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Abstract: The discovery of microRNAs (miRNAs), about a decade ago, has completely changed our 
understanding of the complexity of gene regulatory networks. It has already been shown that they are 
abundantly found in many organisms and can regulate hundreds of genes in post-transcriptional level. To 
elucidate the individual or co-operative effects of miRNAs, it is required to place them in the overall 
network of gene regulation and link them to other pathways and systems-level processes. One key step in 
this effort is predicting targets of individual miRNAs. Although current tools are helpful in predicting 
miRNA-mRNA binding to a considerable extent, they are not able to model many-to-many relationships 
between miRNAs and their targets using solely sequence information. Therefore, other types of 
information sources have been employed for better prediction of these functional relationships. This report 
focuses on the state-of-the-art solutions and current challenges on mining miRNA-related data to discover 
the systems-level role of miRNAs, with an emphasis on the integration of different information sources. We 
aim to provide new insights for fusion of different types of biochemical and experimental information 
sources which may facilitate functional analysis of miRNAs. 

INTRODUCTION 
 
MicroRNAs are small non-coding RNAs which regulate gene expression at the post-transcriptional level. 
They are about 22 nucleotides long and they predominantly bind to the 3’ untranslated region (3’UTR) of 
messenger RNAs (mRNAs) to inhibit translation or to induce cleavage. miRNAs can have hundreds of targets 
and take on unique properties that enable them to regulate several processes such as cellular 
differentiation, proliferation, and apoptosis [8, 22, 85]. It is currently known that miRNAs are linked to 
several diseases, such as cancer, due to the defects in the regulation of mRNA translation, which lead to an 
abnormal production of a protein [121].  
 
The first miRNA lin-4 was discovered more than a decade ago [60], but the term of microRNA was first 
coined in 2001 when tens of small RNAs with regulatory potential were discovered in C. elegans [57, 59, 
98]. The discovery of miRNAs has completely shifted our understanding in gene regulation process and 
changed the direction of research in life sciences. Along this direction, several computational problems 
have arisen and bioinformatics research in the last decade has strongly affected by these developments. 
 
Early works in the area of miRNA informatics focused on recognizing miRNA genes along long strands [79]. 
The problem is defined as finding a region which represents a putative miRNA from given sequence. The 
experimental identification of miRNAs is still cumbersome since some miRNAs are difficult to isolate by 
cloning or other conventional techniques due to their low expression values, short lengths and tissue 
specificity. Thus, computational identification provides a valuable complement to cloning and other 
techniques. The problem has been approached by several methods: using filters based on sequence 
content or conserved motifs over an initial candidate set [26, 84], searching sequence or structure based 
homologs [125, 127], employing targets to evaluate complementarities for potential binding [130], and 
utilizing machine learning algorithms based on predefined feature sets [13, 33]. Recent experiments have 
demonstrated that a significant improvement has been achieved in miRNA prediction accuracy [79]. 

A more challenging problem in the field is the recognition of target genes for specific miRNAs. The 
difficulties in experimental verification of miRNA target genes have motivated the development of 
computational methods to produce potential targets. The problem has been widely studied in the last 
decade [30]. Many of available methods use sequence information coming from miRNA and potential 



 

mRNA target. While the problem is easily tractable in plants due to almost perfect complementarity 
between miRNA sequences and mRNA targets, the process cannot be easily described in animals, where 
most miRNAs are imprecisely complementary to their targets and inhibition mechanism has not been 
completely understood yet. Some recent works attempted to use gene expression data, when available, to 
assess the miRNA-target relationships [24, 25]. Fusion of gene expression and sequence information has 
been shown to improve the accuracy of predictory and exploratory analyses. 

While miRNA-target relationships can provide invaluable information about the role of individual miRNAs 
and corresponding target gene’s regulation, to get a deeper insight into their systems-level functions, it is 
desired to place miRNAs in the overall network of gene regulation. This information is essential to describe 
the many-to-many relationships between miRNAs, their targets and potential other factors. Current science 
is weak in this respect; only a couple of papers which introduce methods to analyze available data to 
identify systems-level processes can be found in the literature. 

To shed light on future research in miRNA informatics, an attempt has been made in this survey to compile 
some of the existing literature pertaining to the fusion of different heterogeneous data sources in analysis 
of miRNA related processes. We start with a brief description of the state-of-the-art in sequence-based 
prediction of individual miRNA targets. After introducing the alternative information sources which have 
high potential to help understanding miRNA functionalities, we present the recent attempts for integrating 
several information sources for miRNA target prediction, activity prediction, and regulatory network 
inference. We finally discuss the remaining challenges and opportunities, from both computational and 
biological aspects, regarding better prediction of information flows originated, catalyzed or redirected by 
miRNAs, with a special emphasis on data fusion. 

PREDICTION OF miRNA TARGETS 

Which genes are regulated by an individual miRNA is a high potential biological knowledge. It serves a 
preliminary step in understanding the interaction of a miRNA with other genes, then its functional position 
in regulatory mechanisms. On the other hand, experimental identification of this relationship is long and 
cumbersome. Therefore, many studies have been devoted to predict the binding relationship between 
given miRNA and mRNA in the last decade. Available methods usually take the miRNA sequence and 3’UTR 
sequence of mRNA and output a binary decision whether given miRNA can recognize the mRNA as its 
target.  

In 5' end of mature miRNA, there is a region called seed, of 7-8 nucleotides length, which is commonly 
believed to govern the recognition of binding site in 3’UTR of target mRNA. Several experiments have 
revealed that a strong base pairing is usually observed in validated miRNA-target pairs [108]. Early methods 
in target prediction widely used this knowledge to develop specific base-baring rules between miRNA and 
target sequences [63]. It was later found that the other regions of mature miRNA sequence could also make 
a contribution in target selection. Therefore, some recent works used whole sequence information while 
searching a sufficient level of complementarity between miRNAs and candidate targets [27, 96] or the 
existence of some binding motifs which are previously detected to be enriched in validated pairs [80]. 
However, it has been observed that the predictions based solely on imperfect sequence complementarity 
produced a large number of false positives due to random appearance of base-pairings [91]. This fact 
encouraged the researchers in the field to use additional information in developing specific binding rules. 
As a consequence, many of the recent methods have relied on a combination of several factors such as 
sequence complementarity, minimization of free energy in miRNA-target duplex [44, 93], cross-species 
conservation [23, 75], and site accessibility defined over predicted secondary structures [34, 49]. Recent 
research suggests that incorporation of various machine learning methods by using the same factors as 
classifier’s feature space has improved overall target prediction accuracy [6, 17, 53, 99, 134].  

While many successful attempts for computational miRNA target prediction have been reported in the last 
years, the lack of a large consensus in their prediction results [2, 91, 104] has suggested that the molecular 



 

mechanism behind target recognition is far beyond the empirical assumptions made over sequence and 
structure information by current tools. It is likely that other important functional parameters which 
mediate miRNA-target interactions remain to be identified. Recent experiments have already established 
that miRNAs have a certain effect on the expression level of the mRNAs recognized as targets [65, 87, 104, 
107]. Therefore, it is very reasonable to argue that a strong correlation should exist between miRNA and 
mRNA expression profiles if there is a binding relationship between them. This motivated the use of gene 
expression data, when available, in target prediction algorithms [37, 94]. It has been possible to develop 
improved algorithms which integrate the output of traditional prediction tools with gene expression data to 
identify more reliable targets [20, 38, 44, 81]. Table 1 delivers a timely and exhaustive list of available 
miRNA target prediction tools by highlighting the input data integrated in their algorithms. Since this paper 
seeks to give a perspective on one step beyond, the reader is referred to recent surveys for implementation 
details and performance comparison of these methods [2, 7, 8, 30, 100, 111, 135, 136]. 
 
PREDICTION OF miRNA ACTIVITY 

While the appearance of target sites on mRNA sequences provides useful information for identifying 
putative miRNA-target duplexes, many target sites are not functional in vivo, thus, target predictions may 
not yield reliable information to define effective miRNA functions. With an additional goal of inferring 
effective miRNA activity, Cheng and Li combined miRanda target predictions with expression profiles over a 
statistical model [19]. The effective regulatory activity change of a miRNA is defined using the expression 
changes of its target genes instead of its own expression change. A binding affinity score is computed using 
the sum of absolute values of binding energies, which were inferred from miRanda predictions, for all 
target sites. Final affinity is integrated into an activity score with corresponding expression changes in 
targets. They demonstrated the performance of their method on three independent miRNA transfection 
data sets having six miRNAs. They reported two limitations for their method. First, relating miRNA activity 
change directly to target mRNA expression change is limited because the target gene suppression might be 
mediated through translation repression. In this case, gene expression data does not have the ability to 
reflect the activity change in miRNA. Second, their method considers different miRNAs independently 
during activity changes whereas multiple miRNAs may involve interactively in the regulation of target 
genes. 

Another method with a similar goal was introduced by Madden et al. with a slight difference in the 
definition of miRNA activity [74]. They suggested that miRNA activity could be better explained by its 
association with a particular disease or condition. In a similar manner, their method extracts miRNA-gene 
interactions using other target prediction tools (TargetScan, PicTar and miRanda) and integrates the 
predictions with expression data using a multivariate coupling approach, called co-inertia analysis. 
Between-group analysis is combined with correspondence analysis for supervised classification of miRNAs 
into particular disease or conditions. This procedure does not provide solutions to the limitations of Cheng 
and Li’s approach, but it gives a different perspective to miRNA activity analysis. 

Tsang et al. introduced mirBridge [116], a method which considers cooperative effects of miRNAs on gene 
sets to dissect miRNA functions. The algorithm takes a gene set of known functions to assess the enriched 
sequence motifs which may introduce functional sites to be recognized by a given miRNA. In evaluation of 
functional significance of target sites found, mirBridge uses a combination of the results of three different 
statistical tests. The tests consider the gene set properties and biological characteristics of target sites to 
compute a score which defines the proportion of likely functional targets.  They reported that this approach 
would offer better sensitivity and specificity in comparison with a standard procedure like Fisher’s exact 
test which evaluates the number of predicted target overlaps. The miRNAs grouped into same families 
based on shared seed sequences are assumed to function together by regulating common targets. 
Resulting associations between the modules of miRNA families and input gene sets constitute a kind of 
cotargeting networks. MirBridge is example of integrating sequence data with signaling pathway and 
protein complex data to infer miRNA functions. Although, the model can produce a better view of many-to-



 

many relationships between miRNA activities and target genes, the results might be functionally irrelevant 
since the interactions are based only on seed matches. While genome-wide behaviors of target genes are 
implicitly modeled upon gene sets, miRNA expression changes are completely ignored. 

 Table 1. miRNA target prediction tools. 

Name Input Data Method Date Ref 

TargetScan Sequence, conservation, energy Scoring and ranking 2003 [64] 

RNAHybrid Sequence, energy 
Dynamic programming and 

statistical analyses 
2004 [93] 

miRanda Sequence, conservation, energy 
Dynamic programming and 

filtering 
2004 [44] 

PicTar Sequence, conservation, energy Hidden Markov model 2005 [53] 

TargetBoost Sequence Boosted genetic algorithm 2005 [99] 

Moving Target Sequence, energy Scoring and ranking 2005 [15] 

TargetScanS Sequence, conservation Scoring and ranking 2005 [63] 

MicroInspector Sequence, energy Scoring and ranking 2005 [97] 

RNA22 Sequence, energy Markov chains 2006 [80] 

miTarget Sequence, energy, structure Support vector machine 2006 [51] 

MicroTar Sequence, energy Scoring and ranking 2006 [113] 

MirTarget Sequence, conservation, energy Scoring and ranking 2006 [124] 

EIMMo Sequence, conservation Bayesian model 2007 [23] 

Pita Sequence, conservation, energy, structure Scoring and ranking 2007 [49] 

TargetRank Sequence, conservation Scoring and ranking 2007 [83] 

NBmirTar Sequence, energy Naive Bayes model 2007 [134] 

GenMiR++ 
Other target predictions (TargetScanS), miRNA 

expression, mRNA expression 
Variational Bayesian learning 2007 [38] 

mirWIP Sequence, conservation, energy, structure Scoring and ranking 2008 [29] 

miRTif Sequence Support vector machine 2008 [131] 

FindTar Sequence, structure Scoring and ranking 2008 [132] 

HuMiTar Sequence Scoring and ranking 2008 [96] 

miRGator 
Other target predictions (miRanda, PicTar, TargetScanS), 

miRNA expression, mRNA expression 
Gene set enrichment analysis, 

scoring and ranking 
2008 [81] 

MirTarget2 
Sequence, conservation, energy, miRNA expression, 

mRNA expression 
Support vector machine 2008 [123] 

SigTerms 
Other target predictions (miRanda, PicTar, TargetScanS), 

mRNA expression 
Enrichment statistics, scoring and 

ranking 
2008 [20] 

DIANA-Micro-T Sequence, conservation Scoring and ranking 2008 [75] 

TargetMiner Sequence Support vector machine 2009 [6] 

FastH Sequence, energy Scoring and ranking 2009 [90] 

SVN+SC Sequence, mRNA expression 
Sequence alignment, support 

vector machine 
2009 [45] 

HocTar 
Other target predictions (miRanda, PicTar, TargetScanS), 

miRNA expression, mRNA expression 
Scoring and ranking 2009 [25] 

Mtar Sequence, energy Artificial neural network 2010 [17] 

PACMIT Sequence, conservation, energy, structure Markov model 2010 [77] 

SVMicro Sequence, conservation, energy, structure Support vector machine 2010 [70] 

TargetSpy Sequence, energy, structure Support vector machine 2010 [110] 

ExprTarget 
Other target predictions (miRanda, PicTar, TargetScanS), 

miRNA expression, mRNA expression 
Multivariate logistic regression 2010 [24] 

ExpMicro Other target predictions (SVMicro), miRNA expression Gaussian mixture model 2010 [71] 

 



 

CORNA [128] and GeneSet2miRNA [3] are similar tools which explore the link between an individual miRNA 
and a gene set. They both take a list of genes and a miRNA as input and examine if there is a regulatory 
association between the miRNA and the gene set. Having predicted targets in miRbase database, CORNA 
employs three standard statistical procedures (HyperGeometric test, Fisher’s exact test and Chi-square 
test) for enrichment analysis and can report a list of associated gene sets for a given miRNA, or alternatively 
a list of miRNAs which potentially regulate a given gene set. GeneSet2miRNA uses predicted targets in 
miRecords database [129] and perform HyperGeometric test to analyze gene set enrichments. It may 
evaluate the cooperation of up to four miRNAs by searching more complex regulatory relationships using 
greedy heuristics. The performance of these tools strongly depends on the availability and reliability of 
gene-sets used. Therefore, their generalization ability is limited by the source where these gene-sets are 
obtained. Furthermore, available or predicted gene-sets may not necessarily explain the behavior of all 
individual genes. 

Time-course expression data was further included in identification of functional miRNA-target mRNA pairs 
with the time lags between changes in miRNA expression and those of its target mRNAs [43]. An odd-ratio 
statistics was used with computational target predictions to identify miRNA-mRNA regulatory relationships 
over a cancer data set comprising miRNA and mRNA expression profiles from the same samples in different 
time points. This work was an initial attempt to consider the effects of time-lags, however, some advanced 
probabilistic methods, instead of simple odd-ratio statistics, are needed to handle noisy and potentially 
missing data at different time points. 

Several web-servers have been released in recent years to analyze miRNA activities. MMIA is one of these 
tools for integrative analysis of miRNA functions [82]. In a 4-step analysis, it may provide information about 
miRNA-associated phenotypes and biological functions. Further analysis can provide output for miRNA 
associated diseases, relevant pathways and gene ontology annotations. This tool cannot take into account 
whole expression profiles of miRNAs and miRNAs, instead, consider the variables as up-regulation or down-
regulation. This may lead to loss of the degree of correlations between them. Ulitsky et al. introduced 
another web-based framework [118], called FAME (functional assignment of miRNAs via enrichment), 
based on weighted graphs to identify miRNA activities with two alternative applications (1) Using targeted 
gene clusters with common annotations to relate miRNA functions, and (2) Matching miRNA and mRNA 
expression profiles to predict miRNA-based regulation. A recent online tool by Sales et al. [101], called 
MAGIA, can provide a combination of several traditional statistical inference methods to analyze whole 
expression profiles together with target predictions by other tools. It can offer a visual analysis of 
combinatorial miRNA activity by a regulatory network. These web-based tools do not face the 
computational challenges of data integration; therefore do not propose new models for statistical analyses. 
However, they consider the problem in user-level and provide online solutions over known statistical 
methods with high functionality. Although they provide sample guidelines about how to use them, the 
pipeline to be used in specific problems is usually left to their users. 

REGULATORY NETWORKS COMPRISING miRNAS 

A significant progress has been made toward identifying targets for an individual miRNA using various types 
of information sources during the last several years. However, the action of miRNAs may not be merely 
effecting the expression of one or a few prominent genes, but also coordinately regulating many genes by 
influencing the structure of the network where these regulators have a central role. Therefore, available 
tools or methods for predicting target genes or individual activities of a single miRNA may not be sufficient 
to answer several fundamental questions regarding the functional and systems-level role of miRNAs, e.g. 
how multiple miRNAs can work in cooperation to regulate a group of genes or a specific disease related 
pathway, or which miRNAs are expressed under a specific condition or in a certain time period? It has been 
therefore an emerging need to develop methods which can model more complex interactions and 
relationships between miRNAs, their targets and their regulators. 



 

The first attempt in this respect was the study of Yoon and De Micheli [133]. They introduced the term of 
miRNA regulatory modules (MRMs) to define the coordinated activity of miRNAs with their targets. To 
identify MRMs, they proposed a graph-theoretical approach using miRNA and mRNA sequence data as 
input. Their method has three steps. First, miRNA-mRNA pairs are selected based on other target prediction 
tools. Second, the pairs are represented in a weighted bipartite graph, which is also called as relation graph. 
Each pair is weighted using a function determined by Principal Component Analysis on a feature space 
obtained from miRNA-target duplex formation. The feature space is built over local sequence alignment 
scores and free energy of putative duplex. In the final step, starting from an initial set of miRNAs that have 
similar binding patterns on created graph, the algorithm iteratively updates the graph and collects a set of 
regulatory modules, i.e. groups of miRNA-mRNA pairs based on refined duplex scores. Although their 
model produced hundreds of modules for 7886 predicted pairs of 2888 genes and 156 mRNAs in human 
genome, they demonstrated the performance of their method on only one of the modules using enriched 
GO annotations. Therefore, the model requires further biological validation to put into practice.  

The model proposed by Yoon and De Michelli uses solely the sequence information. This approach has two 
major limitations: (1) The model quality mainly depends on the reliability of target predictions, and (2) 
Sequence information cannot afford to explain changing behaviors of miRNAs and their targets due to time 
and other environmental factors. In a later work by Joung et al., gene expression data is further integrated 
to capture instant behavior of miRNAs and target genes [47]. They defined a fitness function which 
evaluates the weighted sum of an expression coherence score and sequence-based binding scores for 
predicted miRNA-mRNA duplexes in current module. Their evolutionary learning algorithm attempts to 
optimize the fitness function with a prior setting of weight parameters from a random initial configuration 
of modules. The algorithm produces new configurations in each generation and is finalized with a solution 
which attains best fitness value. The validity of the algorithm was evaluated on a data set of human cancer 
samples containing 217 miRNAs and 16063 mRNAs. However, the framework produced only two modules 
which may have incidentally meaningful relations due to the abundance of genes and miRNAs in each 
module. The main drawback of this approach is the fact that it relies on an evolutionary algorithm which 
largely depends on manually curated and highly sensitive parameters. Therefore, it can easily be stuck on a 
local optima and produce results which are useful only in a certain context. A second drawback the method 
is its limitation of applications due to its dependency to some data obtained in a set of common conditions, 
which are usually unavailable. Another limitation of the method is that it can evaluate the expression 
coherence among miRNAs or mRNAs but not between them. 

Tran et al. used the assumption that the genes regulated by same miRNA or miRNA groups should behave 
in a similar manner in terms of their expression[114]. By combining sequence based target predictions and 
expression profiles of miRNA and putative target genes, they built a rule-base to obtain many-to-many 
relations between miRNAs and mRNA. The algorithm starts with calculating correlation coefficient between 
target genes’ expression profiles and converting them to a binary representation by a predefined threshold. 
Using the intersection of predicted binding matrix with binary correlations, the gene sets are divided into 
two classes: “similar” or “dissimilar”. From this initial set, the rule-base is constructed by a rule induction 
system, called CN2-SD [58], which iteratively learns a rule set by several rule editing schemes in each step 
until a stopping criteria is reached. Uninformative rules are filtered out using a manually curated filtering 
policy. Each rule is considered to be a regulatory module and evaluated by GO annotations. On the same 
data set as used by Joung et al. [47], they produced 79 modules. In contrast to the work of Joung et al., they 
were able to unravel more specific relationships in small modules having only a couple of related genes and 
regulator miRNAs. 

A probabilistic graphical model, similar to author-topic models previously used for text collections [109] 
was introduced by Joung and Fei [45], which combines mRNA expression profiles with targeting information 
to cluster simultaneously the miRNAs and the conditions at which the predicted targets are expressed. The 
model represents each gene targeted by specific miRNAs by a list of counts indicating expression levels in 
specific conditions. Each miRNA is associated with a multinomial distribution over a latent variable 



 

representing regulatory modules. Another latent variable is used to characterize which miRNA is associated 
with given gene expression activities. The model parameters are inferred using an approximation method 
based on collapsed Gibbs sampling. Their approach is first in a sense that the roles of miRNAs are modeled 
over a specific subset of conditions instead of considering all available conditions. In the experiments 
performed on 637 miRNA-target pairs of 137 miRNAs and 382 genes from Arabidopsis, they revealed 10 
regulatory modules which are highly correlated to known development processes. They also hypothesized, 
based on the enriched sequence motifs in promoters of clustered miRNAs, that some transcription factors 
exist to regulate miRNA groups in several developmental processes in Arabidopsis. One limitation of this 
method is that designed probabilistic framework does not allow the inclusion of miRNA expression profiles 
in parameter estimation but only considers the expression profiles of target genes. Therefore, the results 
are strongly depend on target mRNA information. Since the list of targets is usually predicted using 
sequence information, the algorithm ignores the own behavior and ability of miRNA in question. 

Incorporation of condition specificity in regulatory networks may provide better insights in some cases, for 
example, when the local analysis of cell-specific or tissue-specific regulatory mechanisms is required or the 
correlation between some diseased samples and gene activities are investigated. It was also recently shown 
that expression profiles for miRNAs are distinct in different cancers [72]. In this respect, another condition-
specific approach was introduced by Liu et al. to identify miRNA groups with their targets for normal and 
cancer samples [68]. Instead of unsupervised construction of unknown number of modules, they attempted 
to cluster miRNAs into two groups to understand the correlation between miRNA activities and 
corresponding disease. Their algorithm uses two different information sources in two independent steps. 
First, a set of putative networks, i.e. group of miRNA-target pairs, are identified using sequence based 
target predictions. Based on the output of the first step, condition-specific modules, which they called as 
functional miRNA regulatory modules (FMRMs), are built using miRNA and gene expression profiles. The 
model represents miRNA-target relationships by a bipartite graph and employs gene expression data to get 
a subgraph by pruning the initial one using association rule mining techniques [1]. In 12 prostate samples 
from normal and cancer tissues, they recorded high correlations between expression changes and cancer 
using differentiated modules. 

It was recently found that miRNA can serve up-regulation in some cases on the contrary to early belief that 
miRNAs down-regulate target genes [119]. Liu et al. used this information in their later work to develop a 
new framework which can model more complex miRNA-target relationships such as down-regulation, up-
regulation or mix-regulation, in which a miRNA may up-regulate its target in one condition, but repress 
translation in other condition [67]. In addition to sequence and gene expression data obtained from both 
miRNAs and mRNAs, they utilized sample categories of comparative design of experiments. Their algorithm 
is built upon a Bayesian network structure, where pairwise relations between miRNAs and their targets are 
defined as dependencies of their states encoded in a graphical representation. Similar to their previous 
work, different physiological conditions are taken into account and embedded into the Bayesian structure. 
Starting from an initial structure space, the algorithm applies a learning procedure to optimize a Bayesian 
score defined over expression profiles. The same approach was previously used by several gene regulatory 
network discovery models [32, 61], and now shown to be useful for the networks comprising miRNAs. In 
their work, different networks constructed for mRNAs and miRNAs are combined to generate significant 
pairwise interactions for a specific condition using predicted binding information. 

Inverse expression relationships were taken into account in the work of Peng et al. [85] while inferring 
miRNA-mRNA regulatory modules associated with hepatitis C virus. They used a similar way in Yoon and 
Michelli’s work, where an initial bipartite graph is pruned and post-processed, to represent multiple 
relationships between miRNAs and their targets. However, instead of using only sequence based target 
predictions in initial configuration, they proposed a couple of integrative evaluation steps before 
constructing relation graph. First, a miRNA-mRNA correlation matrix is calculated using the similarities in 
the expressions across samples. Then, a binary relation matrix is deduced based on a series of thresholds 
which minimizes false detection rates. Final matrix is combined with predicted binding matrix to infer an 



 

initial relation graph. The algorithm has an advantage that miRNA and target expressions are evaluated 
using simultaneous transcriptional profiling information across the common set of samples. 

A new probabilistic graphical model was proposed by Liu et al. [69]. They adopted correspondence latent 
Dirichlet allocation [9] to derive solution for functional miRNA regulatory module discovery. They started 
with the assumption that functional modules are reflected by expression data and they represented each 
functional module as a latent variable. The graphical model could give a solution by approximation of 
parameters defined over latent variables. To avoid biases sourced by sequence based target predictions, 
they tried to identify modules with and without using putative binding information to make a comparative 
analysis and they showed that the networks inferred without using sequence information had surprisingly 
produced results which largely overlap with predicted target relationships. They reported that several 
modules could be identified related to two breast cancer subtypes on experiments over mouse samples for 
1112 miRNAs and 19223 mRNAs. 

Table 2. Algorithms and tools for miRNA functional analysis 

Input Objective Method Date Reference 

miRNA and mRNA sequence 
Identifying miRNA  

regulatory modules 
Relation graphs (weighted 

bipartite graphs) 
2005 [133] 

Sequence-based target 
predictions, mRNA expression 

Identifying miRNA regulatory 
modules 

Population-based 
probabilistic learning 

2007 
 

[47] 
 

Sequence-based target 
predictions,  mRNA expression 

Inferring miRNA activity on 
putative targets 

Statistical analysis 2007 [19] 

Sequence-based target 
predictions, miRNA and mRNA 

expression 

Identifying miRNA  
regulatory modules 

CN2-SD Rule induction 2008 [115] 

Sequence-based target 
predictions, gene sets 

Inferring miRNA activity on 
gene sets 

Chi-square, HyperGeometric 
and Fisher’s exact tests 

2008 [128] 

Sequence-based target 
predictions, gene sets 

Inferring miRNA activity on 
gene sets 

HyperGeometric test 2009 [3] 

Sequence-based target 
predictions, miRNA and mRNA 

expression 

Inferring miRNA activity on 
putative targets 

Statistical tests and gene set 
analysis 

2009 [82] 

Sequence-based target 
predictions, miRNA and mRNA 

expression 

Identifying condition-
dependent miRNA regulatory 

modules 

Association rule mining on 
bipartite graphs 

2009 [68] 

Sequence-based target 
predictions, miRNA and mRNA 
expression, sample categories 

Identifying condition-
dependent miRNA regulatory 

modules 
Bayesian networks 2009  [67] 

Sequence-based target 
predictions, mRNA expression 

Identifying condition-
dependent miRNA regulatory 

modules 
Author-Topic Model 2009 [46] 

Time-course miRNA and mRNA 
expression 

Prediction of miRNA activity 
on putative targets 

Odd-ratio statistics 2009 [43] 

Sequence-based target 
predictions, miRNA and mRNA 

expression 

Identifying miRNA regulatory 
modules 

Bipartite graphs 2010 [85] 

Sequence-based target 
predictions, miRNA and mRNA 

expression 

Prediction of miRNA activity 
on putative targets 

Weighted graphs and 
statistical tests 

2010 [118] 



 

Sequence-based target 
predictions, miRNA expression 

Inferring miRNA activity on a 
disease or condition 

Co-inertia and between-
group analysis 

2010 [74] 

miRNA and mRNA sequence, 
gene sets 

Inferring miRNA activity on 
gene sets 

A newly defined statistical 
test 

2010 [116] 

miRNA and mRNA expression 
Identifying condition-

dependent miRNA regulatory 
modules 

Latent Dirichlet Allocation 2010 [69] 

miRNA and mRNA expression,  
a clinical parameter 

Identifying condition-
dependent miRNA regulatory 

modules 
Module networks 2010 [11,12] 

Sequence-based target 
predictions, miRNA and mRNA 

expression 

Prediction of combinatorial 
miRNA activity on putative 

targets 

Combination of correlation 
indexes, a variational 

Bayesian model and meta-
analysis  

2010 [101]  

     

To explore the regulatory networks associated with prostate cancer, Bonnet et al. [11, 12] used a modified 
version of module networks, first introduced by Segal et al. [102]. In module network approach, genes are 
clustered into modules in terms of their similarity in expression profiles and the relations between modules 
are represented by a Bayesian network. Thus, a representation of many-to-many relationships can be 
achieved. They did not actually propose a new model for miRNA-included networks, instead, they 
employed a known algorithm to understand the difference between normal and cancer samples by first 
selecting a list of potential regulators, including transcription factors and miRNAs and then inferring 
condition specific module structure. They showed that assignment of a cancer-related clinical parameter, 
called Gleason grade system, as if another regulator, along with transcription factors, miRNAs and possible 
other signal transducers could improve the explanatory power of predicted network and provide a better 
comprehension of results. One possible critic to this application is the fact that binding information 
between regulators and their targets are completely ignored in the framework.  

A summary of these algorithms and tools developed for miRNA activity prediction or regulatory network 
identification is given in Table 2 for a brief view of the state-of-the-art in the field. 

FUTURE PERSPECTIVES  

New findings in target recognition 

Target prediction is still a primary step in miRNA functional analysis. Many of the available methods build 
their framework over a list of predicted targets for a given miRNA set. Therefore, the reliability of final 
result is strongly affected by initial predictions. Without heeding to enormous number of current 
predictors, it is expected that the need to develop new algorithms for miRNA target prediction will continue 
to increase due to new findings to explain structural miRNA-mRNA interactions. The location of miRNA-
mRNA binding site is still elusive. Although there is a wide assumption that the binding occurs at 3’UTR 
region of putative target, recent reports have shown evidence that binding sites might be functional in 
other places; 5’UTR [73] or even coding regions [66, 112]. A recent investigation of 3’UTR motifs that 
couple to miRNA-based regulation suggests that miRNA regulation may be modulated by other sequence 
elements such as binding sites for RNA binding proteins [41]. Similarly, Wang et al. claim that a set of 
arginines concentrated in binding site of Argonaute (Ago) protein is more effective than seed pairing in 
stabilizing the miRNA-target interaction [126]. To the best of authors’ knowledge, no systematic attempt 
has been done so far to utilize RNA-binding protein motifs in a miRNA target prediction algorithm. 

More complex interactions 

It is well established that the regulatory interactions are far beyond the pairwise interactions of individual 
genes with their regulators; miRNAs and transcription factors (TFs). A complete regulatory network 
comprises more complex interactions, such as between miRNAs and TFs [122], miRNAs and other non-



 

coding RNAs [16], and miRNA and their host genes [95]. Now that several types of these interactions are 
possible to retrieve from publicly available databases [21] or to predict using computational methods, it is 
further possible to define enhanced functional networks or modules such that miRNAs, their host genes 
and targets, TFs and other non-coding RNAs are also included.  

The combinatory regulatory roles of miRNA and TFs have been discussed in several contexts. For example, 
Guo et al. explored the miRNA and TF regulation in schizophrenia genes and identified several feed-forward 
loops [28]. An analysis of TargetScan and PicTar datasets enlightened several recurrent network motifs 
including co-regulation of miRNAs and TFs, feed-forward-loops from miRNA to TF or from TF to miRNA, and 
composite loops having both directions [105]. Similar patterns were reported to appear in p53 master 
regulatory network [106]. Re at al. analyzed promoter motifs, in both target genes and miRNAs, to identify 
miRNA-TF feed-forward regulatory circuits [92]. In a computational analysis of gene expression data, Tsang 
et al. classified the network motifs into two types; type-I, where the transcription rate of a miRNA and its 
target gene are positively coregulated by a TF, and type-II, the rates are negatively coregulated [117]. They 
reported that type-II motifs are abundant in mammalians while type-I motifs are also prevalent. The 
attention should be drawn into three facts in integrated network designs: (1) Loops may appear in 
interaction graphs; which is contradictory to traditional tree structures commonly used in modeling 
regulatory networks, (2) Up-regulation and down-regulation may concurrently be observed in different 
nodes, (3) TF and miRNA regulations differ in some aspects, therefore, when combined, one network may 
alter to conform to other network [40, 89]. 

Context sensitivity 

Current methods encounter problems in identifying miRNA functions over specific conditions because they 
largely investigate the correlations for all available conditions instead of a specific context. A few methods 
can identify condition-dependent miRNA-target modules, where specified conditions are diseased and 
normal tissues. Complex interactions of miRNAs with other biomolecules motivate the reengineering of 
these methods as to include several other phenomenon. Concurrent grouping of miRNAs and their targets 
into independent modules, as done in available methods, cannot offer understanding of detailed 
interactions between them. Clusters must be associated with multi-level links between them. Importance 
of time-course analysis has been emphasized in several reports [43, 55]. Recent experiments have indicated 
that a miRNA may act as a switch such that it can be active/inactive in regulation of its targets in different 
time and conditions [120]. Therefore, the definition of “condition” requires an extension from a few static 
cases to dynamic time-dependent contexts. 

Systems-level measurements 

With increasing research in the field, the discoveries of new systems-level properties of miRNAs pose 
several challenges and create new opportunities for computational studies in modeling miRNAs functions. 
Larsson et al. recently analyzed the relationship between genome-wide transcript level changes and miRNA 
over-expression and showed that the turnover rates of predicted target mRNAs limit the activity of 
regulating miRNAs [56]. Their experimental findings suggest that the integration of mRNA turnover rates 
can improve the accuracy of target predictions tools. Another implication of the experiment is that, due to 
pre-existing decay rate, a target mRNA in one cell may not exhibit in a same manner in another cell 
although it is still targeted by same miRNA. The reverse regulatory effect of mRNAs, which was 
hypothesized by Seitz [103], was also confirmed by Poliseno et al. [88]. They showed that a pseudogene 
could bind the same miRNAs as the related protein-coding gene and perform regulatory activities with a 
relatively lower expression. The transfection experiments of Khan et al. showed that the competition 
between transfected and endogenous miRNAs for RNA-induced silencing complex caused the up-regulation 
of some endogenous miRNAs and depression of corresponding target genes [50]. In another transfection 
experiment, Arvey et al. found that a larger number of predicted target transcripts reduced the activity of 
miRNAs or siRNAs, resulting in down-regulation of each individual target to a lesser extent [4]. It means 
that a miRNA may more effectively down-regulate its targets when their count is lower even the binding 



 

site is weak. Or conversely, a strong binding site may not be active if it has a large number of putative 
targets. Another genome-scale analysis revealed significant differences between miRNA and non-miRNA 
target genes in terms of their functional characteristics such as duration of half-life and gene structure [36]. 
These findings suggest that, in addition to local sequence or structural features, other global systems-level 
features, such as target mRNA abundance, pre-existing decay rates, and contribution of other miRNAs or 
pseudogenes, need to be considered in future research in developing tools for miRNA function analysis. The 
results also imply an obvious need that the miRNA target prediction should go through a transformation 
from a binary classification task to an integrative application where the level of interactions between 
miRNAs and their targets can be evaluated quantitatively in different contexts. 

Increasing evidence suggests that, in addition to effecting transcript levels, miRNAs can also repress 
translation of some genes, resulting with a high impact on the identities of responsive proteins [5, 104]. 
Therefore, the protein output can be considered as another indicator of miRNA activities. In a recent 
experiment, for example, Kowarsh et al. showed that miRNA target proteins and disease-related proteins 
exhibit opposing patterns in their cellular localizations, signaling pathways and activatory/inhibitory effects 
[52]. In the case of having relevant data, this information can definitely be useful in construction of 
condition-specific interaction graphs including miRNAs. 

Krützfeldt et al. emphasized the role of environmental and genetic factors which may affect miRNA 
expression in addition to associated signaling pathways in elucidation of miRNA functions [54]. They turned 
the attention of researchers into combinatorial effects of miRNAs, and stressed the importance of the 
utilization of multiple experiments. Another valuable strategy they suggested is to use chemically modified 
RNA analogs that are complementary to miRNAs, which can selectively diminish the abundance of some 
miRNAs, and in this way, inhibit their functions. 

Linking to diseases 

The strong association between miRNAs and cancer is obvious [10]. However, what behavioral 
characteristics of miRNAs lie behind this association is still elusive. It is already known that prominent 
miRNAs may appear as oncogenic or tumor-suppressive actors in regulation of several genes in cancer-
regulatory networks [121]. Though a few attempts for modeling disease-related regulatory networks 
comprising miRNAs, the explanatory power of current methods are limited. They all start with a couple of 
assumptions to simplify the computational process by limiting the number of distinct biological processes 
which may involve in regulatory networks. One of the major reasons of chronic diseases, such as cancer, is 
dysregulation of the processes which control the specificity, timing and concentration of gene products. 
These controls largely depend on the cell responses to environmental changes. Recent studies have 
established that the decision of how cells respond to specific stress conditions are modulated by miRNA 
functions, which are particularly determined by the amount  of miRNAs, abundance of target genes, and 
activity of miRNA-protein complexes [62]. Together with these functional determinants, analyzing miRNA 
interactions linked onto known interaction networks, such as Gene Ontology [114], Ingenuity Pathways [76] 
and KEGG [48], has the potential to improve both the understanding of the pathways as well as the 
function of the microRNAs in regulation of cancer and other diseases. 

Altered expression of miRNA has been shown to promote oncogenesis [35]. Therefore, computational 
identification of differentially expressed miRNAs from high-throughput profiles promise a great benefit in 
cancer research. However, small n (number of samples), large p (number of variables or entities) paradigm 
of high-throughput experiments can limit the generalization ability of current computational methods. 
These challenges have triggered the use of multi-source, multi-view or multi-task frameworks over 
probabilistic inference models [39]. This recent trend promises more reliable integration of miRNA and 
mRNA profiles obtained from several data sources such as microarrays, methylation arrays, ChiP-and-chip 
experiments, genome-wide association analysis, proteomics and output of other functional genomics 
analyses [18]. Together with underlying computational models which try to explain biological or 
biochemical processes, there will be a pressing need to high-level software frameworks which will provide 



 

all-in-pipeline functionality to analyze combinatorial miRNA functions [42]. We anticipate that the number 
relevant web-based or standalone software tools will rapidly increase in coming years. 

CONCLUSION 

Several kinds of information are important to analyze miRNA functions; however an information modality 
alone can be useful to only a certain degree. Therefore, a vital issue concerns the need for accurate and 
reliable algorithms capable of integrating or synthesizing several information sources to explain the 
embedded knowledge in static or experimental data, which in turn facilitates generating testable 
hypothesis about the role of individual microRNAs. The increase in the available expression data has 
already provided valuable opportunities for data integration. This has enabled the extraction of additional 
rules for miRNA interactions with target genes. Since miRNAs are involved in several processes in 
development, differentiation, growth and metabolism, the integration of other types of data, such as 
intracellular networks, TFs, systems-level measurements and varying environmental conditions also 
promises to obtain more reliable results in computational analyses.  
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