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Abstract. The velocity distribution between two boreholes is reconstructed by cross-well
tomography, which is commonly used in geology. In this paper, iterative methods, Kaczmarz’s
algorithm, algebraic reconstruction technique (ART), and simultaneous iterative reconstruction
technique (SIRT), are implemented to a specific cross-well tomography problem. Convergence
to the solution of these methods and their CPU time for the cross-well tomography problem
are compared. Furthermore, these three methods for this problem are compared for different
tolerance values.

1. Introduction
Cross-well seismic tomography, which is used often in geology, mainly deals with reconstructing
the velocity structure between two boreholes by measuring travel time for ray paths between
them [1]. A cross-well tomography problem can be defined as an inverse problem because
we have a set of measurements (travel time), then we try to reconstruct the model (velocity
structure) from them [4] in the cross-well tomography problem. Enhanced oil recovery, imaging
of geological structures in sediments and crystalline rock are some vital examples in which
cross-well tomography is used [1].

Hydrologists should have information regarding the locations of hydraulically conductive
fractures if they want to clean up contaminants which are in fractured bedrock as stated in
[3]. Herewith, cross-well seismic tomography can be used to obtain the information. There are
some methods [3] such as single-borehole hydraulic tests, cross-borehole hydraulic tests to get
information about locations of these fractures. However, they have a weakness concerning the
hydraulically conductive fractures which are far away from boreholes. So, cross-well seismic
tomography is used to overcome this problem. As described in [3], P-waves are used to investigate
the bedrock which is located between two wells. After P-waves are used in the bedrock, obtained
data are processed by using tomographic methods. The result of this process is known as
tomogram [3]; that is, the structure of P-wave velocity between two wells. Then, since P-wave
velocity is reduced by fractures, the locations of fractures can be obtained from the low velocity
anomalies in the tomogram. Thus, these fractures can be hydraulically conductive ones [3].

In this paper, we apply iterative methods, which are Kaczmarz’s method, algebraic
reconstruction technique (ART), and simultaneous iterative reconstruction technique (SIRT),
to a specific cross-well tomography problem, which was taken from [2].

The problem [2] is explained as follows: there are two vertical wells and the distance between
them is 1600 m. A seismic source is placed in one of wells at depths of 50, 150, . . . , 1550 m.

http://creativecommons.org/licenses/by/3.0
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A set of receivers is placed in the other well at same depths. Then, a travel time with standard
deviation of 0.5 ms is recorded for every source-receiver pair. Also, ray paths are assumed to
be straight. Hence, this paper explains how we obtained the velocity distribution in the two-
dimensional plane between the two wells by using three iterative methods for this problem.

This paper compares CPU time and convergence to the solution of Kaczmarz’s method, ART,
and SIRT for different tolerance values on the cross-well tomography problem.

2. Methods
In cross-well seismic tomography, the travel time for seismic energy [2], which travels through
ray path �, can be defined by

t =

∫
�
s(x)d�, (2.1)

if slowness at a point x and � are known. Slowness is known as inverse of the velocity [9]. Since
the model (slowness) and data (travel time) are continuous functions’ variables, and we want to
determine the model from the data in our cross-well tomography problem, this problem is defined
as a continuous inverse problem. We can discretize Equation (2.1) and obtain a discrete inverse
problem by using midpoint rule in the cross-well tomography problem. In addition, the reader
can analyze [7, 8] to obtain detailed information regarding seismic tomography and slowness.

When we discretize Equation (2.1) into a 16 × 16 grid of 100 meter by 100 meter uniform
blocks in the cross-well tomography problem, 256 model parameters are obtained. Therefore,
approximated form of Equation (2.1) [2] can be written as

t =

∫
�
s(x)d� ≈

∑
blocks

sblock ·Δlblock, (2.2)

where Δlblock represents lengths of ray paths within corresponding blocks.
Let m be a model vector with n components which are slowness, d be a data with m

components which are measured travel time and G be a matrix whose components are lengths
of ray paths within corresponding block in our cross-well tomography problem. Then, we can
write Equation (2.2) as a linear system of equations [2] by

Gm = d. (2.3)

As stated in [2], if we have a problem which has a large G matrix, methods such as singular
value decomposition (SVD), Tikhonov regularization are not useful for this problem. The reason
of this impracticability is that computers need too much memory to store such kind of G matrix.
However, if G is a sparse matrix; that is, many of its components are zero, the memory problem
can be solved by getting rid of zero components of the matrix G. In this way, the nonzero
components of the matrix and their locations can be kept [2]. Unlike factorization methods,
iterative methods consist of products of vectors with G and GT [5]. In the cross-well tomography
problem, which we deal with, the data d and G matrix are given.

In this paper, three iterative methods, Kaczmarz, ART, and SIRT, are examined and they
are applied to the cross-well tomography problem.

2.1. Kaczmarz’s method
Kaczmarz’s algorithm is one of the most commonly used methods for solving Equation (2.3) [2].
An essential property of this method is that its implementation is easy. Kaczmarz’s method
is based on “method of projections” [6]. Tomographic problems are frequently discretized
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as uniform blocks as we discretized in the cross-well tomography problem. Before explaining
algorithm of Kaczmarz, let us write expanded form of Equation (2.3) [6]:

G11m1 +G12m2 +G13m3 + . . . +G1nmn = d1

G21m1 +G22m2 +G23m3 + . . . +G2nmn = d1
...

Gm1m1 +Gm2m2 +Gm3m3 + . . . +Gmnmn = dm.

(2.4)

According to [6], a model (or image), which has n degrees of freedom, can be obtained
by a grid with n cells. Then, the model, (m1,m2, . . .,mn) can be defined as a single point
in n-dimensional space. So, each of the equations in Equation (2.4) is called a hyperplane in
this n-dimensional space. Unique solution of Equation (2.4), if it exists, can be obtained by a
single point which is the intersection of all hyperplanes [6]. In Kaczmarz’s algorithm, each of m
equations Gi ·m = di, as we described before, represents an n-dimensional hyperplane in R

m

[2]. Algorithm of Kaczmarz for a system of equations Gm = d for a tomography problem [2] is
described in Algorithm 1.

Algorithm 1 Kaczmarz’s Algorithm

1: m(0) ← 0
2: for i← 0,m− 1 do

m(i+1) ←m(i) − Gi+1,·m(i) − di+1

Gi+1,·GT
i+1,·

3: end for
4: If there is no convergence to the solution, go back to the second step.

The algorithm starts with an initial guess m(0), then, m(1) is obtained by projecting m(0)

onto the first equation of Equation (2.4), which is determined by the first row in G [2].
Similar operations are applied for the next solutions until the solution is projected onto all
m hyperplanes, which are defined in Equation (2.4) [2].

2.2. Algebraic reconstruction technique
Algebraic reconstruction technique, also known as ART, is an updated form of Kaczmarz’s
method [2]. In ART, components in row i+ 1 of G, which are not zero, are replaced with ones
[2]. The purpose of this replacement is that we can easily determine the total number of cells
traversed by ray path. The process of finding cell in the ray path is simplified by this replacement.
Approximated travel time [2] through the ray path i+ 1 is defined as

qi+1 =
∑

cell j in ray path i+1

mjl, (2.5)

where l is called cell dimension. Then, qi+1− di+1 is the residual of the estimated travel time of
ray i+1 [2]. Algorithm of ART [2] for a system of equations Gm = d for a tomography problem
is explained in Algorithm 2.
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Algorithm 2 ART Algorithm

1: m(0) ← 0
2: for i← 0,m do

Ni := # of cells traversed by ray path i,
Li := the length of ray path i.

3: end for
4: for i← 0,m− 1, j ← 1, n do

m
(i+1)
j ←

⎧⎨
⎩
m

(i)
j +

di+1

Li+1
− qi+1

lNi+1
, if cell j in ray path i+ 1,

m
(i)
j , otherwise.

5: end for
6: If convergence of the solution is not obtained yet, let m(0) ←m(m) and turn back to

fourth step. Otherwise, the solution m←m(m) is returned.

2.3. Simultaneous iterative reconstruction technique
Simultaneous iterative reconstruction technique, also known as SIRT, is a variation of ART.
SIRT gives better tomographic images than ART, but its convergence is slower than ART [6].
Algorithm of SIRT [2] for a system of equations Gm = d is given in Algorithm 3.

Algorithm 3 SIRT Algorithm

1: m(0) ← 0
2: for j ← 0, n do

Kj := # of paths which pass through cell j.
3: end for
4: for i← 0,m do

Ni := # of cells traversed by ray path i,
Li := the length of ray path i.

5: end for
6: Δm(i+1) ← 0
7: for i← 0,m− 1, j ← 1, n do

Δm
(i+1)
j ←

⎧⎨
⎩
Δm

(i+1)
j +

di+1

Li+1
− qi+1

lNi+1
, if cell j in ray path i+ 1,

0, otherwise.
8: end for
9: for j ← 1, n do

m
(i+1)
j ← m

(i+1)
j +

Δm
(i+1)
j

Kj

10: end for
11: If there is no convergence of the solution, go back to line 6.

Otherwise, the current solution is returned.

In simultaneous iterative reconstruction technique, firstly, models are calculated if cell j is in
ray path i+1 [2]. Then, average of these models are computed before the model is updated [10].

3. Results and discussion
This paper focuses on the cross-well tomography problem, which is described in Section 1. In this
problem, components of G are lengths of ray paths within corresponding blocks. In addition,
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noisy data, d, represents measured travel time, and the model, m, represents slowness in grid in
which row-by-row indexing is used. Thus, the velocity structure can be obtained from this model.
Our aim is to find velocity distribution in 2-D plane between two wells by using Kaczmarz’s
method, ART, and SIRT in this paper. We used MATLAB functions for ART and SIRT, which
were produced by [2], by modifying and arranging them for the implementation to the problem.

Our problem is called ill-conditioned and rank deficient since rank(G)= 243 is smaller than
n = 256 (number of model parameters) and cond(G)= 1.8718 where rank(G) is rank of G matrix
and cond(G) is condition number of G matrix.

When we implemented Kaczmarz’s algorithm to the cross-well tomography problem, we
obtained a model vector

m = [0.0003430, 0.0003424, 0.003419, . . . , 0.0003404, 0.0003406, 0.0003409]T . (3.1)

In Equation (3.1), there are 256 components which denote slowness in the grid of 100 me-
ter by 100 meter block. For example, first component of m in Equation (3.1) is the block
which is at first row and first column. Similarly, second component of the same model is the
block which is at first row and second column and so on. Therefore, first 16 components (first
row) are grids at depth of 50 m, second 16 components (second row) are grids at depth of
150m and so forth. As a result, we obtained the figure of slowness (s/m) vs. depth (m), as
shown in Figure 1, for the cross-well tomography problem by using Kaczmarz’s algorithm.

Figure 1: Kaczmarz’s method solution for the cross-well tomography problem.

When we applied ART to the cross-well tomography problem, we obtained a slowness model
vector

m = [0.0003713, 0.0003519, 0.003444, . . . , 0.0003148, 0.0003119, 0.0003075]T , (3.2)

which has 256 components as in Equation (3.1). Figure 2, which we obtained, repre-
sents slowness (s/m) vs. depth (m) for the cross-well tomography problem by using ART.
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Figure 2: ART solution for the cross-well tomography problem.

Lastly, when we implemented SIRT to the cross-well tomography problem, we obtained a
model vector

m = [0.0003747, 0.0003562, 0.003464, . . . , 0.0003177, 0.0003152, 0.0003097]T , (3.3)

whose 256 components are slowness at corresponding depths. Then, Figure 3, which we produced,
indicates slowness (s/m) vs. depth (m) for the cross-well tomography problem by using SIRT.

Figure 3: SIRT solution for the cross-well tomography problem.

When we compared the results of the implementation of these three methods to the cross-
well problem, we observed that Kaczmarz’s algorithm has the fastest convergence to the solution
among the methods. When we chose the value of tolerance as 10−9, the solution was converged
after 7964, 21597, 61034 iterations by using Kaczmarz’s method, ART, and SIRT respectively.
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Moreover, CPU time of the implementation of Kaczmarz’s algorithm, ART, and SIRT for the
cross-well tomography problem was measured as 14.17 seconds, 32.65 seconds, 96.98 seconds
respectively.

We also found that although ART is slower than SIRT until a specific tolerance value
(5×10−9), for values greater than that specific value, SIRT is slower than ART for this problem.
When we chose tolerance value as 5×10−9, the solution was converged after 10271 iterations with
16.83 seconds and 9432 iterations with 15.38 seconds by using SIRT and ART respectively. When
we chose tolerance value as 10−8, which is greater than 5 × 10−9, the solution was converged
after 3563 iterations with 5.94 seconds and 5180 iterations with 8.49 seconds by using SIRT and
ART respectively.

Table 1: Convergence to the solution of the iterative methods, when the value of tolerance is
10−9.

Kaczmarz’s algorithm ART SIRT

Number of Iterations 7964 21597 61034
CPU Time (seconds) 14.17 32.65 96.98

Table 2: Convergence to the solution of the iterative methods, when the value of tolerance is
5× 10−9.

Kaczmarz’s algorithm ART SIRT

Number of Iterations 2655 9432 10271
CPU Time (seconds) 4.92 15.38 16.83

Table 3: Convergence to the solution of the iterative methods, when the value of tolerance is
10−8.

Kaczmarz’s algorithm ART SIRT

Number of Iterations 1715 5180 3563
CPU Time (seconds) 3.21 8.49 5.94

According to [2], Kaczmarz’s algorithm converges quickly, if the hyperplanes are almost
orthogonal. If more than two hyperplanes are nearly parallel to each other, then, convergence of
the solution could have been immensely slow. Consequently, we can say that hyperplanes in our
cross-well tomography problem are almost orthogonal. Moreover, we observed that the solutions
of ART and SIRT are noisier than Kaczmarz’s method as we expected.

4. Conclusion and outlook
Our major purpose, in the present paper, is to implement Kaczmarz’s algorithm, ART, and
SIRT to the cross-well tomography problem and compare their convergence to the solution, and
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CPU time. As stated in [2], there are some methods, which are based on matrix factorizations,
to solve linear system of equations. QR factorization and singular value decomposition (SVD)
can be given as examples for these methods. However, they are not enough to solve problems
which have sparse matrices [2]. Matrices which are created by using these factorizations are
denser than the G matrix, which is factorized [2]. Herewith, usage of iterative methods such
as Kaczmarz’s method, ART, and SIRT for large problems are more appropriate than usage of
factorization methods.

The cross-well tomography problem, which was analyzed in this paper, was discretized
into a 16 × 16 grid of 100 meter by 100 meter uniform blocks. This discretization provided
256 model parameters, which are slowness. Then, the velocity distribution in two-dimensional
plane between two wells was obtained as the model. Figures of Slowness vs. Depth, which we
produced, represent slowness distribution according to the corresponding depths in the cross-well
tomography problem. The results we had show that Kaczmarz’s method is the method which
converges fastest to the solution for the cross-well tomography problem when it is compared
to ART and SIRT. Moreover, we found that ART has slower convergence than SIRT when we
chose the value of tolerance greater than 5× 10−9 in the problem.

In the present paper, ray paths were assumed to be straight in the problem, which we
examined. Then, we used iterative methods for the linear inverse problem to get velocity
structure in the two-dimensional plane between the two wells. If there is ray-path bending
because of changing seismic velocity in a cross-well tomography problem, the problem becomes
a nonlinear inverse problem [2]. Hence, the implementation of methods for nonlinear inverse
problems such as Tikhonov regularization and Occams inversion [2] to the cross-well tomography
problem will be future work. Furthermore, in synthetic aperture radar (SAR) imaging [11], a
plane or satellite with an antenna moves along a flight track, then, electromagnetic radiation
waves are emitted by the antenna. These electromagnetic waves scatter off the land, and the
antenna, which emitted the waves, identifies the scattered waves [11]. Herewith, the terrain’s
image is generated by the received signals. Therefore, SAR imaging can be used in cross-well
tomography problems, and this radar imaging application will be our future work.
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