / Subprogram POLANG2 :It fits a polynomial to given two
points and the slope of the
function at the first point.It
also determines the radius of

curvature.

5 / Subprogram GENRUNG It performs the integrations along

the « anq B—-lines.

© / Subprogram GRIDUD :It specifies the functional
relationship of the equlibrium

equations along « and B-lines.

7 / Bubprogram TRANTEG It determines the arc lengths of

the deformed grid sides.

{Trapezoidal ruie’

8 /7 Subprogram BINCHAP :It finds the exact root of trial
values. (Binary chapping, inverse

interpolation)



CHAPTER VI

DESCRIPTION OF THE COMPUTER PROGRAM FOR THE ANALYTICAL
SOLUTION

A computer program is developed in order to perform the
analytical procedure described in section 4.2 by using
Sachs, Siebel and Whitton emprical formula.The results of
drawing stress,drawing force, mean aie pressure and die
splitting force for different reductions can be obtained
graphically by means of this program.

6.1 Computer Algorithm

Step 1. Read the initial wire diameter,coefficient of
fricticon,half die—-cone angle and the mean yield stress of
material.

‘Step 2. Starting from 0% percent reduction, compute the
drawing stress,drawing force,mean die pressure and die
splitting force by using Sachs equation(Equation 4.131) by
1% reduction increments until 50% reduction is reached.

Step 3. Repeat the same procedure by using Siebel equation
(Equation 4.136)

Step 4. Repeat the same procedure by using Whitton emperical
formula{Equation 4.137>

Step 5. Plot the drawing stress,drawing force, mean die
pressure and die splitting force versus percentage reduction
graphics by using the values obtained from Sachs,Siebel and
Whitton equations.

Step 6. If you want to change one of the inputs return step,

1. otherwise program stops.
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START

Dl:Initial wire diameter

M:Coefficient of fricti:
'y T:Half die—cone angle
Y:Mean yield stress

X =0.5

5 —>

Compute drawing stress,

mean die pressure, drawing
force and die splitting

force using Sachs, Siebel

and Whitton emprical formulas.

g PRINT S

X =X+ 0.01

NO

Figure.5.3. Computer program layout for analytical Solution.



6.2 Sample Solution

The computer program is used to solve a case study as
specified below:
The drawing stress,drawing force,mean die pressure and die
splitting forces are compared for a wire-drawing pass of 30
percent reduction on a wire initially 3 mm diameter,in a die
of 12° semi cone angle,assuming a mean yield stress
Y =25 kg/mmzand coefficient of friction=0.05 for the
following cases:
i/ Siebel's theory
ii/ Sach's theory
{ii/VWVhitton formula

The results which are reduced and adapted for graphical

presentation are given in Appendix E.

1



CHAPTER VII
RESULTS AND DISCUSSIONS
7.1 Numerical Results

Sample computer outputs are given in Appendix F.Outputs
consist of the incremental strains_namely Seqer 8€gg and Sexy
for each element node. Associated strains, new co-ordinates of
the node and converged du and dv values are alsao given
together with the number of iterations that it takes for
convergence. Assoclated Pax, Pgg ,Pyy and Papg are also printed
in units of kg/nmf.These results can be used to derive
important conclusions about the wire—-drawing operation and
material behaviour in the drawing region.The variation of
Sem&,ﬁess,8653,6@xa,Paa,ng,ng,Paﬁ aliong the o and B—1lines
are also given in Appendix F.Incremental strains increase in
magnitude steadily as the deformation progresses.Drawing
stress increases in the drawing direction and decreases in
radial direction.Radial stress increase in radial direction
and decrease in drawing direction.Shear stress is slightly
decrease in drawing direction and increase in radial
direction.

The results obtained from analytical solution for the

drawing stress is near to numerically obtained results.
7.2.Discussions

Internal stress distribution obtained in numerical
analysis is generally in agreement with Shield and Siebel's
distribution. In general,stresses increase 1in the drawing
direction and decrease in radial direction.Also incremental

strains increase in magnitude steadily as the deformation
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progresses. Regarding the analytical analysis, when the
numerical results are compared with the Sachs,Siebel and
Whitton's results it can be observed that numerically
obtained values for drawing stress is higher than analytical
ones and close to Siebel's results.

Numerical solution depends upon the boundary conditions
at the die inlet and axial symmetry line.These conditions
must be derived from experimental data or numerical solution
of the other regions. At axial symmetry line instead of using
€xxvValue given as a boundary condition,solution along a B-
line is started with a temporary,assumed egyvalue.The
solution proceeds along the B-line up to the interface
between wire and die where the boundary conditions
associated with this line are tested.Solution returmns back
to the axial symmetry line and starts with another ¢, value
until the boundary conditions are satisfied. A simitar
iterative scheme can be provisionally suggested about the
boundary conditions at the die inlet.Since for very light
reductions,the wire bulges prior to its entry to the die
stresses are not equal to zero in fact.Solution may start
with assumed boundary conditions and continue until the die
exit is reached, where the corresponding boundary éonditions
are tested. It is obvious that such a scheme will be very
elabaorate, time consuming and simply impractical, therefore it
is left as a personal choice to use.The computing time is
already long enough for the present algorithm such that some
simplifications may seem to be reasonable.

It is observed that as the mesh size and the number of
iterations is increased.much more correct results can be
obtained.But mesh size can not be decreased below a certain
value because of the available computer memory.Drawing
reglion can be subdivided maximum into twenty.The total

number of iterations in the nested loop for the solutions
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along the B-line is not increased over 100.Because the
computing time is also increases and this scheme is very
time consuming and simply impractical.Converging rate along
the Bf-line largely depends upon the initial trial values of
du and dv.Depending on these assumed values and the boundary
conditions ,in some of the nodes convergence can not be
obtained with the above specified number of iterations and
hence at that nodes correct results can not be obtained.

A material element with initially orthogonal sides,may
transform into a completely arbitrary shape with sides
intersecting obliquely.Although this non—-orthogonality
condition may have negligible importance at incipient modes
of deformation,it can be included only by modifying the
governing equations.In this case it is believed that a more
comprehensive and complete method of analysis will be

achieved whenever such solutions are requried.

v wg Go

h-iel"kezi
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CHAPTER VIII
CONCLUSIONS

In this thesis,a theory is developed in order to analyse
the wire-drawing process using the finite difference method.
An anisotropic and strain-hardening material model is used
under three dimensional stress conditions.An originally
embedded rectangular grid system transforms into a family of
curvilinear, non-orthogonal lines as the deformatiaon
progresses. Theory encounters this situation where
curvilinear, orthogonal co-ordinates are used in formulating
and solving the problem.A computer program is developed tao
carry out the necessary calculations and to determine the
strains and the associated stresses taking place during the
wilre—drawing operation.Xesuits obtained by the numerical
method can be compared with analytical results for the same
material.This shows that the computer program can furnish
users with sufficient and reliable information to make a
complete and detailed analysis of the wire-drawing process.
The program enables to follow the space dependence of
strains, stresses, displacements throughout the wire—drawing
operation.

Additional solutions are obtained using analytical
equations derived by Sachs, Siebel and also Whitton's
emprical equation.Analytical solutions is simple and
comparable with the numerical method with respect to its
simplicity and ease of application.

Polynomial representation of the deforming grids is
highly adaptable to any degree of deformation.Relevant
theory is also based on a similar approach. For these
reasons, the philosophy and the methodolaogy is sufficient and
flexible enough to extend the field of interest to mare

complicated die geometries in the’ future.
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Curvilinear, non-orthogonal co-ordinates can also be
included only by modifying the governing equations.In this
case it is beleived that a more comprehensive and complete
method of analysis will be achieved whenever such solutions

are required,

Further Vork:Present study on its own,is believed to be an
initiation and innovation in this field with respect to the
philosophy of approach,method of solutions and the results
obtained. It was found cut that a complete assessment of the
problem is only possible if different aspects of
investigations are realized.These are:thecretical
analysis,experimental research and method of solutions.

The computer program can be improved further whenever a
more comprehensive and complete solutions are required. A
similar iterative scheme developed for axiai—symmetry line
can also be suggested about the boundary conditions at the
die inlet.Solution may start with assumed boundary
conditions and continue until the die exit is reached, where
the corresponding boundary conditions are tested. In this
analyse the coefficient of friction between wire and die i1is
assumed to be constant throughout the drawing regionlIt may
also be taken as a variable. It is obvious that such a scheme
will be very time consuming.

Since polynomial representation of the deforming grids is
highly adaptable to any degree of deformation, the
methodology is sufficient and flexible encugh to extend the
field of interest to more complicated die geometries in the
future.

Although non-orthogonality condition may have negligible
importance at incipient modés of deformation,it can be

included only by modifying the governing equations.
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APPEINDIX A

For a given (j+1) discrete points where the relationship
between the variables x and y are given,it is possible to
approximate this relationship analytically with a unique
polynomial of degree not greater than (J).Lagrange

postulated the following general polynomial:

X-X4 X-X, X-X; X—Xqo X-Xo X—Xj
y=1 . s Yy, +4 . Iy }y‘+;..(A—1)
X5 X4 XX, Xan X-X, XTXO XTXj

In the present study:usually three consecutive points at
unequal intervals are available.Then a polynomial of second

degree can approximate the functional relationship:

(X=X40. (XX, (X-Xgp2. (X=X, X-Xg2. (X-X4>
y= Yo ¥yt Y2
(Xg=Xq). (Xo=X3) (Xq =Xy . (Xq-Xp) (X;—Xg). (Xp=X,)
(A—-2)

For the set of points 1,2,3 with co-ordinates (Xq,¥,7; (x4,
i (X,,¥,? respectively.Expressing equation (A-2)in a more

compact form:

Let

Yo
o = (A-3. 1B

(XO_X1 ). <XO—X2)
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Y4
Xy =Xg). (X, =X,)

r
2

Q = (A-3.¢)
(Xy=Xg). (Xp—X4 )

Then
y=(D+P+Q)X2+{—O.<X2+X1)—P(XO+X2)~Q<XO+X1)}. X +
+ 0.X4.X,+ P.X,. X+ Q. Xg. X4 (A-4>
or simply;
y= a, X + by+ o a-5)>

The constants of this second order polynomial can be
determined by using the definitions given in Equations A-3

, A-4

and the given three points.For a nodal point along 8-
direction which is neighbour to the axial-symmetry line, the
polynomial can not be readily fitted, because there are only
two ponts available for the fit.The first point can be
fictituously selected gs a mirror image of the last point of
the two;with respect to the axial symmetry line.In this case
the co-ordinates of the first fictituous nodal poiant will
be:

Yo= — Yp

This arguement holds true only for a B-line, because there

is no any such symmetry for the a—-lines originating from the
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die-inlet,and there remains only twoc points for the

polynomial fit.In this case, the slope of the functiomnal

variahble st the die inlet is used a2 the third information
whenever available.
i.e
If x4,y » Xp,¥p° and (dy/dx)x1 are given, then after
certain manipulations:
(2. X4 —X-X52 . (X-X,0 X=X ). (X-X50 X-X,>
y= ¥y * (dy/ch-:)xt t—y,
Xy =X, Xy -Xp0 (X,—X4¢2
(A-6)
With a similar approach, the polynomial constants a, , Dby

, and o, can be determined fcor the first case alsoc.Usually
the slopes of the polynomials at the last point are required
to compute the shear strains. (See Equation 4.31>.In this

cage!

(dy/dx%% = 2.X2.(O+P+Q>—{O.(X2+X1)—P<X°+X2)—Q<X°+X1ZX_%)
when three points are given
or:

Ay/dz, = 2.y =y, 2/ Xy=Xp)-(dy/dmdy (A-8)

when two points and the slope at first point is given.

The above methodology can be equivalently applied to any
functional relationship apart from physical curves
associated with the grid.For example, i1f one wants to obtain
the functional dependance of Pga on B-direction between the
axial-symmetry line and the next neighbour point on the B-

line:
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PB“H = 0 (No shear stress along axial-symmetry line)
B,= 0

Also
§(Ppa> /6B = 0O (Due to axial symmetry>

and, if the wvalue of PBa associated with the trial position

of this next point is given:

Ppal, =Cg4
Where;

B,=X,+ du
Then:

2 2 _ 2
PBO((B) = 0.8 +( chxlz /,B2 >.8 + 0O =(¢ Pch12 /}32 ). B (A-9)

In this specific case , the relationship comes out.to be

linear functionmn.



~-116-

APPENDIX 2

BINARY CHAPPING AFD INVERSE INTERFPOLATION METHOD

TO DETERMINE THE ROCT OF A FUNCTION

Vhen a function is computed at a set of discrete points
of the arguement, the root of this function can be
determined provided that the function changes its sign
within the region of interest.Figure. shows such a
relationship.

Assume that any stepwise solution algorithm associated
with the variables x and y starts from point D and it is
required to find the root.In this case the solution is
allowed to iterate until the sign of the functional variable
changes.let points A and B are the two last consecutive

roints where:

Vo - ¥p < O (B—-1D
X\E [}

=y
"\\\A(Xayq)

interpolation
function

Figure.B.1l Determination of the root of a function



If the steps are held sufficiently small and the function is
not ill conditioned and highly unstable,the root will likely

0
h>
£
£
t3

Xa< r < Xy (B-2)

The actual functional relationship given a discrete points
is shown with & broken line.A third point C is defined on

this line with its abscissa to:

Xat Xb
Xc=—_—“ (B-3>
2

The ordinate of this point is found by the same functional

relationship y(x>:
Y. = y(__c) B-4>

Now a second degree polynomial interpolation is made to the

three points A,B and C:

X=X . Yo ~ Kg=X> . o
y = ' (B-5>
Xy -X

a

where

KX . 73— Xg=X) . %
Yae = (B-6)
Xe—Xg

and
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Hp=XD . 3, — (X ~XD. 3
Yy = (B~7)
Xb “'X

c

This polynomial is shown with a bold line which passes
through points A,B and C,and the approximates the discrete
functional relationship with a continous function in this
domain. The approximate root will correspond to the condition
where yy. will equal to zero.Let this approximate root be

denoted by XT. Then:

(Xp=XT) . Yoo — Xz—XT) . yp,
0 = (B-8)>
Xy—X3

It is difficult to solve XT directly from equation B-8 .The
inverse interpolation can be effected by interchanging the
given x's witk the correspondiag y's and carrying out the
o

alculation as for direct interpolation:

(Yb—0) . Xac— (¥4 —07 . Xpo
XT=— (B~9)
‘ Yo Ya

where 3

(ye—0). Xa—(ya—-0>. X¢

Xac == : (B-10)
J Ye 73

and

{yp—0) . Xg— (¥ —0> . X},
Xpe=- (B-11)
! 7Y

This XT &alue will of course will not correspond to the
exact root r on the actual functional relationship. The
correspohding y value for XT is denoted by §,and this new
point is shown by X.Depending upon the sign of §,either
point A or point B is deleted(chopped).By this elimination
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method of the worst point.XT value is converged to the

actual root r:

if 6<0 delete point B.
if 6>0 delete point A.

Substituting this new point X instead of A or B, the
interpolation algorithm is repeated until § value becomes
neglicibly small:

I1f 6§<EPS the ihterpolation iteration is stopped after
some more iteration to make sure that the solution converges
to the actual root.Here EPS is a specified small number

denoting the degree of accuracy.
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APPENDIX <C

NUMERICAL INTEGRATION
The Trapezoidal Method

Consider an integrable function §{(x) on the interval

a & X & b.¥e wish to calculate the integral

I(x>=/[f(x).dx C—-1)

a

If x; is located at the dividing line between two panels,

then I(x;Jis the area under f§(x) from x=a to this dividing
line.The quantity I(x_.-rﬂ > is then composed of this area plus
the z2rea of cne more panel.Assuming that I(x) is an analytino
function in the area of interest, then I(Xj+ > can be

1
obtained from the Taylor series expansion about xj as

I(Xj*1 )=I(xj+ AX)D

=I<xj>+<Ax>I'<xj>+<<Axf /215177 Cx )+
+(axs /3!)1"'<xj>+o<axi4 c-2)>
But since
>. 4
chf=/(f<x>dx ythen  I7(x3) =fx3)

3
I”(Xj>=f’(Xj> , etc.

2 .
= I(xj‘+1 )=I(Xj)+(Ax>f(Xj)+((AX) /2% (xj)+

+Cx® /31§77 (x50 +0Cax) (c-3)



The first derivative f'(x;> will now be replaced by the

simple forward difference represantation

f(x5+Ax)—f(xj) AX »
- f”(xj)+O(Ax> (C—-4>
AX 2
2 I(xj+1 )=I(xj)+<.ax/2)[f(xi_H )+f(xj)J— (C-5>
3 .. 4
—(AX) /12D ¢ CXj)+O<Ax)
= Sjﬂ =I(Xj._+1 )—I(Xj)

=<Ax/2)[f(x:',_H >+f(x%0]—<(Axﬁ /12);"<x3‘.)+O<Ax)4
(C-6>
The term (Ax/2)[f(xi+

dJ+f(x1)] is the trapezoidal

1
appraximation for a single panel.The remaining term then

represents the error.In order to evaluate the integral over
the entire interval, the contributions of each panel must be

added. Thus,

o
I=I 8;

(C-7)
=1 J

or
I=ax/2)L F(ad>+¥F (b +2 {:f<xj)]*<(Ax)3/12) I f7 (xpo+
+higher order terms
(C-8>
The dominant error term can be recast into a more
understandable form.We apply the mean value theorem to the
summation:

n
I
J=0

(C-9)

w
”m
o

§77Cx;0=n F(%) , a ¢

So the dominant error term becomnes



-122~-

3
(ax>  (b—a)d ax?
- £ (RY = ——— (b-a) (D (C-10)
12 AX 12
n-1% 2
I=(AX/2) (o + fo+ 2 L §304+0C00 (C-11)
=1

For most reasonably well-behaved functions,it is possible to
obtain a much improved integration technique by estimating
the error térm.Using simple diffrences, §° (X)) can be

estimated as

F (b)Y — §7<a)

ORI (C-12>
b - a
If this estimate is employed, then
a-t 2 .
I ian/2) (§,+§, 42 X fj)~((Ax> AI20T £ (bi—§ " (ad] {(C=-13)
F J=1

where

B =—(cax)y /1200 § (bd—f" <ad]

:Asymptotic error estimate
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APPENDIX D

RICAL SCLUTICK OF ORDINARY DIFFIRANTIAL EQUATIOH

Runge-Kutta Methods

The Runge—-Kutta methods are among the most widely used
formula for the numerical solution of ordinary differantial
equations. Ve will study only the fourth order formula which

is the most popular:

Yot =Y +1/6 g+ 2k,+ 2k + k,>, =n 2 0, (D-1

k;=h §Cyn.ta?, (D-2.ad
k,=h f(y,+ 1/2h , t.+ 1/2k,), (D-2.1b)
k,=h §<y,+ 1/2h , t,+ 1/2k,), (D-2.¢)

ky=h f<y,+ b , tatk;), O-2.d
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APPENDIX E
SAMPLE OUTPUTS FOR ANALYTICAL SOLUTION

ANALYTICAL ANALYBIS DF WIRE DRAWING

-------------------------------------

KY BEANS OF THIS PROGRAM THE VARIATION DF HEAN DIE PRESSURE,DRAWING STRESS
AND DRAWING FORCE WITH PERCANTAGE REDUCTION OF AREA FOR DIFFERANT DIE ANGLES
CAN BE PLOTTED BY USING THE THEORIES OF SIEBEL,SACHS & AND ALSD WRITTON

ENPRICAL FORMULA,

NONENCLATURE

Y 15 THE MEAN YIELD STRESS IN (KG/MHD)

D4 18 THE INITIAL DIAMETER OF WIRE IN {HM)

02 IS THE FINAL DIAMETER OF WIRE IN (M)

H 1S THE COUEFICIENT OF FRICTION BETWEEN WIRE AND DIE WHICH UAS ABSUHED CONSTANT

T 1S THE SEMI ANGLE OF DIE CONE IN (DEGREE)

L 18 THE LENGTH OF WIRE 14 CONTACT YITH DIE IN (MM)

B IS THE HEAN DIE PRESSURE IN (KG/NM"2)

K 18 THE DRAWING BTRESS IN (K6/NN~2)

P 13 THE DRAWING FORCE IN (KB)

B 15 THE SPLITTING FORCE BETWEEN THE HALVES OF DIE IN (KG)

R 18 THE PERCENTAGE REDUCTION IN AREA



PLEASE WAIT
%= .3 REBUCTION 1N AREA

KSS! 21 )= 10.5649993778 KB/MHA2
KLL{ 21 )= 14,5362768676 KG/MHA2
KHNE 21 )= 10,4332326798 KG/MHA2
R= ,3 REDUCTION IN AREA

PSS{ 21 )= 52,2757010301 KB

PLLL 21 )= 71,9256303492 kB

PHIL 21 )= 52,8133249317 KB

Re .3 REDUCTION IN AREA

BS5( 21 )= 19,9571195944 KB/MMA2
BLLL 21 )= 27,45BB074172 KB/MNAD
BHHC 20 )= 20,0860131425 KB/MHA2
R= .3 REDUCTION IN AREA

5551 21 )= b2,7027B15898 KG

SLL 21 )= 86, 2721494478 15

SWHE 21 )= 63, 1077490479 KB

-125-

(GACHS!
(EIEBEL)

{RRITTOR)

{5ACHE)
(SIEBEL)

(NRITTON)

(SACHS)
(SIEBEL)

(HRITTON)

{EACHS)
{S1EREL)

{RRITTON)
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PLEASE WRIT
KNAY:MAXINUM DRAWING STRESRER .R.7. SACHS,BIEBEL & WHITTON

KHRY= 19.750992823 KG/HMH~2 #BACHS)
KNAY= 24,9562555208 KG/MM~2 (S1EBEL)

kKRfY= 19.7802360953 KB/HH"2) (WHITTON)
PHAY:NAXINUN DRAWINE FORCES W.R.T., SACHS,SIEREL & WHITTON

PHAY= £9.805770498 kG {SACHS)
FRAY= BB.2026876311 KB (S1EREL)
FHAX= 89.9091249336 K6 {BRITTOR)

BHAY:HAYTHUN MEAN DIE PFRESSURES W.R.7, SACHS,SIEREL & WHITTON
ONAX= 24,8432047047 K6/HH*2 {SACHS)
ONAY= 308,710607126 KB/MNA2 {SIEREL)

OMAY= 296,877261327 KEG/MM~2 {YRITTON)
SHAL:NAYINUM SFLITTING FORCES W.R.7. BACHS,SIEREL & WHITTON

ERAX= B3.729455703% K6 {SACHS)

SMAY= 105,7958B1245 KB {BIEBEL)

"

SHAX= B3,B534253339 K6 AHRITTOND
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APPENDIX F
SAMPLE OUTPUTS FOR NUMERICAL SOLUTION

NOMENCLATURE

b e e B O O o e

BAA, AR, 5AB: CURRENT STRAINB IN ALFA,KETA,GANA DIRECTIONS

594

+SHEAR STRAIN IN ALFA-BETA PLANE

SEA‘SEB,EEGzCURRENT STRESSES IN ALFA,BETA,GAMA DIRECTIONS

B5E
X5
KS

¥8

DA, DE

H

{SHEAR STRESS IN ALFA-BETA PLANE
1STREGS RATIO (SER/SEA)
s STRESS RATI0 (BEG/SEA)

15TREBS RATIO0 (BSE/BEA)

:BRID LENGTHS IN ALFA AND BETA LINES FOR STRAIGRT LINES ONLY

tBTEP LENGTH IN RUNGA-KUTTA ALGORITHM

RA\RB,RG  +RADI! OF CURVATURE ON ALFA,BETA AND GAMA LINES

ALFA,BETA sCURRENT CODRDINATES OF BRID NODES

064, 06H
B

5k

A

AR, A

ARN, ABN
DSSA

0

tORIGINAL INSCRIBED GRID COORDINATES IN ALFA,BETA DIRECTIONS
+5LOPE UF ALFA LINE AT THE BRID MODE (MEASURED FRON ALFA ARIS)

t5LOPE OF BETA LINE AT THE GRID NODE (HEASURED FROM BETA AX1S)

tSHEAR ANGLES DN ALFA AND RETA LINES AT A BIVEN NODE

t1ARC LENGTHS OF ALFA AND BETA LINES BETHEEN SUCCESIVE

NODES {THEY ARE COMPUTED BY POLYNOMIALS FITTED T0

DEFORNED GRID NODES)

yNEW ARC LENGTHE OF THE ALFA AND BETA LINES BETWEEN SUCCESSIVE NODES
+INCREMENTAL SHEAR STRAIN IN ALFA-BETA FLANE

1{0) APPEARING AT THE BEBINNING OR EWD OF ANY TERM
INDICATES THAT THIS TERM EELONGS 70 PREVIOUS BTAGE
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NUNERIDAL ANALYSIE OF WIRE DRAWING

e s e o 0 B O o P

URIGINAL  ERID COORBINATER

...... S S

BHID PATIERM @ B2 & 3

ALFA DIRECTION

Bopt o

1

=
fRal 2 1e 470463010%4E
0GR 3 1= 980925021094
DRk 4 1= 1, 41138500284
0540 5 i= [, BE18R20437%

oo o o o e Ot

b0 tid=0

0 {21!=.5
b (3=

0 (4= 1.5

BOLUTION FOR 1 ,TH STABE

---------------------------

QUTERKDST GRID POINT= 4

BOUNDARY CONDITIENME

ALFA STRAIN RETH BTRAIN GAMA BTRAIN

——————— e mm e e e e ———

¢ 0 {
p ¢ ¢
@ 0 Q
q Q q
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ALF# CTRESR KETH STRESS EHEAR STRESS
it i U
fi { d
3 ¢ 0
{i { 0
CURRERT CODREIMATEE [F BRID NODEE AT DIE INLET
BLFa S 1= {
EETAL L [ i= i
fLFsl 2 1= G
BETR | 2= .5
FLFAL 3= {
BETS 3= !
ELFR 4 iz 0
RETEL 4 1= (I

SEar ! {i=1
8thi | bi= 0
8RE( | b=

----------------------

SEat i 21=10
BEB( 1 21=0
B¢ ¢ 2:1= 4

SEat ! 31=0
SR ! RN
BRE( | 3= 0

SEai ! 3 )=
BER{ 3= 0
g8kl | $1=4¢
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SOLUTIONE AT NODE HUWRER = 2,

ot e e G O Ot 86 0 e e B bt

INCREMENTAL ALFR STRATH (na/mpl= A2
INCRERENTAL BETA STRAIN lam/mel=  -.08
INCREMENTAL GaMs STRAIN (em/nml=  -,08
ALFH STRESS {kafan*2)= 0.4

EoTr RTRESE 3?\_{1’3&&1”?3- Gl

§AME ETRESR teg/pat2i= 0.0

SHERE STRESS hgfon 2= 0.0

NEW [OCRDINATES:

ALFRIT, ) = L50

BET441, D) = (1,00

il = L5800

by = (0,000

TOTAL NUMEER OF ITERATIONS = N
PLERRE WAIT

EOLUTIONS AT MDDE HUNRER= 2 , 2
THCREWENTAL ALFA BTRRIN (mm/imml= .28
IRCRENENTAL HETA STRAIN {ms/mml=  -.43
IHCREMENTAL BAMA BTRAIN f{am/mml=  ~,15

TNCRFRENTSL SHEAR RTRATH {pa/amsds -0 00

KLF# STRESS tglawD= 1.6
RETA STRESS tholeatll= -1
Rl BTRESS tha/aadl= -,
BHEAR STRESS tkg/an*2) = =0,0

JULRRY T SR (1<t
W {aml=s ~-.048
NEW CDORDINATES:

----------------

ALFRC 2 20 {sm)= ,529554B1EB22
BETAL 2 2} lam)= 431666646647
TOTAL WUMBER OF I1TERATIONS= 3

PLERSE WAIT

SOLUTIONS AT NODE WUMNBER= 2 , 3

INCRENENTAL ALFA STRAIN (mm/mm)= 59
INCREMENTAL BETA STRAIN ian/pm)z 1,33
INCREMENTAL GAMA BTRAIN (ap/mel= -1,91
INCREMENTAL SHEAR STRAIN (ma/aml=  -.03
ALFA STRESS {kg/ap*2l= 1,3
RETA STRESS tkg/mn*2) = b
GAMA BTRESS {kgiam 2z 4.0
SHEAR STRESS tkg/an*2)= 0.0

U (mm)s L1389

oV {pmls -, 102

REW COGRDINATES:

ALFAL 2 3 ) {mp)= L H095E481RB22
RETAL 2 3 ) {em)= ,B98333333313
TOTAL NUKBER OF ITERATIONS= 7
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FLERSE WAIT

SOLUTIDNS AT NODE NUMEER= 2 , 4
INCRENENTAL ALFA STRAIN (ma/mel= B9
INCREHENTAL HETA STRAIR (ma/mmlz .72
THCRENENTAL GAMA STRRIN (mm/imal= -1,51
INCREMERTAL SHEAR STRAIN {ms/sml= -.(3

&LFA GTRESS tkg/on"2)= .8
ACTH STRECE lkglant2ls 12
BANA STRESE {kg/ms"2}= 3.9
SHEAR STRESS tkg/em*2) = oA
DIE SPLITTING FORCE {hofl= .7
W {mei= 235

W lami= -, 130

NEW COURUINATES:

................

ALFRL 2 4 ) (am)= 709554818822
BETRL T &) {omi= 13T
TOTAL MUMBER OF ITERATIONS= &

PLEBBE WAIT

SOLUTIONS AT NODE MUMRER = 3 ,

----------------------------------

INCREMERTAL ALFA STRAIN (ma/me)= .18
INCREMENTAL BETA STRAIN (em/mmi= -.09

JHMDRESTATAL GANS STREIN la/eml= -0
ALFA STRESS (kg/ma*2)= 0.9
KETA STRESS thg/am*2)= 0.0
GANA STRESS {kg/ma*2}= 0.0
SHEAR BTRERS fkg/on*2)= Q.0
NEW COORDINATES:

ALFALL, D) = 105
EETAUL, ) = 0,00

il = 347

W = (L000

TOTAL NUMHER OF ITERATIONS = 20,

FLEASE WAIT

SOLUTIONS AT NODE WUMBER= 3 , 2

INCREMENTAL ALFA STRAIN (mm/mm)= 1,47
INCRERENTAL BETA STRAIN ({mm/emlz  -,44
INCREKENTAL GAW& STRAIN (sa/mm)z  -,&3
INCREMENTAL SHEAR STRAIN {me/sml= .08

ALFA BTRESS (kg/ma"2}= 4.9
EETA STRESS ikg/na2l= 2,0
BAMA BTRESS {kg/na"2)= 1.8
SHEAR STRESS ikg/net2is L
DU {mmi= 145

oy {asis -, 187

NEW COORDINATES:

ALFAL T 2) (am)= 1,104154R54R8
BETRL S 2) {mg)= 333333333333
TOTAL NUMBER OF ITERATIONS= 20
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PLEASE WAIT

BOLUTIONS AT NODE MUMRER= 3 | 3
INCRENENTAL ALFA BTRAIN (om/mml= 1,14
INCREMENTAL EETA STRAIN (am/mml= 1,74
INCREMENTAL EAMA STRAIN (mn/mml= -2.90
INCREMENTAL SHEAR STRAIN (mp/am)=  -.03

ALFA STRESS thg/en*2l= 1,2
BCTA GTRECSE thglantl) = R
EARE STRESS {hg/mat2)= 4.4
SHEAR STRESS tkg/am~2l= 0,0
U T Y E R
W ips)= -, 133

HEW COORDINATES:

................

BFALZ 3 (amd= 1. 11415465488
HETAC 3 3) (mal=  BLoLbLEAHAST
TOTAL NUMKER OF ITERATIONS= 1

FLERSE WAIT

SLLUTIONS AT NODE MUMKER= 3 | 4
INCREMENTAL ALFA STRRIN f{mn/mal= .94
INCREMENTAL BETA STRAIN fsm/aml= .17
THCREMENTAL GAMA BTRAIN f{om/mml= -1,1!
INCREMENTAL SHEAR STRAIN (pa/mml=z  -,02

n K T Y
fLFA STRESS WgsanTE) s [

HETA STRESS tkg/mn2)2 -5
BAKA STRESS {ha/ma"2i= -2.3
SHEAR BTREBS tkg/an*2)=  =0.0
PIE SPLITTING FORCE {kgfl=  ~.4

W oipm}= 25

W lpa)= -, 240

NEW COORDINATES:

ALFAL 3 41 tee)= 1, 15615485488
RETAC 3 4) (mei= 1.3

TOTAL NUMBER OF ITERATIONS= |

FLEARE WALT

SOLUTIONS AT NODE WUMKER = 4 , 1

- o e

INCRENENTAL ALFA STRAIN (ms/nale .24
INCREMENTAL EETA STRAIN lae/mals  -.12
INCREMENTAL BAMA STRAIN (ma/mp)=  ~.12
ALFA STRESS tkg/mn2)= 0.0
BETA STRESS tkg/an2)= 0,0
GANA STRESS tk/aa*= 0.
SHEAR STRESS fkg/na2)= 0,0
NEW COORDINATES:

ALFALT D) = 1,43

BETALL ) = 0,00

By : 580

DV = 0,000

TOTAL NUMBER OF ITERATIONS = 2(
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PLERSE WAIT

SOLUTIONS AT NODE NUMBER= 4 , 2

INCREMENTAL ALFA STRAIN {eom/mml= 1.1B
INCREMENTAL BETA STRAIN faa/aml= -, 74
THCREMENTAL GAMA STRAIN (mm/ma)=  ~.45
INCREMENTAL SHEAR STRAIN {ma/mm)= 35

BLFQ CTREGE hglant2ls 12,4
BETA STRESS tkg/am*2l= 9.4
BANA STRESS (hg/om"2)= 9.8
SHEAR STRESS tkg/em 2= .3
U (amd= L300

W famd= - 200
NEW COORDINATES:

RLERC & 2} femd= 171650474951
BETAL 4 2 (ami= .3
TOTAL NUMBER DF ITERATIONS= 20

PLEASE WAIT

SOLUTIONG AT NODE WUNKRER= 4 , 3

---------------------------------

INCREMENTAL ALFA STRAIN lam/mml= 1,54
INCREMERTAL HETA STRAIN (ma/mml= 1,48
INCREMENTAL GAMA STRAIN {mn/mpi= -3,02
INCREMENTAL DHEAR STRAIN {an/sml=z -, 12
ALFA STRESS thg/an2t= 1,4
RETA STRESS tkg/an"2)= (9
BAMA STRESR {hg/as"2)= 5.5
SHEAR STRESS tkg/an*2)= ]
DU thmd= 375

W {spl= ~,300

NEW CODRDINATES:

ALFAC 4 3 ) (mad= 1.7R635474954
EETAt 4 3 ) tmm)= .7

TOTAL NUMEER OF ITERATIONS= 20

FLEASE WAIT

SOLUTIONS AT NODE NUMEER= 4 , 4
INCREMENTAL ALFA STRAIN (mm/mml= 1,73
INCREMENTAL BETA STRAIN {ma/aml= .30
INCREMENTAL GAMA STRAIN (pm/amsl= -2,04
INCREMENTAL SHEAR STRAIN fma/mml=  -.17

ALFA STRESS {ko/an*2l= 1.5
BETA STRESS tkg/on"2)= 3.2
FAMA BTRESS {kg/ma™2l= 5.5
SHEAR BTREES {kg/an*2l= 2
DIE SPLITTING FORCE {kofl= 5.8

U (mml= 355

W {ag)= -, 300

NEW CODRDINATES:

ALFAL 4 4} tam)= 1,76455474951
RETRU 4 45 (ma)= 1.2

TOTAL RUMBER OF ITERATIONS= !
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FLEASE WAIT

SOLUTIONS AT MODE WUMBER = & , i

INCRENERTAL ALFA STRAIN (an/em}= .30
INCREMENTAL BETA STRAIN (ma/mm)= -3
INCRENENTAL GANA BTRAIN {an/pa)=  ~.15

ALFA STRESS thg/on"2)= 0.0
RETA STRESE gtz G0
GAakA STRESS thg/ma”2)= 0.4
SHEAR ETRESS thg/anZl= 0.0
KEW COURDINATES:

ALFALL, D) = .4
RETALY,0) = 0,00

il = Lb8lb

o = 0,000

TOTAL NUNMBER OF ITERATIONS =20

FLEASE WALT

SOLUTIONS AT KODE MUMKERs 5 , 2
INCRENENTAL ALFA STRAIN (as/mmi= 2,15
INCREMENTAL BETA STRAIN {mn/aml=s  ~.12
INCRERENTAL GANA BTRAIN len/mal= -2.04

INCRENENTAL SHEAR STRAIN (majami= A%
ALFA STREGS {kg/mn"2)= 14,4
BETA STRESS thg/an*2i= 12,0
AMA STRESS (ko/eu"2l= 10,4
SHEAR STRESS tkg/on*2l= .6
DRAKING FORCE tigfl= 54,8

W tae)= 581
DV (ami=z - 133
NEY CODRDINATES:

----------------

ALFR{ 3 2) {mad= 2,4b208458923
BETAL & 21 laml=  36hbOOLAALLT
TOTAL MUNBER OF ITERATIONS= {

PLERSE WAIT

SOLUTIONG AT NODE NUMMER= 5 , 3

INCREMENTAL ALFA STRAIN (em/mm)=  1.B1
INCREMENTAL BETA STRAIN f{na/mel= 85
INCREMENTAL BaNA STRAIN (an/mnl= -Z,68
INCREMENTAL SHEAR STRAIN (am/aml=  ~-.3%

ALFA BTRESS (ho/aar2i= 4,8
BETA STRESS (kg/en’2l= 5.9
BAMA STRESS (kg/an*2l= 8.9
SHEAR STRESS {ke/ma2l= .3
DRAHING FORCE {kgh)= 18,3

DU {sm)=  ,501
W {ga)= -, 347
NEW COBRDINATES:
MFALS 3
BETALS 3
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PLEASE WAIT

SOLUTIONS AT NODE NUMRER= 5 | 4

INCREMENTAL ALFA STRAIN f{amm/mml= 1,62
INCREMENTAL HETA STRAIN {mn/asl= .92
INCREMENTAL GAMA STRAIN (am/mml= -2.34
INCREHENTAL SHEAR STRAIN ‘mn/mml= 20

ALFA BTRESE tha/ma2)= 4.4
BETA STRESS tkg/am*2)= 3.5
GAMA STRESS (kg/ma*2)= .5
SHEAR STRESS tko/ma*2l= 2
DRANING FORCE {kgfi= 16,8
DIE SFLITTING FORCE tkgtl= B3
D otamde L 600

W ipml= -, 400

XEW CODRDINATES:

RLFAC S 4 ) (am)= 2,4BI04436973
BETAL S 4 ) lam)= L.

TOTAL NUMBER OF ITERATIONS= |



~141-

soufl-¢ puer SuoTe saull PTi8 Teur8riaQ °1°'J'9m3Tg

SANIT OIdD TTBENIDILN0

NOILD3JdIa y4dd

v € [

NOILO3INIT Yl3d



~142-

UOTIBUIOEp JI93Je SSUT] PFA9 '7 4 93Ty

NOILEWM0 430 a314Y S3INITT 18D

NOTLOFNIA "4

NOILOSMIO YWidg



~143-

UOT]08ITpP-o BuoTe s89338 SuTMeIp JO UOTIBTIRA *€°J4'9an3Tg

(WW) NOILOANIO H41H

r T - T \\\\ﬁl\\\!\\\!
b2 20 N = -
51 1
BE -
¢S 1

9c -

I
=

(ZvIHW/DAHISE5FH1S DNIMUAT



~1l44-

CWIW D

UOT1091TP-v0 Suole Ssails TRIPBI JO UOTIBTIRA ‘H*Jg'9an3Td

NOILD23410 H4H

r

b e

oot
grarTIT

61 1

8E 1

25

92 -

(SvHN/7DA4)55341S I81IdBd



-145-

UOT]09aIp-0 Suofe Ss9I13s TeIUBILJWNDITO JO UOTIBTIBA *¢°J°oin3Tg

(WW) NOILD3FdId B4T1Y

r

b= 2

B2 A

B 1

B3

18-

IVINWWZDHISES53H1LS "TTHINGHTAWNOHIO



-146-

UOT109ITP- JuOle SS9I31S Iedys JO UOTIBTIRp 9 9IM3Tg

(WW) NOILDOHddIO H4'IH

i
=

(EvIHW/7DAHI55381S &a-H3HS



-147-

UoTI09ITp-¢ Suore ssoa3ls JurmeIp JO UOTIBTIBA °/° grom3ty

(WW) NOILD3dI0 JULl3d

¥ ¥ T

= 8 b
~_

6T 1

BE -

G

9¢ -

(ZvilW/DXH)553d1lS DNIMUdU



-148-

UO0T1091Tp-¢ SuoTe ssoils TETpPeI JO UOTIBTIRp 'g°4°9I3TJ

(WW) NOILDEFdIO "l3d

I T ¥ I

G- 1 ° ijzlmuﬁjf b P
/\

61 -

8E -

ASh

92 -

(2vHWW/DOHIS53d1lS "THIABEd



~149-

(WW) NOI1LD3dI0 Y1344

c -

UOT3091TpP-¢ SuoTe §s8I3§ [BIUBISJUNDATO JO UOTIBTIBA *6° 93T

I

B

@b -

B3 -

18-

WIN/DAHIS5381S TTHINHATAWNOHIO

v

L4



-150-

uoT109IIp-¢ SuoTE £59I3S AESYS JO UOTIBTIBA ("4 23T

(WW) NOILDEFdIO "i3dd

r

G- 1 SR S R

BT -

S8 2

BB L -

(VW OAISSFHLS dHFHS



-151-

UOT109ITP-y SJUOTB UTEBIlS SUIMBID JO UOTIBTIBA °1T'd° 9314

(WW) NOI1DddI0 B4d18

NIH&1lS ONIMJdd



-152-

UOT309ITp-70 Suore ureals Terped JO uoTIBTIBA 71 4 2m3T4

(WWJ) NOILD3dId BA4Y

b 2T ) 4 m
-
:
q-
Q-

NIbdls H10dd



=153~

UOT109ITP-20 SUOTE UTRIS TRIUBISJUNDITD JO UOTIBTIBA ‘€1 I 2an8TJ

(WWY NOILDENIO H4H

b 21 I°1 g /
1G° T4
\\ wm.w

//l!. et m ® . .ml

NIBA1lS "THINBAIIWNIOHIO



~154-

(WW) NOILDO3FdIO B4'H

UOTIDDITP-7© SUOTE UTRIIS JIedys JO UOTIBTIABA *4T° 1" oIn3Tj

H
=

36 " &

167G

28" B

£8 Tl-

NIHd1lS dH3HS



-155-

uot1091tp-¢ Suore urexals SurseIp JO UOTIBTIBA “GT'd SINSTH

(WW) NOILD3NIO YLl3d

c-

I

I

I

Be "

€EE”

.V..

S

NIdalS DNIMUA



~-156~

uoT3021Tp-¢ Suore uTeIlS TRIPEI JO UOTIBTIBA ‘911" oIn3Tg

(WW) NOILDHddIUd 6134

LI B T T

G 1 11 8* %

NIHY1S ”Iauy




-157-

U0T109ITp—¢ SUOTE UTBIIS [BIUBISJUNDITD JO UOTIBTIBA °/T°J°9IMBTJI

(WW) NOI1JO3ddId Ui3d

L 1 L ]

ST I°1 8° 1

(A% S

NIHa1lS "THINBAFAWNIOHIO




-158-

uoT1091Tp-g SuoTe UTEBIIS JBSYS JO UOTIBTIBA QT Jd 9m3TJ

(WW) NOILD3dIO vil3d

T T T T

51 o1 8°

96 " &

167G

28" 6

£8 "11-

NIHalS &H3IHS




~159-

b *

UOT3I09IIP- 0 SuoTe 9010F SUuTMBIP JO UOTIBTIRA *AT°d°9IN3Td

NOILD4Id B4TH

c

B8+

Bl-

Bal-

(DOX) 30404 DNIMBAA



-160-

UOT1081Tp-70 SuoTe 80103 Surilrfds oTp FJO UOTIBTIBA *(Q7 4 SIN3T4

NOILO4ddId B41Y

b2

G1

BE -

b -

1g-

(DOH)JDd04 DNILLIIdHS



