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We give an existence and uniqueness theorem for solutions of inhomogeneous impulsive boundary value problem (BVP) for planar
Hamiltonian systems. Green’s function that is needed for representing the solutions is obtained and its properties are listed. The
uniqueness of solutions is connected to a Lyapunov type inequality for the corresponding homogeneous BVP.

1. Introduction

The planar Hamiltonian system of 2-linear first-order equa-
tions has the form

𝑦

= 𝐽𝐻 (𝑡) 𝑦, 𝑡 ∈ R, (1)

where

𝐻(𝑡) = [
𝑐 (𝑡) 𝑎 (𝑡)

𝑎 (𝑡) 𝑏 (𝑡)
] (2)

is a symmetric matrix with piecewise continuous real-valued
entries, and

𝐽 = [
0 1

−1 0
] (3)

is the so called symplectic identity. Setting

𝑦
1
(𝑡) = 𝑥 (𝑡) , 𝑦

2
(𝑡) = 𝑢 (𝑡) , (4)

the Hamiltonian system can be rewritten in a more conve-
nient way as

𝑥

= 𝑎 (𝑡) 𝑥 + 𝑏 (𝑡) 𝑢,

𝑢

= −𝑐 (𝑡) 𝑥 − 𝑎 (𝑡) 𝑢.

(5)

Our aim in this work is to prove an existence and
uniqueness theorem for solutions of the related BVP for

inhomogeneous Hamiltonian system under impulse effect of
the form

𝑥

= 𝑎 (𝑡) 𝑥 + 𝑏 (𝑡) 𝑢 + 𝑓

1
(𝑡) ,

𝑢

= −𝑐 (𝑡) 𝑥 − 𝑎 (𝑡) 𝑢 + 𝑓

2
(𝑡) ,

𝑡 ∈ (𝑡
1
, 𝑡
2
) \ {𝜏
𝑖
} ,

(6a)

𝑥 (𝜏
+

𝑖
) = 𝛼
𝑖
𝑥 (𝜏
−

𝑖
) + 𝑎
𝑖1
,

𝑢 (𝜏
+

𝑖
) = −𝛽

𝑖
𝑥 (𝜏
−

𝑖
) + 𝛼
𝑖
𝑢 (𝜏
−

𝑖
) + 𝑎
𝑖2
,

𝑖 = 1, 2, . . . , 𝑝,

(6b)

𝑥 (𝑡
1
) = 𝐴, 𝑥 (𝑡

2
) = 𝐵, (6c)

where
(i) {𝜏

𝑖
}, {𝛼
𝑖
}, {𝛽
𝑖
}, {𝑎
𝑖1
}, and {𝑎

𝑖2
} are real sequences

for 𝑖 = 1, 2, . . . , 𝑝 with

𝑡
1
< 𝜏
1
< 𝜏
2
< ⋅ ⋅ ⋅ < 𝜏

𝑝
< 𝑡
2
; (7)

(ii) 𝑎, 𝑏, 𝑐, 𝑓
1
, 𝑓
2

∈ PLC(𝐽
0
), where 𝐽

0
= [𝑡
1
, 𝑡
2
] and

PLC(𝐽
0
) = {𝜔 : 𝐽

0
→ R is continuous on each

interval (𝜏
𝑖
, 𝜏
𝑖+1

), the limits 𝑤(𝜏±
𝑖
) exist and 𝑤(𝜏

−

𝑖
) =

𝑤(𝜏
𝑖
) for 𝑖 = 1, 2, . . . , 𝑝};

(iii) 𝑏(𝑡) > 0 for 𝑡 ∈ (𝑡
1
, 𝑡
2
) and 𝛼

𝑖
̸= 0 for 𝑖 = 1, 2, . . . ,

𝑝; 𝐴 and 𝐵 are given real numbers.
We also set 𝜏

0
= 𝑡
1
and 𝜏

𝑝+1
= 𝑡
2
for convenience.
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By a solution of the impulsive BVP (6a)–(6c), we mean
nontrivial functions 𝑥, 𝑢 ∈ PLC(𝐽

0
) such that (𝑥, 𝑢) satisfies

system (6a)–(6c) for all 𝑡 ∈ 𝐽
0
.

The corresponding homogeneous BVP takes the form

𝑥

= 𝑎 (𝑡) 𝑥 + 𝑏 (𝑡) 𝑢, 𝑢


= −𝑐 (𝑡) 𝑥 − 𝑎 (𝑡) 𝑢,

𝑡 ∈ (𝑡
1
, 𝑡
2
) \ {𝜏
𝑖
} ,

(8a)

𝑥 (𝜏
+

𝑖
) = 𝛼
𝑖
𝑥 (𝜏
−

𝑖
) , 𝑢 (𝜏

+

𝑖
) = −𝛽

𝑖
𝑥 (𝜏
−

𝑖
) + 𝛼
𝑖
𝑢 (𝜏
−

𝑖
) ,

𝑖 = 1, 2, . . . , 𝑝,

(8b)

𝑥 (𝑡
1
) = 0, 𝑥 (𝑡

2
) = 0. (8c)

Note that if we take

𝑎 (𝑡) ≡ 0, 𝑏 (𝑡) =
1

𝑝 (𝑡)
, 𝑐 (𝑡) = 𝑞 (𝑡) ,

𝑓
1
(𝑡) ≡ 0, 𝑓

2
(𝑡) = 𝑓 (𝑡) ,

(9)

then we obtain as a special case of (6a), (6b), and (6c) the
impulsive BVP for second-order differential equations of the
form

(𝑝 (𝑡) 𝑥

)


+ 𝑞 (𝑡) 𝑥 = 𝑓 (𝑡) , 𝑡 ∈ (𝑡
1
, 𝑡
2
) \ {𝜏
𝑖
} , (10a)

𝑥 (𝜏
+

𝑖
) = 𝛼
𝑖
𝑥 (𝜏
−

𝑖
) + 𝑎
𝑖1
, (10b)

(𝑝𝑥

) (𝜏
+

𝑖
) = − 𝛽

𝑖
𝑥 (𝜏
−

𝑖
) + 𝛼
𝑖
(𝑝𝑥

) (𝜏
−

𝑖
)

+ 𝑎
𝑖2
, 𝑖 = 1, 2, . . . , 𝑝,

(10c)

𝑥 (𝑡
1
) = 𝐴, 𝑥 (𝑡

2
) = 𝐵. (10d)

To the best of our knowledge although many results have
been obtained for linear impulsive boundary value problems
by using different techniques, there is little known for the
linear 2 × 2 Hamiltonian systems under impulse effect.

The existence and uniqueness of linear impulsive bound-
ary value problem for the first-order equations are considered
in [1–4]. For the second-order case we refer to [5, 6] in which
the integral representation of the solution of second order
linear impulsive boundary value problems is given by using
Green’s function and the existence and uniqueness of the
solutions are obtained. Variational technique approach for
the existence of the solutions of linear and nonlinear impul-
sive boundary value problems can be found in [7–10]. In [11],
the method of upper and lower solutions is employed for
the existence of solutions of nonlinear impulsive boundary
value problems. For a detailed discussion on boundary value
problems for higher-order linear impulsive equationswe refer
to [12]. Basic theory of impulsive differential equations is
contained in the seminal book [13].

Our method of proof is based on Green’s function formu-
lation and Lyapunov type inequalities for linear Hamiltonian
system under impulse effect. There are many studies on
Lyapunov type inequalities and their applications for linear
ordinary differential equations [14] and for systems [15–17] as

well as for linear impulsive differential equations and systems
[18, 19]. However, the use of a Lyapunov type inequality in
connection with BVPs seems to be limited.

2. Preliminaries

2.1. Lyapunov Type Inequality for Homogeneous Problem. In
this section we provide a Lyapunov type inequality to be used
for the uniqueness of the inhomogeneous BVP.The obtained
inequality is sharper than the one given by the present authors
in [20] in the sense that 2|𝑎(𝑡)| is replaced by |𝑎(𝑡)|.

Theorem 1. If the homogeneous BVP (8a), (8b), and (8c) has
a real solution (𝑥(𝑡), 𝑢(𝑡)) such that 𝑥(𝑡) ̸≡ 0 on (𝑡

1
, 𝑡
2
), then

one has the Lyapunov type inequality:

exp(∫
𝑡
2

𝑡
1

|𝑎 (𝑡)| d𝑡) [∫

𝑡
2

𝑡
1

𝑏 (𝑡) d𝑡]

× [∫

𝑡
2

𝑡
1

𝑐
+

(𝑡) d𝑡 + ∑

𝑡
1
≤𝜏
𝑖
<𝑡
2

(
𝛽
𝑖

𝛼
𝑖

)

+

] ≥ 4,

(11)

where 𝑐+(𝑡) = max{𝑐(𝑡), 0} and (𝛽
𝑖
/𝛼
𝑖
)
+
= max{𝛽

𝑖
/𝛼
𝑖
, 0}.

Proof. Define

𝑧 (𝑡) =
1

𝛼
1
𝛼
2
⋅ ⋅ ⋅ 𝛼
𝑖

𝑥 (𝑡) , V (𝑡) =
1

𝛼
1
𝛼
2
⋅ ⋅ ⋅ 𝛼
𝑖

𝑢 (𝑡) (12)

for 𝑡 ∈ (𝜏
𝑖
, 𝜏
𝑖+1

) and 𝑖 = 0, 1, . . . , 𝑝, where we put again 𝜏
0
=

𝑡
1
, 𝜏
𝑝+1

= 𝑡
2
and make a convention that 𝛼

1
𝛼
2
⋅ ⋅ ⋅ 𝛼
𝑖

=

1 if 𝑖 = 0.
It is not difficult to see from (8a), (8b), (8c), and (12) that

𝑧

= 𝑎 (𝑡) 𝑧 + 𝑏 (𝑡) V, V = −𝑐 (𝑡) 𝑧 − 𝑎 (𝑡) V,

𝑡 ∈ (𝑡
1
, 𝑡
2
) \ {𝜏
𝑖
} ,

(13)

𝑧 (𝜏
+

𝑖
) = 𝑧 (𝜏

−

𝑖
) ,

V (𝜏+
𝑖
) = −

𝛽
𝑖

𝛼
𝑖

𝑧 (𝜏
−

𝑖
) + V (𝜏−

𝑖
) ,

𝑖 = 1, 2, . . . , 𝑝,

(14)

𝑧 (𝑡
1
) = 0, 𝑧 (𝑡

2
) = 0. (15)

Since we assumed that 𝑧(𝜏
𝑖
) = 𝑧(𝜏

−

𝑖
), 𝑧(𝑡) is continuous

on [𝑡
1
, 𝑡
2
]. Moreover, 𝑧 ∈ PLC(𝐽

0
), 𝑧(𝑡
1
) = 𝑧(𝑡

2
) = 0,

and 𝑧(𝑡) ̸≡ 0 for all 𝑡 ∈ (𝑡
1
, 𝑡
2
). We may assume without loss

of generality that 𝑧(𝑡) ≥ 0 on (𝑡
1
, 𝑡
2
).

Using (13) and (14) we obtain

(V𝑧) = −𝑐 (𝑡) 𝑧
2
+ 𝑏 (𝑡) V2, 𝑡 ̸= 𝜏

𝑖
, (16)

(V𝑧) (𝜏+
𝑖
) − (V𝑧) (𝜏−

𝑖
) = −

𝛽
𝑖

𝛼
𝑖

𝑧
2
(𝜏
𝑖
) . (17)

Integrating (16) from 𝑡
1
to 𝑡
2
and using (15) and (17) lead to

∑

𝑡
1
≤𝜏
𝑖
<𝑡
2

𝛽
𝑖

𝛼
𝑖

𝑧
2
(𝜏
𝑖
) = ∫

𝑡
2

𝑡
1

[𝑏 (𝑡) V2 (𝑡) − 𝑐 (𝑡) 𝑧
2

(𝑡)] d𝑡, (18)
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from which we have

∫

𝑡
2

𝑡
1

𝑏 (𝑡) V2 (𝑡) d𝑡 ≤ ∫

𝑡
2

𝑡
1

𝑐
+

(𝑡) 𝑧
2

(𝑡) d𝑡

+ ∑

𝑡
1
≤𝜏
𝑖
<𝑡
2

(
𝛽
𝑖

𝛼
𝑖

)

+

𝑧
2
(𝜏
𝑖
) .

(19)

On the other hand, from the first equation in (13), we have

[𝑧(𝑡) exp(−∫

𝑡

𝑡
1

𝑎(𝑢)d𝑢)]


= 𝑏 (𝑡) V (𝑡) exp(−∫

𝑡

𝑡
1

𝑎 (𝑢) d𝑢) ,

(20)

[𝑧(𝑡) exp(∫
𝑡
2

𝑡

𝑎(𝑢)d𝑢)]


= 𝑏 (𝑡) V (𝑡) exp(∫
𝑡
2

𝑡

𝑎 (𝑢) d𝑢) .

(21)

Let

max {|𝑧 (𝑡)| : 𝑡 ∈ (𝑡
1
, 𝑡
2
)} = 𝑧 (𝑡

0
) > 0. (22)

If we integrate (20) from 𝑡
1
to 𝑡
0
, we see that

𝑧 (𝑡
0
) = ∫

𝑡
0

𝑡
1

𝑏 (𝑡) V (𝑡) exp(∫
𝑡
0

𝑡

𝑎 (𝑢) d𝑢) d𝑡 (23)

and so

𝑧 (𝑡
0
) ≤ ∫

𝑡
0

𝑡
1

𝑏 (𝑡) |V (𝑡)| exp(∫
𝑡
0

𝑡

|𝑎 (𝑢)| d𝑢) d𝑡. (24)

Using the obvious estimate

∫

𝑡
0

𝑡

|𝑎 (𝑢)| d𝑢 ≤ ∫

𝑡
0

𝑡
1

|𝑎 (𝑢)| d𝑢 (25)

and then applying Cauchy-Schwarz inequality, we have

𝑧
2
(𝑡
0
) ≤ exp(2∫

𝑡
0

𝑡
1

|𝑎 (𝑢)| d𝑢)[∫

𝑡
0

𝑡
1

𝑏 (𝑡) d𝑡]

× [∫

𝑡
0

𝑡
1

𝑏 (𝑡) V2 (𝑡) d𝑡] .
(26)

Similarly, by integrating (21) from 𝑡
0
to 𝑡
2
and following the

above procedure, we get

𝑧
2
(𝑡
0
) ≤ exp(2∫

𝑡
2

𝑡
0

|𝑎 (𝑢)| d𝑢)[∫

𝑡
2

𝑡
0

𝑏 (𝑡) d𝑡]

× [∫

𝑡
2

𝑡
0

𝑏 (𝑡) V2 (𝑡) d𝑡] .
(27)

Now we recall the elementary inequality:

𝑥
2

𝛼
+
𝑦
2

𝛽
≥ 4𝑥𝑦, 𝛼, 𝛽 > 0, 𝛼 + 𝛽 = 1 (28)

for 𝑥 ≥ 0 and 𝑦 ≥ 0. In view of (26) and (27) setting

𝛼 =

∫
𝑡
0

𝑡
1

𝑏 (𝑡) d𝑡

∫
𝑡
2

𝑡
1

𝑏 (𝑡) d𝑡
, 𝛽 =

∫
𝑡
2

𝑡
0

𝑏 (𝑡) d𝑡

∫
𝑡
2

𝑡
1

𝑏 (𝑡) d𝑡
,

𝑥 = 𝑧 (𝑡
0
) exp(−∫

𝑡
0

𝑡
1

|𝑎 (𝑢)| d𝑢) ,

𝑦 = 𝑧 (𝑡
0
) exp(−∫

𝑡
2

𝑡
0

|𝑎 (𝑢)| d𝑢)

(29)

we have
4𝑧
2
(𝑡
0
)

exp (∫𝑡2
𝑡
1

|𝑎 (𝑡)| d𝑡)
≤ [∫

𝑡
2

𝑡
1

𝑏 (𝑡) d𝑡] [∫
𝑡
2

𝑡
1

𝑏 (𝑡) V2 (𝑡) d𝑡] .

(30)

Combining (19) and (30) results in

4𝑧
2
(𝑡
0
)

exp (∫𝑡2
𝑡
1

|𝑎 (𝑡)| d𝑡)

≤ [∫

t
2

𝑡
1

𝑏 (𝑡) d𝑡]

× [∫

𝑡
2

𝑡
1

𝑐 (𝑡) 𝑧
2

(𝑡) d𝑡 + ∑

𝑡
1
≤𝜏
𝑖
<𝑡
2

(
𝛽
𝑖

𝛼
𝑖

)𝑧
2
(𝜏
𝑖
)] .

(31)

Finally, since 𝑧(𝑡
0
) ≥ 𝑧(𝑡) for 𝑡 ∈ [𝑡

1
, 𝑡
2
], from (31) we obtain

the desired inequality:

exp(∫
𝑡
2

𝑡
1

|𝑎 (𝑡)| d𝑡) [∫

𝑡
2

𝑡
1

𝑏 (𝑡) d𝑡]

× [∫

𝑡
2

𝑡
1

𝑐
+

(𝑡) d𝑡 + ∑

𝑡
1
≤𝜏
𝑖
<𝑡
2

(
𝛽
𝑖

𝛼
𝑖

)

+

] ≥ 4.

(32)

2.2. Green’s Function. Here we derive Green’s function to be
used for the representation of the solutions of the inhomoge-
neous BVP.

Let

Φ (𝑡) = [
𝑥
1
(𝑡) 𝑥
2
(𝑡)

𝑢
1
(𝑡) 𝑢
2
(𝑡)

] , Φ (0) = 𝐼 (33)

be a fundamental matrix for (8a), (8b) and set

𝑀 = [
1 0

0 0
] , 𝑁 = [

0 0

1 0
] . (34)

Define the rectangles

𝑅
11

= [𝑡
1
, 𝜏
1
] × [𝑡
1
, 𝜏
1
] ,

𝑅
𝑖1
= (𝜏
𝑖−1

, 𝜏
𝑖
] × [𝑡
1
, 𝜏
1
] , 𝑖 = 2, 3, . . . , 𝑝 + 1,

𝑅
1𝑗
= [𝑡
1
, 𝜏
1
] × (𝜏

𝑗−1
, 𝜏
𝑗
] , 𝑗 = 2, 3, . . . , 𝑝 + 1,

𝑅
𝑖𝑗
= (𝜏
𝑖−1

, 𝜏
𝑖
] × (𝜏

𝑗−1
, 𝜏
𝑗
] , 𝑖, 𝑗 = 2, 3, . . . , 𝑝 + 1,

(35)
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and the triangles

𝑇
𝑢
= {(𝑡, 𝑠) ∈ [𝑡

1
, 𝑡
2
] × [𝑡
1
, 𝑡
2
] : 𝑠 > 𝑡} ,

𝑇
𝑙
= {(𝑡, 𝑠) ∈ [𝑡

1
, 𝑡
2
] × [𝑡
1
, 𝑡
2
] : 𝑠 < 𝑡} ,

𝑇
𝑢

𝑖𝑖
= {(𝑡, 𝑠) ∈ 𝑅

𝑖𝑖
: 𝑠 > 𝑡} , 𝑖 = 1, 2, 3, . . . , 𝑝 + 1,

𝑇
𝑙

𝑖𝑖
= {(𝑡, 𝑠) ∈ 𝑅

𝑖𝑖
: 𝑠 < 𝑡} , 𝑖 = 1, 2, 3, . . . , 𝑝 + 1.

(36)

Green’s function (pair) and its properties are given in the
next theorem.

Theorem2. Suppose that the homogeneous BVP (8a)–(8c) has
only the trivial solution. Let

𝐾 = −[𝑀Φ(𝑡
1
) + 𝑁Φ(𝑡

2
)]
−1

𝑁Φ(𝑡
2
) . (37)

Note that the inverse ofmatrix 𝑀Φ(𝑡
1
)+𝑁Φ(𝑡

2
) exists in view

of the assumption (see also the proof of Theorem 4).
Then the pair of functions

𝐺 (𝑡, 𝑠) = {
Φ (𝑡) (𝐼 + 𝐾)Φ

−1
(𝑠) , 𝑠 < 𝑡,

Φ (𝑡)𝐾Φ
−1

(𝑠) , 𝑠 ≥ 𝑡,

𝐺 (𝑡, 𝜏
+

𝑖
) = {

Φ (𝑡) (𝐼 + 𝐾)Φ
−1

(𝜏
+

𝑖
) , 𝜏
𝑖
< 𝑡,

Φ (𝑡)𝐾Φ
−1

(𝜏
+

𝑖
) , 𝜏

𝑖
≥ 𝑡,

(38)

constitutes Green’s function for (6a), (6b), and (6c). Moreover,
we have the following properties:

(G1) 𝐺(𝑡, 𝑠) is continuous and bounded on 𝑅
𝑖𝑗
,

(G2) (𝜕𝐺(𝑡, 𝑠))/𝜕𝑡 is continuous and bounded on the
rectangles 𝑅

𝑖𝑗
with 𝑖 ̸= 𝑗 and on the triangles 𝑇

𝑢

𝑖𝑖

and 𝑇
𝑙

𝑖𝑖
,

(G3) 𝐺(𝑡, 𝑠) satisfies the following jump conditions:

(a) 𝐺(𝜏
+

𝑖
, 𝜏
𝑖
) − 𝐺(𝜏

−

𝑖
, 𝜏
𝑖
) = 𝐵

𝑖
+ (𝐵
𝑖
− 𝐼)𝐺(𝜏

−

𝑖
, 𝜏
𝑖
)

𝑤ℎ𝑒𝑟𝑒 𝐵
𝑖
= [
𝛼
𝑖
0

−𝛽
𝑖
𝛼
𝑖

] ,

(b) 𝐺(𝑠
+
, 𝑠) − 𝐺(𝑠

−
, 𝑠) = 𝐼, 𝑠 ̸= 𝜏

𝑖
,

(c) (𝜕𝐺(𝑠
+
, 𝑠)/𝜕𝑡) − (𝜕𝐺(𝑠

−
, 𝑠)/𝜕𝑡) = 𝐽𝐻(𝑠), 𝑠 ̸= 𝜏

𝑖
,

(G4) 𝐺(𝑡, 𝑠), considered as a function of 𝑡, is left continuous
and satisfies

𝑦

= 𝐽𝐻 (𝑡) 𝑦, 𝑡 ∈ 𝐽

𝑠
\ {𝜏
𝑖
} ,

𝑦 (𝜏
+

𝑖
) = 𝐵
𝑖
𝑦 (𝜏
−

𝑖
) , 𝑖 ∈ {𝑖 : 𝜏

𝑖
∈ 𝐽
𝑠
} ,

𝑀𝑦 (𝑡
1
) + 𝑁𝑦 (𝑡

2
) = 0,

(39)

where 𝐽
𝑠
is any of the intervals [𝑡

1
, 𝑠) or (𝑠, 𝑡

2
],

(G5) Δ|
𝑡=𝜏
𝑖

𝐺(𝑡, 𝜏
+

𝑖
) = 𝐺(𝜏

+

𝑖
, 𝜏
+

𝑖
) − 𝐺(𝜏

−

𝑖
, 𝜏
+

𝑖
) = (𝐵

𝑖
−

𝐼)𝐺(𝜏
−

𝑖
, 𝜏
+

𝑖
),

(G6) 𝐺(𝑡, 𝑠), considered as a function of 𝑡, is left continuous
and satisfies (39).

Proof. (G1) and (G2) are trivial. Let us consider (G3)(a)
follows from

𝐺 (𝜏
+

𝑖
, 𝜏
𝑖
) − 𝐺 (𝜏

−

𝑖
, 𝜏
𝑖
)

= Φ (𝜏
+

𝑖
) (𝐼 + 𝐾)Φ

−1
(𝜏
𝑖
) − Φ (𝜏

−

𝑖
)𝐾Φ
−1

(𝜏
𝑖
)

= 𝐵
𝑖
+ (𝐵
𝑖
− 𝐼)𝐺 (𝜏

−

𝑖
, 𝜏
𝑖
) .

(40)

To see (b), we write for 𝑠 ̸= 𝜏
𝑖
,

𝐺 (𝑠
+
, 𝑠) − 𝐺 (𝑠

−
, 𝑠) = Φ (𝑠

+
) (𝐼 + 𝐾)Φ

−1

(𝑠)

− Φ (𝑠
−
)𝐾Φ
−1

(𝑠) = 𝐼.

(41)

For (c), let 𝑡 ̸= 𝜏
𝑖
; then

𝜕𝐺 (𝑡, 𝑠)

𝜕𝑡
=

{{{{

{{{{

{

Φ

(𝑡) (𝐼 + 𝐾)Φ

−1
(𝑠)

= 𝐽𝐻 (𝑡)Φ (𝑡) (𝐼 + 𝐾)Φ
−1

(𝑠) , 𝑠 < 𝑡,

Φ

(𝑡) 𝐾Φ

−1
(𝑠)

= 𝐽𝐻 (𝑡)Φ (𝑡)𝐾Φ
−1

(𝑠) , 𝑠 ≥ 𝑡,

𝜕𝐺 (𝑠
+
, 𝑠)

𝜕𝑡
−
𝜕𝐺 (𝑠
−
, 𝑠)

𝜕𝑡
= 𝐽𝐻 (𝑠)Φ (𝑠) (𝐼 + 𝐾)Φ

−1

(𝑠)

− 𝐽𝐻 (𝑠)Φ (𝑠)𝐾Φ
−1

(𝑠)

= 𝐽𝐻 (𝑠) .

(42)

Next, we consider (G4). By definition, it is easy to see
that 𝐺(𝑡, 𝑠) is left continuous function at 𝑡 = 𝜏

𝑖
. Let us

consider the interval [𝑡
1
, 𝑠). The later is similar. The first

equation in (39) is direct consequences of (c) and the
definition of 𝐺(𝑡, 𝑠). Clearly,

𝐺 (𝜏
+

𝑖
, 𝑠) = Φ (𝜏

+

𝑖
)𝐾Φ
−1

(𝑠)

= 𝐵
𝑖
Φ(𝜏
−

𝑖
)𝐾Φ
−1

(𝑠) = 𝐵
𝑖
𝐺 (𝜏
−

𝑖
, 𝑠) ,

𝑀𝐺 (𝑡
1
, 𝑠) + 𝑁𝐺 (𝑡

2
, 𝑠)

= 𝑀Φ(𝑡
1
)𝐾Φ
−1

(𝑠)

+ 𝑁Φ (𝑡
2
) (𝐼 + 𝐾)Φ

−1

(𝑠)

= [𝑀Φ (𝑡
1
) + 𝑁Φ (𝑡

2
)]𝐾Φ

−1

(𝑠)

+ 𝑁Φ (𝑡
2
)Φ
−1

(𝑠) = 0.

(43)

The proofs of (G5) and (G6) are similar to (a) and (G4),
respectively.

Remark 3. One can easily rewrite Green’s function (pair) in
terms of the solutions of system (8a), (8b). Indeed,

𝐾 = − [𝑀Φ(𝑡
1
) + 𝑁Φ (𝑡

2
)]
−1

𝑁Φ(𝑡
2
)

=
1

𝑥
1
(𝑡
1
) 𝑥
2
(𝑡
2
) − 𝑥
1
(𝑡
2
) 𝑥
2
(𝑡
1
)

× [

[

𝑥
1
(𝑡
2
) 𝑥
2
(𝑡
1
) 𝑥
2
(𝑡
1
) 𝑥
2
(𝑡
2
)

−𝑥
1
(𝑡
1
) 𝑥
1
(𝑡
2
) −𝑥
1
(𝑡
1
) 𝑥
2
(𝑡
2
)
]

]

,

(44)
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and since

detΦ (𝑡) = detΦ (0) exp(∫
𝑡

0

trace (𝐽𝐻 (𝑠)) d𝑠)

×

𝑝

∏

𝑖=1

det𝐵
𝑖
=

𝑝

∏

𝑖=1

𝛼
2

𝑖
,

(45)

we may write

Φ
−1

(𝑡) =
1

detΦ (𝑡)

[

[

𝑢
2
(𝑡) −𝑥

2
(𝑡)

−𝑢
1
(𝑡) 𝑥

1
(𝑡)

]

]

= (

𝑝

∏

𝑖=1

𝛼
−2

𝑖
)[

[

𝑢
2
(𝑡) −𝑥

2
(𝑡)

−𝑢
1
(𝑡) 𝑥

1
(𝑡)

]

]

.

(46)

3. The Main Result

Our main result is the following theorem.

Theorem 4. Let (i)–(iii) hold. If

exp(∫
𝑡
2

𝑡
1

|𝑎 (𝑡)| d𝑡) [∫

𝑡
2

𝑡
1

𝑏 (𝑡) d𝑡]

× [∫

𝑡
2

𝑡
1

𝑐
+

(𝑡) d𝑡 + ∑

𝑡
1
≤𝜏
𝑖
<𝑡
2

(
𝛽
𝑖

𝛼
𝑖

)

+

]

< 4,

(47)

then BVP (6a), (6b), and (6c) has a unique solution
(𝑥(𝑡), 𝑢(𝑡)). Moreover, 𝑦 = (𝑥(𝑡), 𝑢(𝑡)) is expressible as

𝑦 (𝑡) = 𝑤 (𝑡) + ∫

𝑡
2

𝑡
1

𝐺 (𝑡, 𝑠) 𝑓 (𝑠) d𝑠 + ∑

𝑡
1
≤𝜏
𝑖
<𝑡
2

𝐺 (𝑡, 𝜏
+

𝑖
) 𝑎
𝑖
, (48)

where

𝑤 (𝑡) = Φ (𝑡) [𝑀Φ(𝑡
1
) + 𝑁Φ(𝑡

2
)]
−1

𝜂, 𝜂 = (𝐴, 𝐵)
𝑇
, (49)

and Green’s function pair (𝐺, 𝐺) is given by (38).

Proof. We first prove the uniqueness. It suffices to show that
the homogeneous BVP (8a)–(8c) has only the trivial solution.
Let 𝑥(𝑡) ̸≡ 0 on (𝑡

1
, 𝑡
2
). ByTheorem 1, we see that Lyapunov

type inequality (11) holds contradicting the inequality (47).
Thus 𝑥(𝑡) = 0 for all 𝑡 ∈ [𝑡

1
, 𝑡
2
]. Moreover, by (6a), (6b), and

(6c) we have

𝑏 (𝑡) 𝑢 = 0, 𝑡 ̸= 𝜏
𝑖
, (50)

which results in 𝑢(𝑡) = 0 for 𝑡 ̸= 𝜏
𝑖
. Taking limit we see

that 𝑢(𝜏±
𝑖
) = 0. As a result we obtain (𝑥(𝑡), 𝑢(𝑡)) = (0, 0) for

all 𝑡 ∈ [𝑡
1
, 𝑡
2
].This completes the uniqueness of the solutions.

For the existence, we start with the variation of param-
eters formula and write the general solution of system (6a),
(6b) as

𝑦 (𝑡) = Φ (𝑡) 𝑐 + ∫

𝑡

𝑡
1

Φ (𝑡)Φ
−1

(𝑠) 𝑓 (𝑠) d𝑠

+ ∑

𝑡
1
≤𝜏
𝑖
<𝑡

Φ (𝑡)Φ
−1

(𝜏
+

𝑖
) 𝑎
𝑖
.

(51)

Clearly, the boundary condition is satisfied if

[𝑀Φ (𝑡
1
) + 𝑁Φ (𝑡

2
)] 𝑐

= 𝜂 − 𝑁Φ (𝑡
2
)

× [∫

𝑡
2

𝑡
1

Φ
−1

(𝑠) 𝑓 (𝑠) d𝑠 + ∑

𝑡
1
≤𝜏
𝑖
<𝑡
2

Φ
−1

(𝜏
+

𝑖
) 𝑎
𝑖
] ,

(52)

where 𝜂 = (𝐴, 𝐵)
𝑇.

Since we have the uniqueness of solutions, the mat-
rix 𝑀Φ(𝑡

1
) + 𝑁Φ(𝑡

2
) must have an inverse. Setting

𝐾 = −[𝑀Φ(𝑡
1
) + 𝑁Φ(𝑡

2
)]
−1

𝑁Φ(𝑡
2
) , (53)

we may solve 𝑐 from (52) uniquely:

𝑐 = [𝑀Φ(𝑡
1
) + 𝑁Φ (𝑡

2
)]
−1

𝜂

+ 𝐾[∫

𝑡
2

𝑡
1

Φ
−1

(𝑠) 𝑓 (𝑠) d𝑠 + ∑

𝑡
1
≤𝜏
𝑖
<𝑡
2

Φ
−1

(𝜏
+

𝑖
) 𝑎
𝑖
] .

(54)

Hence,

𝑦 (𝑡) = Φ (𝑡) [𝑀Φ (𝑡
1
) + 𝑁Φ (𝑡

2
)]
−1

𝜂 + Φ (𝑡) (𝐼 + 𝐾)

× [∫

𝑡

𝑡
1

Φ
−1

(𝑠) 𝑓 (𝑠) d𝑠 + ∑

𝑡
1
≤𝜏
𝑖
<𝑡

Φ
−1

(𝜏
+

𝑖
) 𝑎
𝑖
]

+ Φ (𝑡)𝐾[∫

𝑡
2

𝑡

Φ
−1

(𝑠) 𝑓 (𝑠) d𝑠 + ∑

𝑡≤𝜏
𝑖
<𝑡
2

Φ
−1

(𝜏
+

𝑖
) 𝑎
𝑖
] .

(55)

Therefore the unique solution of the BVP (6a)–(6c) can be
expressed as

𝑦 (𝑡) = 𝑤 (𝑡) + ∫

𝑡
2

𝑡
1

𝐺 (𝑡, 𝑠) 𝑓 (𝑠) d𝑠

+ ∑

𝑡
1
≤𝜏
𝑖
<𝑡
2

𝐺 (𝑡, 𝜏
+

𝑖
) 𝑎
𝑖
.

(56)



6 Abstract and Applied Analysis

Let us now consider the BVP (10a), (10b), (10c), and (10d).
In this case it is not difficult to see that the corresponding
Green’s function (pair) becomes

𝐺 (𝑡, 𝑠) =

{{{

{{{

{

𝜓 (𝑡) (𝐼 + 𝐾)Ψ
−1

(𝑠)
1

𝑝 (𝑠)
𝑒
2
, 𝑠 < 𝑡,

𝜓 (𝑡)𝐾Ψ
−1

(𝑠)
1

𝑝 (𝑠)
𝑒
2
, 𝑠 ≥ 𝑡,

𝐺 (𝑡, 𝜏
+

𝑖
) =

{

{

{

𝜓 (𝑡) (𝐼 + 𝐾)Ψ
−1

(𝜏
+

𝑖
) , 𝜏
𝑖
< 𝑡,

𝜓 (𝑡) 𝐾Ψ
−1

(𝜏
+

𝑖
) , 𝜏

𝑖
≥ 𝑡,

(57)

where 𝜓(𝑡) = [𝜓
1
, 𝜓
2
] is the first row of the (Wronskian)

matrix:

Ψ (𝑡) = [

[

𝜓
1
(𝑡) 𝜓

2
(𝑡)

𝜓


1
(𝑡) 𝜓



2
(𝑡)

]

]

,

𝐾 = − [𝑀Ψ (𝑡
1
) + 𝑁Ψ (𝑡

2
)]
−1

𝑁Ψ(𝑡
2
) ,

𝑒
2
= [0, 1]

𝑇
.

(58)

Corollary 5. Suppose that 𝑝 and 𝑐 are piece-wise continuous
on [𝑡
1
, 𝑡
2
], 𝑝(𝑡) > 0, and 𝛼

𝑖
̸= 0 for 𝑖 = 1, 2, . . . , 𝑝. If

[∫

𝑡
2

𝑡
1

1

𝑝 (𝑡)
d𝑡] [∫

𝑡
2

𝑡
1

𝑐
+

(𝑡) d𝑡 + ∑

𝑡
1
≤𝜏
𝑖
<𝑡
2

(
𝛽
𝑖

𝛼
𝑖

)

+

] < 4, (59)

then the BVP (10a), (10b), (10c), and (10d) has a unique
solution 𝑥(𝑡) which is expressible as

𝑥 (𝑡) = 𝑤 (𝑡) + ∫

𝑡
2

𝑡
1

𝐺 (𝑡, 𝑠) 𝑓 (𝑠) d𝑠 + ∑

𝑡
1
≤𝜏
𝑖
<𝑡
2

𝐺 (𝑡, 𝜏
+

𝑖
) 𝑎
𝑖
, (60)

where

𝑤 (𝑡) = 𝜓 (𝑡) [𝑀Ψ(𝑡
1
) + 𝑁Ψ(𝑡

2
)]
−1

𝜂, (61)

and Green’s function pair (𝐺, 𝐺) is given by (57).

Remark 6. The results in this work are new even if the
impulses are absent. The statements of the corresponding
theorems are left to the reader.
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