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DIFFERENTIAL EQUATIONS OF ARBITRARY ORDER
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Abstract. The paper is concerned with oscillation properties of n-th order neutral differ-
ential equations of the form

[x(t) + cx(τ (t))](n) + q(t)f
(
x(σ(t))

)
= 0, t � t0 > 0,

where c is a real number with |c| �= 1, q ∈ C([t0,∞),�), f ∈ C(�, �), τ, σ ∈ C([t0,∞),�+)
with τ (t) < t and lim

t→∞
τ (t) = lim

t→∞
σ(t) =∞.

Sufficient conditions are established for the existence of positive solutions and for oscilla-
tion of bounded solutions of the above equation. Combination of these conditions provides
necessary and sufficient conditions for oscillation of bounded solutions of the equation. Fur-
thermore, the results are generalized to equations in which c is a function of t and a certain
type of a forcing term is present.
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1. Introduction

The oscillation behavior of differential equations with deviating arguments has
received a great deal of attention in the last few decades. Recently, there has been

an increasing interest in studying the oscillation character of neutral type differential
equations. Among numerous papers dealing with the subject we refer in particular

to [1]–[3], [6], [8]–[11] and the references cited therein. We note that these equations
occur in applications such as problems in economics where demand depends on cur-

rent price but supply depends on the price at an earlier time and in the study of
systems which communicate through lossless channels.
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In this paper we consider n-th order neutral type differential equations of the form

(1) [x(t) + cx(τ(t))](n) + q(t)f(x(σ(t))) = 0, t � t0 � 0,

where c is a real number with |c| �= 1, q ∈ C([t0,∞),�), f ∈ C(�,�), τ, σ ∈
C([t0,∞),�+ ) with τ(t) < t and lim

t→∞
τ(t) = lim

t→∞
σ(t) =∞. It is also assumed that

τ(t) is monotone.

The following theorem, Theorem 8.4.2 in [8], which generalizes and extends some of
the results obtained by Zhang and Yu [11] for second order linear neutral differential

equations, motivates our study in this paper.

Theorem A. Suppose that |c| �= 1, |f(x)| � |f(y)| for |x| � |y|, xy > 0, and
xf(x) > 0 for x �= 0. Let τ(t) = t− r and σ(t) = t− s(t), where r is a positive real

number and s ∈ C([t0,∞),�+ ). If
∫ ∞

tn−1|q(t)| dt < ∞,

then equation (1) has a bounded nonoscillatory solution.

Note that the monotonicity condition imposed on the function f is quite restric-

tive and therefore the above theorem applies only to a special class of neutral type
differential equations. Also, τ(t) = t − r, c being just a constant, and nonexistence

of any forcing term in (1) cause further restrictions.
Our purpose here, first of all, is to show that the conclusion of Theorem A is valid

without the monotonicity condition on f and the requirement τ(t) = t− r. We also
remove the sign condition imposed on f . Next, we obtain necessary and sufficient

conditions for oscillation of bounded solutions of equation (1) under some very mild
conditions. Several examples are inserted into the text to illustrate the results of the
paper.

As is customary, a solution x(t) of (1) is said to be oscillatory if it has arbitrarily
large zeros; otherwise, it is called nonoscillatory.

The paper is organized as follows. Section 2 deals with the existence of positive
solutions of (1). We use the contraction mapping principle for this purpose instead of

Krasnosel’skii’s fixed point theorem which was employed in the proof of Theorem A
and also in [11]. In Section 3 we tackle the oscillation problem of bounded solutions

of (1) and establish, with help of the results in Section 2, necessary and sufficient
conditions for oscillation. Finally, in the last section we discuss equation (1) when a

certain type of a forcing term is present and c is a function of t. Some suggestions
on further research are also made in this section.
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2. Existence of Positive Solutions

In this section we are concerned with the existence of positive solutions of neutral

type differential equations of the form (1). It will be proved that equation (1) has a
bounded positive solution when |c| �= 1. The monotonicity condition imposed on f

in Theorem A is replaced by a condition that f satisfies a Lipschitz condition on an
interval [a, b], where a and b are arbitrary positive real numbers. We should note

that this condition holds for almost all functions; it will always be satisfied for any
function which is differentiable in some interval [a, b].

Theorem 1. Let |c| �= 1, and suppose that for some positive numbers a and b, the

function f satisfies the Lipschitz condition with a constant L on the interval [a, b].
If

(2)
∫ ∞

sn−1|q(s)| ds < ∞

then equation (1) has a bounded positive solution.

�����. Let K = max{|f(x)|/|x| : a � x � b} and M = max{K, L}.
We first consider the case |c| < 1.
Clearly, there exists a sufficiently large real number t1 � t0 such that due to (2),

(3)
∫ ∞

t1

sn−1|q(s)| ds <
(n− 1)!

Mb
β,

for all t � t1, τ(t) � t0, σ(t) � t0, where β = (b− a)(1− |c|)/2.
We introduce the Banach space Y = {x : x ∈ C([T,∞),�), sup

t�T
|x(t)| < ∞} with

the supremum norm ‖x‖ = sup
t�T

|x(t)|, where T = inf
t�t1

{τ(t), σ(t)}.

Set X = {x ∈ Y : a � x � b}. It follows that X is a bounded, convex and closed

subset of Y .

Define an operator S : X → Y by

(Sx)(t) = α− cx(τ(t)) +
(−1)n−1
(n− 1)!

∫ ∞

t

(s− t)n−1q(s)f
(
x(σ(s))

)
ds, t � t1

= (Sx)(t1), T � t � t1,

where α = (b + a)(1 + c)/2.

We shall show that S is a contraction mapping on X . We prove this when
0 � c < 1, the case −1 < c < 0 being similar. It is easy to see that S maps X
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into itself. In fact, for x ∈ X , t � t1, using (3) it follows that

(Sx)(t) � α− cb− β = a

and

(Sx)(t) � α− ca+ β = b.

Therefore S maps X into itself. To show that S is a contraction, let x, y ∈ X . Then

|(Sx)(t)− (Sy)(t)| � c|x(τ(t)) − y(τ(t))|

+
M

(n− 1)!

∫ ∞

t

sn−1|q(s)| |x(σ(s)) − y(σ(s))| ds

� c‖x− y‖+ β

b
‖x− y‖ =

(
c+

β

b

)
‖x− y‖.

It is easy to verify that

c+
β

b
< 1.

Thus S is a contraction on X , and therefore there exists a point x ∈ X such that

Sx = x. It is easy to check that x is a bounded positive solution of equation (1).

Suppose that |c| > 1. Fix β = (b − a)(|c| − 1)/2|c| and let t1 be large enough so

that ∫ ∞

τ−1(t1)
sn−1|q(s)| ds <

(n− 1)!
Mb

|c|β.

We define an operator S on X as follows:

(Sx)(t) =
1
c

[
α− x(τ−1(t)) +

(−1)n
(n− 1)!

×
∫ ∞

τ−1(t)

(
s− τ−1(t)

)n−1
q(s)f(x(σ(s))) ds

]
, t � t1

= (Sx)(t1), T � t � t1,

where α = (b + a)(1 + c)/2.

It can be shown similarly that SX ⊆ X and

‖Sx− Sy‖ �
(1

c
+

β

b

)
‖x− y‖ < ‖x− y‖,

and therefore S is a contraction on X . This completes the proof. �

We now give examples to which Theorem 1 is applicable, while Theorem A is not.
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Example 1. Consider the neutral delay differential equation

[x(t) + 2x(t/2)]′ +
4e−2t

1 + e−2t
x2(t/2) = 0.

Here f(x) = x2 is of fixed sign and τ(t) = t− t/2, and so Theorem A does not apply.
But, according to Theorem 1, there is a positive solution. In fact, x(t) = 1 + e−4t is

a positive solution of the equation.

Example 2. By Theorem 1, the equation

[x(t) + 4x(t/2)]′′ − 16e−2t(2 + 2e−2t + e−4t) x(t/2)
1 + x2(t/2)

= 0

has a positive solution. In fact, x(t) = 1+e−4t is such a solution. We note that since

f(x) = x/(1 + x2) is not monotone, Theorem A is not applicable here.

3. Oscillation of Bounded Solutions

In this section we investigate the oscillation behavior of bounded solutions of (1)

and establish necessary and sufficient conditions under which every solution x(t)
of (1) is either oscillatory or else satisfies lim

t→∞
x(t) = 0.

The following lemma, which may have further applications in analysis (cf. [3]),
will be needed.

Lemma 1. Let g be a continuous monotone function with lim
t→∞

g(t) =∞. Set

(4) z(t) = x(t) + c(t)x(g(t)).

If x(t) is eventually positive, lim inf
t→∞

x(t) = 0 and lim
t→∞

z(t) = L ∈ � exists, then

L = 0 provided that for some real numbers c1, c2, c3, and c4 the function c(t) is in

one of the following ranges:

(a) c1 � c(t) � 0,
(b) 0 � c(t) � c2 < 1,

(c) 1 < c3 � c(t) � c4.

�����. Clearly, by (4) we have

z(g−1(t))− z(t) = x(g−1(t)) + c(g−1(t))x(t) − x(t)− c(t)x(g(t))
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and so

(5) lim
t→∞

{x(g−1(t)) + c(g−1(t))x(t) − x(t)− c(t)x(g(t))} = 0.

Let {tn} be a sequence of real numbers such that

(6) lim
n→∞

tn =∞ and lim
n→∞

x(tn) = 0.

Assume that (a) holds. From (5) and (6) we obtain

lim
n→∞

{x(g−1(tn))− c(tn)x(g(tn))} = 0.

As x(g−1(tn)) > 0 and −c(tn)x(g(tn)) � 0, it follows that

lim
n→∞

x(g−1(tn)) = 0

and so from (4),

L = lim
n→∞

z(g−1(tn)) = lim
n→∞

{x(g−1(tn)) + c(g−1(tn))x(tn)} = 0.

In the case of (b), by replacing t by g(t) in (5) and using (6), we obtain

lim
n→∞

{[c(tn)− 1]x(g(tn))− c(g(tn))x(g(g(tn)))} = 0.

Since this implies that lim
n→∞

x(g(tn)) = 0, it follows from (4) that L = 0.

Finally, if (c) holds, then by replacing t by g−1(t) in (5) we see that

lim
n→∞

{x(g−1(g−1(tn))) + [c(g−1(g−1(tn)))− 1]x(g−1(tn))} = 0,

and so

(7) lim
n→∞

x(g−1(tn)) = 0.

Now using (4) and (7), we have

L = lim
n→∞

z(g−1(tn)) = 0.

Thus the proof is complete. �
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Theorem 2. Assume that xf(x) > 0 for x �= 0 and that q(t) is nonnegative for

t � t0 and not identically zero on any half-line of the form [t∗,∞) for some t∗ � t0.

If

(8)
∫ ∞

tn−1q(t) dt =∞,

then

(A) for c � 0 with c �= 1, every bounded solution x(t) of (1) is oscillatory when n is

even, and is either oscillatory or lim
t→∞

x(t) = 0 when n is odd,

and

(B) for c < −1 with inf
t�t0
[t−τ(t)] > 0, every bounded solution x(t) of (1) is oscillatory

when n is odd, and is either oscillatory or lim
t→∞

x(t) = 0 when n is even.

�����. Since c < −1 is a special case of a theorem in [9], we consider only the
case c � 0 with c �= 1. Suppose on the contrary that x(t) is a nonoscillatory solution
of (1). Without any loss of generality we may assume that x(t) is eventually positive.

Setting z(t) = x(t)+cx(τ(t)), we see that z(t) is also bounded and eventually positive.
Furthermore, since

z(n)(t) = −q(t)f(x(σ(t))) < 0

for t sufficiently large implies that z(t)z(n)(t) < 0, applying a lemma of Kiguradze [7]
it follows that there exist t1 and an integer l ∈ {0, 1} with n − l odd such that for

t � t1,

z(k)(t) > 0 for k = 0, 1, . . . , l,(9)

(−1)k−lz(k)(t) > 0 for k = l, l+ 1, . . . , n− 1.

Moreover, from (9),

lim
t→∞

z(k)(t) = 0 for k = 1, 2, ..., n− 1.(10)

In view of (10), integrating (1) repeatedly (n− 1) times from t to ∞, we see that

(11) (−1)n−1z′(t) + 1
(n− 2)!

∫ ∞

t

(s− t)n−2q(s)f(x(σ(s))) ds = 0.

Let L = lim
t→∞

z(t). Then, integrating (11) from T to ∞, we obtain

(12)
1

(n− 1)!

∫ ∞

T

(s− T )n−1q(s)f(x(σ(s))) ds = (−1)n[L− z(T )].
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In view of (8), one can conclude from (12) that lim inf
t→∞

f(x(t)) = 0 or

lim inf
t→∞

x(t) = 0,

and by Lemma 1, L = 0. But L = 0 is possible only when n is odd. This means

that bounded solutions of (1) must be oscillatory when n is even. To complete the
proof we note that if n is odd, then the trivial inequality 0 < x(t) � z(t) implies

lim
t→∞

x(t) = 0, a contradiction to our assumption. �

Example 3. By Theorem 2, every bounded solution of the following equation is
either oscillatory or satisfies lim

t→∞
x(t) = 0:

[
x(t) +

1
e
x(t− 3)

]′′′
+
2e2t/3

27t
x3(t− ln t) = 0.

It is easy to verify that x(t) = e−t/3 is a solution of the equation.

Example 4. According to Theorem 2, every bounded solution of

[x(t)− ex(t − �/2)]′′ + 2(1 + e)(3 − cos 4t) x(t− �)
1 + x2(t− �)

= 0

is either oscillatory or satisfies lim
t→∞

x(t) = 0. Indeed, x(t) = sin 2t is an oscillatory

solution of the equation.

The following example shows that the condition c �= ±1 cannot be dropped:

Example 5. All conditions, except c �= ±1, of Theorem 2 are satisfied for

[x(t) ± x(2t/3)]′′′ + x(t/3)[8/27− x(t/3)]2 = 0,

and x(t) = 8/27± e−t is a solution.

In view of Theorem 1 and Theorem 2, we obtain the following necessary and
sufficient condition for oscillation of solutions of (1).

Theorem 3. Let xf(x) > 0 for x �= 0, and let q(t) be nonnegative for t � t0 and

not identically zero on any half-line of the form [t∗,∞) for some t∗ � t0. Assume

also that for some positive numbers a and b, the function f satisfies the Lipschitz

condition on the interval [a, b]. Then the conclusion of Theorem 2 holds if and only

if (8) is satisfied.
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4. Some generalizations

In this section we extend the results obtained in Sections 2 and 3 to neutral type
differential equations of the form

(13) [x(t) + c(t)x(τ(t))](n) + q(t)f(x(σ(t))) = h(t).

The following conditions (F1) and/or (F2) are to be used:

(F1)
∫ ∞

tn−1|h(t)| < ∞.
(F2) There exists an oscillatory function �(t) such that

lim
t→∞

�(t) = 0 and h(t) = �(n)(t).

Assuming (F1), one can prove that the following theorem is true. The proof is

similar to that of Theorem 1 and therefore is omitted.

Theorem 4. Let (F1) be satisfied, and assume that the function f satisfies the

Lipschitz condition with a Lipschitz constant L on an interval [a, b], where a and b

are positive real numbers which depend on the range of c(t) and may be chosen as

follows:

(i) a/b < (c2 + 1)/(c1 + 1), when c1 � c(t) � c2 < −1,
(ii) a/b < (c1 + 1), when −1 < c1 � c(t) � 0,
(iii) a/b < (1 − c2), when 0 � c(t) � c2 < 1,

(iv) a/b < (c1 − 1)/(c2 − 1), when 1 < c1 � c(t) � c2,

where c1 and c2 are real numbers.

If (2) is true then equation (13) has a bounded positive solution.

Example 6. Consider

[x(t) + (4 + e−2t)x(t/2)]′′ − 16e−2t(2 + 2e−2t + e−4t) 2x(t/2)
1 + x2(t/2)

= −12e−2t.

If we take c1 = 4 and c2 = 5 then (iv) will be satisfied when 4a < 3b. We may choose
a = 1 and b = 2, and conclude from Theorem 4 that there is a positive solution

x(t) ∈ [1, 2], t � t0 � 0. We note that x(t) = 1 + e−4t is a solution of the equation.

We should note that the preceding theorem cannot be applied if c(t) is not bounded

away from±1, which agrees with the results of Section 3. Notice also that the interval
[a, b] cannot be taken arbitrarily anymore as opposed to the situation in Theorem 1.

The next theorem shows that the oscillation behavior is not disturbed by a forcing
term h(t) satisfying (F2). In the absence of a forcing term, the proof proceeds exactly
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as the proof of Theorem 2 and therefore is omitted. If forcing terms satisfying (F2) are

present, then the proof can easily be modified by employing the arguments developed
in [4], [5].

Theorem 5. In addition to (8), suppose that (F2) is true and that f and q satisfy

the sign conditions specified in Theorem 2.

(C) If c1 � c(t) � c2 < −1 and inf
t�t0
[t−τ(t)] > 0, every bounded solution x(t) of (13)

is oscillatory when n is odd, and is either oscillatory or lim
t→∞

x(t) = 0 when n is

even.

(D) If 0 � c(t) � c2 < 1 or 1 < c1 � c(t) � c2, every bounded solution x(t) of (13)
is oscillatory when n is even, and is either oscillatory or lim

t→∞
x(t) = 0 when n

is odd.

Example 7. All conditions of Theorem 5 are satisfied for

[x(t)− (6 + 2 sin t)x(t/2 + �/4)]′′′ + 6(1 + sin2 t)
x(t/2)

1 + x2(t/2)
= 0,

and therefore we can conclude that every bounded solution is oscillatory. In fact,

x(t) = sin 2t is an oscillatory solution of the equation.

Example 8. By Theorem 5, every bounded solution of

[x(t) + (e−t − 5)x(t− 2�)]′′ + 4(1 + cos2 t)
x(t− �)

1 + x2(t− �)
= 2e−t sin t

is oscillatory. It is easy to check that x(t) = cos t is such a solution of the equation.

Finally, by combining Theorems 4 and 5 we obtain the following necessary and

sufficient condition for oscillation of bounded solutions of (13).

Theorem 6. Let (F1) and (F2) be true, and let f and q satisfy the sign conditions

specified in Theorem 2. Also assume that f satisfies the Lipschitz condition on an

interval [a, b], where a and b are as stated in (i), (iii), and (iv).
Then the conclusion of Theorem 5 holds if and only if (8) is satisfied.

Remark. If q(t) is replaced by −q(t) in (1) or in (13), then it can be easily shown

that the results of this paper still remain true provided the role of n is changed; that
is, the phrases “n is even” and “n is odd” should be interchanged.

As to some directions for future research, we first recall our critical assumption on

c and therefore ask the question of finding some additional conditions (if there are
any) under which the restrictions c �= ±1 and/or c(t) being bounded away from ±1
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could be eliminated. Moreover, to obtain sufficient conditions for oscillation when

−1 � c < 0 (−1 � c(t) < 0), as this seems to require a different approach, would
be very interesting. In this case, Lemma 1 still applies but unfortunately it is not
possible to make a decision about the sign of z(t), which was very crucial in our

proofs. Next, we note that the extension of any of the results in this paper to the case
where c(t) and/or q(t) are allowed to change sign would be of significant interest. And

finally, the study of oscillatory and nonoscillatory behavior of unbounded solutions
would also deserve attention for the sake of completeness.
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