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Abstract

Object category localization is a challenging problem

in computer vision. Standard supervised training requires

bounding box annotations of object instances. This time-

consuming annotation process is sidestepped in weakly su-

pervised learning. In this case, the supervised informa-

tion is restricted to binary labels that indicate the ab-

sence/presence of object instances in the image, without

their locations. We follow a multiple-instance learning ap-

proach that iteratively trains the detector and infers the ob-

ject locations in the positive training images. Our main con-

tribution is a multi-fold multiple instance learning proce-

dure, which prevents training from prematurely locking onto

erroneous object locations. This procedure is particularly

important when high-dimensional representations, such as

the Fisher vectors, are used. We present a detailed exper-

imental evaluation using the PASCAL VOC 2007 dataset.

Compared to state-of-the-art weakly supervised detectors,

our approach better localizes objects in the training images,

which translates into improved detection performance.

1. Introduction

Object category localization is an important computer

vision problem where the goal is to identify all instances

of a given object category in an image, and to report these

by means of bounding boxes around the objects. As com-

pared to image classification, localization is significantly

more challenging since precise estimates of the object lo-

cations need to be produced. Over the last decade signifi-

cant progress has been made in this area, as witnessed by

the PASCAL VOC challenges [14]. Training such detec-

tors, however, requires bounding box annotations of object

instances, which are more error prone and costly to acquire

as compared to the labels required for image classification.

Weakly supervised learning (WSL) refers to methods

that rely on training data with incomplete ground-truth

information to learn recognition models. For object de-
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tection, WSL from image-wide labels indicating the ab-

sence or presence of instances of the category in images

has recently been intensively studied as a way to remove

the requirement of bounding box annotations, see e.g .

[2, 8, 10, 11, 20, 22, 23, 25, 27, 29]. Such methods can po-

tentially leverage the large amount of tagged images on the

internet as a source of data to train object detection models.

Other examples of WSL include learning face recogni-

tion models from image captions [3], or subtitle and script

information [13]. Another WSL example is learning se-

mantic segmentation models from image-wide category la-

bels [32]. Most WSL approaches are based on latent vari-

able models to account for the missing ground-truth in-

formation. Multiple instance learning (MIL) [12] handles

cases where the weak supervision indicates that at least one

positive instance is present in a set of examples. More ad-

vanced inference and learning methods are used in cases

where the latent variable structure is more complex, see

e.g . [11, 25, 32]. Besides weakly supervised training, mixed

fully and weakly supervised [4], active [33], and semi-

supervised [25] learning methods have also been explored

to reduce the amount of labeled training data for object de-

tector training. In active learning bounding box annotations

are used, but requested only for images where the anno-

tation is expected to be most effective. Semi-supervised

learning, on the other hand, leverages unlabeled images by

automatically detecting objects in them, and uses those to

better model the object appearance variations. We review

the most relevant related work in more detail in Section 2.

In this paper we consider the WSL problem to learn ob-

ject detectors from image-wide labels. We follow an MIL

approach that interleaves training of the detector with re-

localization of object instances on the positive training im-

ages. To represent (tentative) detection windows, we use

the high-dimensional Fisher vector (FV) image representa-

tion [24], which has shown to yield state-of-the-art perfor-

mance for image classification and object detection [6, 7, 9].

As we explain in Section 3, when used in an MIL frame-

work, the high-dimensionality of the FV representation

makes MIL quickly convergence to poor local optima after

initialization. Our main contribution is a multi-fold training

procedure for MIL, which avoids this rapid convergence to
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poor local optima. A second novelty of our approach is

the use of a “contrastive” background descriptor that is de-

fined as the difference of a descriptor of the object window

and a descriptor of the remaining image area. The score

for this descriptor of a linear classifier can be interpreted as

the difference of scores for the foreground and background.

In this manner we force the detector to learn the difference

between foreground and background appearances. In Sec-

tion 3 we present our multi-fold training procedure and ob-

ject representation in full detail.

We present a detailed evaluation using the PASCAL

VOC 2007 dataset in Section 4, and also report results on

the VOC 2010 dataset. A comparison to the current state

of the art in WSL shows that our approach leads to better

localization on the training images, which translates into a

substantial improvement in detection performance. Finally,

we summarize our conclusions in Section 5.

2. Related work

The majority of related work treats WSL for object de-

tection as an MIL [12] problem. Each image is considered

as a “bag” of examples given by tentative object windows.

Positive images are assumed to contain at least one positive

object instance window, while negative images only contain

negative windows. The object detector is then obtained by

alternating detector training, and using the detector to select

the single most likely object instance in each positive image.

In the case of object detector training there is a vast num-

ber of examples per bag since the number of possible object

bounding boxes is quadratic in the number of image pix-

els. This is different from many other MIL problems, e.g .

such as those for weakly supervised face recognition [3, 13],

where the number of examples per bag is limited to a few

dozen at most. In order to make MIL approaches to WSL

more manageable, tentative object windows can instead be

obtained using recent window proposal methods, which ef-

fectively reduce the number of candidate windows for ob-

ject detection to several hundreds or thousands by exploit-

ing low-level segmentation-based cues [1, 17, 31].

A number of different strategies to initialize the MIL de-

tector training have been proposed in the literature. The first

strategy, e.g . taken in [20, 23], is to initialize by taking large

windows in positive images that (nearly) cover the entire

image. This strategy exploits the inclusion structure of the

MIL problem for object detection: although large windows

may contain a significant amount of background features,

they are likely to include a positive object instance.

The second strategy is to utilize a class-independent

saliency measure that aims to predict whether a given image

region belongs to an object or not. For example, Deselaers

et al . [11] initialize the training using the candidate win-

dow with the highest objectness score [1]. Siva et al . [28]

instead estimate an unsupervised patch-level saliency map

for a given image by measuring the average similarity of

each patch to the other patches in a retrieved set of simi-

lar images. An initial window for each image is found by

sampling from the corresponding salieny map.

The third strategy is to use a class-specific initialization

method. For example, Siva and Xiang [29] propose to ini-

tially select one of the candidate windows sampled using

objectness [1] for each image such that an objective func-

tion based on intra-class and inter-class pairwise similarities

is maximized. However, this formulation leads to a difficult

combinatorial optimization problem. Siva et al . [27] pro-

pose a simplified approach where a candidate window is

selected for a given positive image such that the distance

to its nearest neighbor among windows from negative im-

ages is maximal. Relying only on negative windows not

only avoids the difficult combinatorial optimization prob-

lem, but also has the advantage that their labels are certain,

as opposed to the tentative object hypotheses, and there is a

larger number of negative windows available which makes

the pairwise comparisons more robust.

Shi et al . [25] recently used an extended version of the

LDA topic model [5] to obtain object hypotheses in positive

images. Their approach localizes object categories across

different categories concurrently, which allows to benefit

from explaining-away effects, i.e . an image region cannot

be identified as an instance for multiple categories. Their

approach, however, associates image patches with object

categories, rather than complete object hypotheses.

The majority of related work relies on off-the-shelf de-

tectors for MIL training. They iteratively select the max-

imum scoring detections as the positive training examples

and train the detection models. For example, Nguyen et

al . [19] use a branch-and-bound localization based detec-

tor [18]. A number of other works [20, 25, 27, 28, 29] build

upon deformable part-based model (DPM) detectors [15].

Our approach is most related to that of Russakovsky et

al . [23]: we also rely on selective search windows [31], and

use a similar initialization strategy. A critical difference

from [23] and other related work, however, is our multi-

fold MIL training procedure which we describe in the next

section. Our multi-fold MIL approach is also related to the

work of Singh et al . [26] on unsupervised vocabulary learn-

ing for image classification. Starting from an unsupervised

clustering of local patches, they iteratively train SVM clas-

sifiers on a subset of the data, and evaluate it on another set

to update the training data.

3. Weakly supervised object localization

We present our multi-fold MIL approach in Section 3.2,

but first briefly describe our FV object model in Section 3.1.



3.1. Features and detection window representation

To represent the detection windows, we rely on methods

that have shown to yield state-of-the-art performance for

image classification and fully-supervised detection [6, 7, 9].

In particular, we aggregate local SIFT descriptors into a FV

representation to which we apply ℓ2 and power normaliza-

tion [24]. We concatenate the FV computed over the full

detection window, and 16 FVs computed over the cells in a

4×4 grid over the window. Using PCA to project the SIFTs

to 64 dimensions, and Gaussian mixture models (GMM) of

64 components, this yields a descriptor of 140,352 dimen-

sions. We reduce the memory footprint by using feature

compression [24] in combination with the selective search

method of Uijlings et al . [31]. The latter, generates a lim-

ited set of around 1,500 candidate windows per image. This

speeds-up detector training and evaluation, while filtering

out the most implausible object locations.

Similar to Russakovsky et al . [23], we also add contex-

tual information from the part of the image not covered by

the window. Full-image descriptors, or image classification

scores, are commonly used for fully supervised object de-

tection, see e.g . [9, 30]. For WSL, however, it is important

to use the complement of the object window rather than the

full image, to ensure that the context descriptor also de-

pends on the window location. This prevents degenerate

object localization on the training images, since otherwise

the context descriptor can be used to perfectly separate the

training images regardless of the object localization.

To enhance the effectiveness of the context descriptor we

propose a “contrastive” version, defined as the difference

between the background FV xb and the 1 × 1 foreground

FV xf . Since we use linear classifiers, the contribution to

the window score of this descriptor, given by w
⊤(xb−xf ),

can be decomposed as a sum of a foreground and a back-

ground score: w
⊤
xb and −w

⊤
xf respectively. Because

the foreground and background descriptor have the same

weight vector, up to a sign flip, we effectively force features

to either score positively on the foreground and negatively

on the background, or vice-versa. This prevents the detector

to score the same features positively on both the foreground

and the background, and localizes objects more accurately.

To ensure that we have enough SIFT descriptors for the

background FV, we filter the detection windows to respect

a margin of at least 4% from the image border, i.e . for a

100× 100 pixel image, windows closer than 4 pixels to the

image border are suppressed. This filtering step removes

about half of the windows. We initialize the MIL training

with the window that covers the image, up to a 4% margin,

so that all instances are captured by the initial windows.

3.2. Weakly supervised object detector training

The dominant method in the literature for weakly super-

vised object detector training is the iterative training and re-
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Figure 1: Distribution of inner products, scaled to the

unit interval, of random window pairs using our high-

dimensional FV (left), and a low-dimensional FV (right).

localization MIL approach described above, which we will

henceforth refer to as Standard MIL. In this approach, the

detector used for re-localization in positive images is trained

using samples that are extracted from the same images. This

generates a bias towards re-localizing on the same windows;

in particular when high capacity classifiers are used which

easily separate the detector’s training data.

To understand this effect, we consider in Figure 1 the

distribution of inner products between FVs of different win-

dows. We show the distribution using both our 140,352

dimensional FVs and 516 dimensional FVs obtained us-

ing 4 Gaussians without spatial grid. Unlike in the low-

dimensional case, almost all FVs are near orthogonal in the

high-dimensional case. Recall that the weight vector of a

linear (SVM) classifier can be written as a linear combina-

tion of training samples, w =
∑

i αixi. Therefore, due

to the near orthogonality, the training windows will score

significantly higher than the other windows in positive im-

ages in the high-dimensional case, resulting in degenerate

re-localization behaviour. Although this may appear as a

classic overfitting problem, increasing the weight of the reg-

ularization term in SVM training will not solve the problem,

since weight vector will remain a linear combination of the

training samples. We verified this experimentally, but did

not include these experimental results due to lack of space.

Instead, to address this issue—without sacrificing the FV

dimensionality, which would limit its descriptive power—

we propose to train the detector using a multi-fold proce-

dure, reminiscent of cross-validation, within the MIL iter-

ations. We divide the positive training images into K dis-

joint folds, and re-localize the images in each fold using

a detector trained using windows from positive images in

the other folds. In this manner the re-localization detectors

never use training windows from the images to which they

are applied. Once re-localization is performed in all positive

training images, we train another detector using all selected

windows. This detector is used for hard-negative mining on

negative training images, and returned as the final detector.

We summarize our multi-fold MIL training procedure in

Algorithm 1. The standard MIL algorithm that does not use

multi-fold training does not execute steps 2(a) and 2(b), and



Algorithm 1 — Multi-fold weakly supervised training

1. Initialization: positive and negative windows are set to

entire images up to a 4% border.

2. For iteration t = 1 to T

(a) Divide positive images randomly into K folds.
(b) For k = 1 to K

i. Train using positives in all folds but k.
ii. Re-localize positives in fold k using this de-

tector.
(c) Train detector using positive windows from all

folds.
(d) Perform hard-negative mining using this detec-

tor.

3. Return final detector and object windows in train data.

re-localizes based on the detector learned in step 2(c).

The number of folds used in our multi-fold MIL training

procedure should be set to strike a good trade-off between

two competing factors. On the one hand, using more folds

increases the number of training samples per fold, and is

therefore likely to improve re-localization performance. On

the other hand, using more folds also requires training more

detectors, which increases the computational cost. We will

analyze this trade-off in our experiments below.

We note that while multi-fold MIL using K folds results

in training K additional classifiers per iteration, the train-

ing duration grows sublinearly with K since the number

of re-localizations and hard-negative mining work does not

change. In a single iteration of our implementation, (a) all

SVM optimizations take 10.5 minutes for standard MIL and

42 minutes for 10-fold MIL, (b) relocalization on positive

images take 5 minutes in both cases and (c) hard-negative

mining takes 20 minutes in both cases. In total, for a sin-

gle class, standard MIL takes 35.5 minutes per iteration and

10-fold MIL takes 67 minutes per iteration.

4. Experimental evaluation

In this section we present a detailed analysis and evalua-

tion of our weakly-supervised localization approach.

4.1. Dataset and evaluation criteria

We use the PASCAL VOC 2007 and 2010 datasets [14]

in our experiments. Most of our experiments use the 2007

dataset, which allows us to compare to previous work. To

the best of our knowledge, we are the first to report WSL

performance on the 2010 dataset. Following [11, 20, 25],

during training we discard any images that only contain ob-

ject instances marked as “difficult” or “truncated”. During

testing all images are included. We use linear SVM clas-

sifiers, and set the weight of the regularization term and

the class weighting to fixed values based on preliminary

MIL Multi-fold MIL, K=10

Descriptors F F+B F+C F F+B F+C

CorLoc 29.1 29.8 29.7 36.5 38.0 38.8

Detection mAP 14.0 15.6 15.5 20.0 21.0 22.4

Table 1: Localization performance on the train set (CorLoc)

and detection performance on the test set for VOC 2007,

averaged over classes, using different training methods and

features: foreground (F), background (B), contrastive (C).

experiments. We perform two hard-negative mining steps,

see [15], after each re-localization phase.

Following [11], we assess performance using two mea-

sures. First, we evaluate the fraction of positive training

images in which we obtain correct localization (CorLoc).

Second, we measure the object detection performance on

the test images using the standard protocol: average preci-

sion (AP) per class, as well as the mean AP (mAP) across

all classes. For both measures, we consider that a window

is correct if it has an intersection-over-union ratio of at least

50% with a ground-truth object instance.

4.2. Multifold MIL training and context features

In our first experiment, we compare (a) standard MIL

training, and (b) our multi-fold MIL algorithm with K = 10
folds. Both are initialized from the (near) full image win-

dow. We also consider the effectiveness of background fea-

tures. We test three variants: (i) no background descrip-

tor, (ii) an FV computed over the window background, and

(iii) our contrastive background descriptor. Together, this

yields six combinations of features and training algorithms.

We present the performance for each of these in Table 1, in

terms of CorLoc and detection AP, where both are averaged

over the 20 VOC 2007 classes.

From the results we see that the CorLoc differences

across different descriptors are rather small when using

standard MIL training. This is due to the degenerate re-

localization performance with high-dimensional descriptors

for standard MIL training as discussed in Section 3.2; we

will come back to this point below. Using multi-fold train-

ing instead of standard MIL training leads to a substantial

improvement of the results. Best performance is obtained

using our contrastive descriptor, in which case multifold

training improves CorLoc from 29.7% to 38.8% and detec-

tion mAP from 15.5% to 22.4%. In the experiments below

we always use our contrastive descriptor.

In our next experiment, we consider the performance in

terms of CorLoc across the training iterations. In Figure 2

we show the results for standard MIL, and our multi-fold

MIL algorithm using 2, 10, and 20 folds.

The results clearly show the degenerate re-localization

performance obtained with standard MIL training. Our

multi-fold MIL approach leads to substantially better per-



Figure 3: Examples of the re-localization process for images of four classes from initialization (left) to the final localiza-

tion (right) and three intermediate iterations. The top three rows show examples of successful re-localization, the last one

shows a failure case. Correct localizations are shown in yellow, incorrect ones in pink. This figure is best viewed in color.
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Figure 2: Correct localization (CorLoc) over the MIL itera-

tions, averaged across classes. We show results for standard

MIL training and our multi-fold training algorithm.

formance, and ten MIL iterations suffice for the perfor-

mance to stabilize. Results increase significantly by using

2-fold and 10-fold training respectively. The gain by using

20 folds is limited, however, and therefore we use 10 folds

in the remaining experiments.

In Figure 2, we also include experimental results with the

516 dimensional FV obtained using a 4-component GMM,

to verify the hypothesis of Section 3.2. The latter conjec-

tured that the degenerate re-localization observed for stan-

dard MIL training is due to the trivial separability obtained

for high-dimensional descriptors. Indeed, the lowest two

curves in Figure 2 show that for this descriptor we obtain

non-degenerate re-localization. The performance is, how-

ever, poor since the low dimensionality necessarily lim-

its the capacity of the classifier. Our multi-fold MIL ap-

proach, instead, allows the use of high-dimensional features

without suffering from degenerate re-localizations. In the

low-dimensional case multi-fold training still helps, but to

a much smaller extent since standard MIL is already non-

degenerate in this case.

In Figure 3 we illustrate the re-localization performance

for our multi-fold MIL algorithm with high-dimensional

FVs. The success cases demonstrate the progressive im-

provement of the models over the MIL iterations, and the

ability to correctly handle cases with multiple instances that

appear in near proximity. The failure case for the cat image

shows an inherent difficulty of WSL for object detection:

the WSL labels only indicate to learn a model for the most

repeatable structure in the positive training images. For the

cat class, due to the large deformability of the body, the

face turns out to be the most distinctive and reliably de-

tected structure, and this is what the detector learns. Parkhi

et al . [21] recognized this issue, and addressed it using a

segmentation-based method in a fully supervised object de-

tection setting. Potentially, their method applies to WSL for

object detection too; we plan to explore this in the future.



aero bicy bird boa bot bus car cat cha cow dtab dog hors mbik pers plnt she sofa trai tv Av.

Pandey and Lazebnik’11 [20] 50.9 56.7 — 10.6 0 56.6 — — 2.5 — 14.3 — 50.0 53.5 11.2 5.0 — 34.9 33.0 40.6 —

Siva et al .’12 [27] 45.8 21.8 30.9 20.4 5.3 37.6 40.8 51.6 7.0 29.8 27.5 41.3 41.8 47.3 24.1 12.2 28.1 32.8 48.7 9.4 30.2

Siva and Xiang’11 [29] 42.4 46.5 18.2 8.8 2.9 40.9 73.2 44.8 5.4 30.5 19.0 34.0 48.8 65.3 8.2 9.4 16.7 32.3 54.8 5.5 30.4

Siva et al .’13 [28] — — — — — — — — — — — — — — — — — — — — 32.0

Shi et al .’13 [25] 67.3 54.4 34.3 17.8 1.3 46.6 60.7 68.9 2.5 32.4 16.2 58.9 51.5 64.6 18.2 3.1 20.9 34.7 63.4 5.9 36.2

Ours: multi-fold MIL, F+C 56.6 58.3 28.4 20.7 6.8 54.9 69.1 20.8 9.2 50.5 10.2 29.0 58.0 64.9 36.7 18.7 56.5 13.2 54.9 59.4 38.8

Table 2: Comparison against state-of-the-art weakly-supervised detectors on PASCAL VOC 2007 in terms of correct local-

ization on postive training images (CorLoc). The results for [20] were obtained through personal communication.

aero bicy bird boa bot bus car cat cha cow dtab dog hors mbik pers plnt she sofa trai tv mAP

Pandey and Lazebnik’11 [20] 11.5 — — 3.0 — — — — — — — — 20.3 9.1 — — — — 13.2 — —

Prest et al .’12 [22] 17.4 — — 9.2 — — — — — — — — 16.2 27.3 — — — — 15.0 — —

Russakovsky et al .’12 [23] 30.8 25.0 — 3.6 — 26.0 — — — — — — 21.3 29.9 — — — — — — 15.0

Siva and Xiang’11 [29] 13.4 44.0 3.1 3.1 0.0 31.2 43.9 7.1 0.1 9.3 9.9 1.5 29.4 38.3 4.6 0.1 0.4 3.8 34.2 0.0 13.9

Ours: multi-fold MIL, F+C 35.8 40.6 8.1 7.6 3.1 35.9 41.8 16.8 1.4 23.0 4.9 14.1 31.9 41.9 19.3 11.1 27.6 12.1 31.0 40.6 22.4

Table 3: Comparison of weakly-supervised object detectors on PASCAL VOC 2007 in terms of test-set detection AP. The

results of [22] are based on external video data for training. The results for [20] are taken from [22].

Our results on VOC’10 follow those for VOC’07. Com-

pared to standard MIL training, multi-fold MIL training in-

creases average CorLoc from 36.4% to 41.6%, and the de-

tection AP from 16.4% to 18.5%.

4.3. Comparison to stateoftheart WSL detection

We now compare the results of our multi-fold MIL ap-

proach to the state of the art. The evaluation results in Ta-

ble 2 show that our multi-fold MIL training procedure leads

to the best CorLoc value of 38.8% on average, as well as

on 10 of the 20 classes. Compared to the 36.2% by Shi et

al . [25], we improve by 2.6% to 38.8%, and improve over

their results on 13 of the 20 classes. Pandey and Lazeb-

nik [20] reported results on only 14 classes; for 11 of those

our CorLoc values are higher than theirs. Our baseline re-

sult of 29.7% CorLoc in Table 1 for standard MIL training,

is comparable to the results of Siva et al . [27, 28, 29].

In Table 3 we compare to the state of the art in terms of

detection AP on the test set. Only two recent weakly su-

pervised methods [23, 29] were evaluated on the VOC 2007

test set. Russakovsky et al . [23] provides mAP over all 20

classes, but reports separate AP values for only six classes.

Other related work, e.g . [11], was evaluated only under sim-

plified conditions, such as using viewpoint information and

using images from a limited number of classes. Our multi-

fold MIL detection mAP of 22.4% is significantly better

than the 13.9% by Siva et al . [29], and the 15.0% by Rus-

sakovsky et al . [23]. Our result of 15.5% from Table 1 ob-

tained with standard MIL training is close to the result of

15.0% by Russakovsky et al . [23]. For per-class compari-

son we included results for five classes provided by Prest et

al . [22] based on WSL from external videos, and their eval-

uation of models provided by Pandey and Lazebnik [20].

4.4. Discussion and analysis

In our first analysis, we consider the performance of our

detector when progressively using more supervised infor-

mation, in order to quantify the performance gap between

weakly and fully supervised learning.

The most notable difficulty in WSL is that we have to de-

termine the object locations in the positive training images.

If, instead, in each positive training image we fix the ob-

ject hypothesis to the candidate window that best overlaps

with one of the ground-truth objects, we no longer need to

use MIL training, and we obtain a detection mAP of 30.8%.

This is an improvement of 8.4 mAP points w.r.t. the 22.4%

obtained with WSL.

We now consider the remaining factors that change be-

tween the fully supervised scenario and WSL. (i) WSL uses

only one instance per positive training image. If we use

the optimal candidate window for all instances performance

does not change significantly. (ii) In WSL hard-negative

mining is based on negative images only. If we also use pos-

itive images performance rises to 32.0% mAP. (iii) WSL is

based on the candidate windows which might not align well

with ground-truth objects. If the ground-truth windows are

used instead, performance rises to 32.8%. (iv) WSL does

not use positive training images marked as difficult or trun-

cated. If these are added to the fully supervised training,

performance rises to 35.4%. Using difficult and truncated

images in the original WSL setting, however, it is detrimen-

tal; since these instances are hard to recover automatically.

Our fully-supervised detection result of 35.4% mAP,

compares favorably to the 33.7% of DPMs [16].This shows

that our representation is reasonable, and that our WSL

mAP of 22.4% achieves 63% compared to the fully-
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Figure 4: AP vs . CorLoc for multi-fold MIL (left), and ratio

of WSL over supervised AP as a function of CorLoc (right).

supervised performance of 35.4% mAP.

In Figure 4 we analyze results of our weakly supervised

detector, and the relation to those obtained with optimal lo-

calization. In the left panel, we visualize the relationship

between the per-class CorLoc and AP values for our multi-

fold MIL detector. The three classes with lowest CorLoc

values are bottle, chair, and dining table. All of these ap-

pear in highly cluttered indoor images, and are often oc-

cluded by objects (dining table), or people (chair), or have

extremely variable appearance due to transparency (bottle).

In the right panel of Figure 4 we plot the ratio between our

WSL detection AP (22.4% mAP) and the AP obtained with

the same detector trained with optimal localization (30.8%

mAP). In this case there is also a clear relation with our Cor-

Loc values. The relation is quite different below and above

30% CorLoc. Below this threshold, the amount of noisy

training examples is so large that WSL essentially breaks

down. Above this threshold, however, the training is able

to cope with the noisy positive training examples, and the

weakly-supervised detector performs relatively well: on av-

erage above 80% relative to optimal localization.

In order to better understand the localization errors, we

categorize each of our object hypotheses in the positive

training images into one of the following cases: (i) correct

localization (overlap ≥ 50%), (ii) hypothesis completely in-

side ground-truth, (iii) reversed inclusion, (iv) none of the

above, but non-zero overlap, and (v) no overlap. In Fig-

ure 5 we show the frequency of these five cases, averaged

over all classes, and for the five object categories that have

maximum frequency for each of the five cases. As expected

from Figure 3, for cat most localization hypotheses are fully

contained within a ground-truth window. We observe that,

with 10.8% on average, the “no overlap” case is rare. This

means that 89.2% of our object hypotheses overlap to some

extent with a ground-truth object. This explains the fact that

detector performance is relatively resilient to frequent mis-

localization in the sense of the CorLoc measure.

4.5. Application to image classification

Since WSL requires image-wide labels only, the result-

ing object detectors can be used within a standard image

classification paradigm. We consider two approaches for

this purpose. The first one is classification-by-detection,
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Figure 5: Distribution of localization error types for five

example classes and averaged across all 20 VOC’07 classes

for the positive training images.

where we use the maximum detection score as the im-

age classification score. The second approach is detection-

driven classification, where we use the top-scoring window

as a data-driven and class-specific feature pooling region.

Our detection-driven approach is easily integrated in most

image classification methods. Below, we report the classifi-

cation performance averaged over all classes in VOC 2007.

Using classification-by-detection, we obtain a mAP

of 57.7%. Russakovsky et al . [23] obtained a similar

classification-by-detection result of 57.2%. When we in-

stead use a strong baseline image classification system with

full image FV descriptors over SIFT and local color de-

scriptors [24] and GMM vocabularies with 1,000 compo-

nents, we get a mAP of 63.3%. The fact that the base-

line full image descriptors performs significantly better than

classification-by-detection underlines the importance of us-

ing contextual information and rich high-dimensional de-

scriptors for image classification.

A common way of incorporating spatial information into

image descriptors is adding a spatial pyramid (SPM), see [6]

for a recent review. However, this may not always be an

effective technique, especially for high dimensional image

descriptors as in our case. Concatenating descriptors for

cells in 3×1 and 2×2 grids with the full image descriptors

improves performance only slightly to 63.4% mAP.

On the other hand, concatenating our detection-driven

descriptors with full image descriptors significantly im-

proves the performance to 65.6% mAP. This is a gain of

2.3 points over the baseline by adding one pooling region,

where the seven rigid pooling regions of SPM only lead to

a marginal improvement of 0.1 point. This shows that data-

driven and class-specific pooling strategies have a larger po-

tential than rigid pooling regions.

5. Conclusions

We presented a multi-fold multiple instance learning

approach for weakly supervised object detection, which

avoids the degenerate localization performance observed

without it. Second, we presented a contrastive background

descriptor, which forces the detection model to learn the

differences between the objects and their context.



We evaluated our approach and compared it to state-of-

the-art methods using the VOC 2007 dataset, a challeng-

ing benchmark for weakly-supervised detection. In terms of

correct localization on the positive training images, we im-

prove over the state of the art on 13 of the 20 classes, from

36.2% to 38.8% on average. Our results also improve the

test set detection performance of state-of-the-art weakly-

supervised methods. On the VOC 2010 dataset we observe

similar improvements by using our multi-fold multiple in-

stance learning method.

A detailed analysis of our results shows that, in terms

of train set localization performance, our approach attains

73% of the best performance that multiple instance learning

could achieve using our image representation.

When using our weakly supervised detector for feature

pooling in an FV-based image classification system, we ob-

tain 65.6% mAP, which improves the baseline performance

of 63.4% obtained using pooling across eight rigid regions.
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