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Abstract

A model–independent analysis for the exclusive, rare B → K∗ℓ+ℓ− decay is presented.
Systematically studied are the experimentally measured quantities, such as, branching
ratio, forward–backward asymmetry, longitudinal polarization of the final leptons, and
the ratio ΓL/ΓT of the decay widths when K∗ meson is longitudinally and transversally
polarized. The dependence of the asymmetry parameter α = 2ΓL/ΓT − 1 on the new
Wilson coefficients is also studied in detail. It is found that the afore–mentioned
physical observables are quite sensitive to the new Wilson coefficients. Therefore, once
we have the experimental data with high statistics and a deviation from the Standard
Model, we can interpret the source of such discrepancy.
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1 Introduction

Experimental discovery of the inclusive and exclusive B → Xsγ and B → K∗γ decays [1]

stimulated the study of the rare B decays in a new manner. These decays take place via

flavor–changing neutral current (FCNC) transition of b→ s, which occur only through loops

in the Standard Model (SM). For this reason the study of the FCNC decays can provide

sensitive test for investigation of the gauge structure of the SM at loop level. At the same

time these decays constitute quite a suitable tool in looking for new physics beyond the SM.

New physics can appear in rare decays through the Wilson coefficients which can take values

distinctly different from their SM counterparts or through the new structure in effective

Hamiltonian (see for example Refs. [2]–[11]).

Currently the main interest is focused on the rare meson decays for which the SM predicts

“large” branching ratios, and which can be potentially measurable in the near future. The

rare B → K∗ℓ+ℓ− (ℓ = e, µ, τ) decays are such decays. For these decays the experimental

situation is very promising [12] with e+e− and hadron colliders focusing only on the observa-

tion of exclusive modes with ℓ = e, µ and τ as the final states. At the quark level, the decay

B → K∗ℓ+ℓ− is described by b → sℓ+ℓ− transition. The inclusive b → sℓ+ℓ− transition in

framework of the specific extended models were investigated in many papers (see for example

[5, 11, 13, 14]). Note that the most general model independent analysis of the b → sℓ+ℓ−

decay, in terms of 10 types of local four–Fermi interactions, was performed in Ref. [9], which

has been extended to include two more non-local interactions in Ref. [10]. New physics

effects in the exclusive rare decays, B → K(∗)νν, have been systematically analyzed also in

Ref. [15].

It is well known that theoretical analysis of the inclusive decays is easy but their experi-

mental detection is difficult. For exclusive decays the situation is reversed, i.e., these decays

can easily be studied in experiments, but theoretically they have drawbacks and predictions

are model dependent. This is due to the fact that in calculating the branching ratios and

other observables for exclusive decays, we face the problem of computing the matrix element

of the effective Hamiltonian responsible for exclusive decays, between initial and final hadron

states. This problem is related to the non–perturbative sector of QCD and can be solved only

by means of a non–perturbative approach. These matrix elements have been investigated

in framework of different approaches such as chiral theory [16], three point QCD sum rules

[17], relativistic model by using light–front formalism [18], effective heavy quark theory [19]

and light cone QCD sum rules [20, 21].

The present paper is organized as follows: In Section 2 we give the most general form
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of the effective Hamiltonian. Then, using this Hamiltonian and the helicity amplitude for-

malism, we calculate the differential decay width, including the lepton mass effects. In this

Section we also present the expressions of the other physical observables, such as forward–

backward asymmetry, and the ratio of the decay widths when K∗ meson is polarized longi-

tudinally and transversally. Section 3 is devoted to the numerical analysis, and concluding

remarks are also in Section 3.

2 Theoretical Background

The matrix element of the B → K∗ℓ+ℓ− decay at the quark level is described by b→ sℓ+ℓ−

transition. Following the work [9, 10], we write the matrix element of the b → sℓ+ℓ−

transition as a sum of the SM and new physics contributions,

M = MSM +Mnew , (1)

where MSM is the SM part and is given by

MSM =
Gα√
2π
VtbV

∗

ts

{

(

Ceff
9 − C10

)

s̄LγµbL ℓ̄Lγ
µℓL +

(

Ceff
9 + C10

)

s̄LγµbL ℓ̄Rγ
µℓR

− 2Ceff
7 s̄iσµν

qν

q2
(msL+mbR) b ℓ̄γ

µℓ
}

, (2)

where R = (1+ γ5)/2 and L = (1− γ5)/2, and all of the Wilson coefficients are evaluated at

the scale µ = mb = 4.8 GeV.

In Ref. [9], it has been shown that there are ten independent local four–Fermi interactions

which may contribute to the process, and the explicit form of Mnew can be written as

Mnew =
Gα√
2π
VtbV

∗

ts

{

CLLs̄LγµbL ℓ̄Lγ
µℓL + CLRs̄LγµbL ℓ̄Rγ

µℓR + CRLs̄RγµbR ℓ̄Lγ
µℓL

+CRRs̄RγµbR ℓ̄Rγ
µℓR + CLRLRs̄LbR ℓ̄LℓR + CRLLRs̄RbL ℓ̄LℓR + CLRRLs̄LbR ℓ̄RℓL

+CRLRLs̄RbL ℓ̄RℓL + CT s̄σµνb ℓ̄σ
µνℓ+ iCTE s̄σµνb ℓ̄σαβℓǫ

µναβ

}

(3)

It should be noted that in the present analysis we will neglect the tensor type interactions

(i.e., terms with coefficients CT and CTE) since the numerical analysis which is carried in

Ref. [9] shows that the physical observables are not sensitive to the presence of the tensor

interactions.

From Eq. (1), in order to calculate the decay width for the exclusive B → K∗ℓ+ℓ− decay,

the following matrix elements

〈K∗ |s̄γµ(1± γ5)b|B〉 ,
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〈K∗ |̄isσµνqν(1 + γ5)b|B〉 , (strange quark mass is neglected)

and 〈K∗ |s̄(1± γ5)b|B〉

have to be calculated. These matrix elements can be written in terms of the form factors in

the following way

〈K∗(pK∗, ε) |s̄γµ(1± γ5)b|B(pB)〉 =

−ǫµνρσε∗νpρK∗qσ
2V (q2)

mB +mK∗

± iε∗µ(mB +mK∗)A1(q
2)∓ i(pB + pK∗)µ(ε

∗q)
A2(q

2)

mB +mK∗

∓iqµ
2mK∗

q2
(ε∗q)

[

A3(q
2)−A0(q

2)
]

, (4)

〈K∗(pK∗, ε) |s̄iσµνqν(1 + γ5)b|B(pB)〉 =

4ǫµνρσε
∗νpρK∗qσT1(q

2) + 2i
[

ε∗µ(m
2
B −m2

K∗)− (pB + pK∗)µ(ε
∗q)
]

T2(q
2)

+ 2i(ε∗q)

[

qµ − (pB + pK∗)µ
q2

m2
B −m2

K∗

]

T3(q
2) , (5)

where ε is the polarization vector of K∗ meson, and q = pB −pK∗ is the momentum transfer.

In order to ensure finiteness of (4) at q2 = 0, we demand that A3(q
2 = 0) = A0(q

2 = 0). For

calculation of the matrix element 〈K∗ |s̄(1± γ5)b|B〉, we multiply both sides of Eq. (4) by

qµ and use equation of motion. Neglecting the strange quark mass, we get

〈K∗(pK∗, ε) |s̄(1± γ5)b|B(pB)〉 =
1

mb

{

∓ i(ε∗q)(mB +mK∗)A1(q
2)± i(mB −mK∗)(ε∗q)A2(q

2)

±2imK∗(ε∗q)
[

A3(q
2)− A0(q

2)
] }

. (6)

Using the equation of motion, the form factor A3 can be written as a linear combination of

the form factors A1(q
2) and A2(q

2) (see Ref. [17])

A3(q
2) =

mB +mK∗

2mK∗

A1(q
2)− mB −mK∗

2mK∗

A2(q
2) .

Substituting this relation in the matrix element 〈K∗ |s̄(1± γ5)b|B〉, we get

〈K∗(pK∗, ε) |s̄(1± γ5)b|B(pB)〉 =
1

mb

{

∓ 2imK∗(ε∗q)A0(q
2)
}

. (7)

Finally, for the matrix elements of B → K∗ℓ+ℓ− decay we have

M =
Gα

4
√
2π
VtbV

∗

ts

{[

− ǫµνρσε
∗νpρK∗qσ

2V (q2)

mB +mK∗

− iε∗µ(mB +mK∗)A1(q
2)

+i(pB + pK∗)µ(ε
∗q)

A2(q
2)

mB +mK∗

+ iqµ
2mK∗

q2
(ε∗q)(A3 − A0)

]
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×
[

(Ceff
9 − C10 + CLL)ℓ̄γµ(1− γ5)ℓ+ (Ceff

9 + C10 + CLR)ℓ̄γµ(1 + γ5)ℓ
]

−4
Ceff

7

q2
mb

[

4ǫµνρσε
∗νpρK∗qσT1(q

2) + 2i
(

ε∗µ(m
2
B −m2

K∗) + (pB + pK∗)µ(ε
∗q)
)

T2(q
2)

+ 2i(ε∗q)

(

qµ − (pB + pK∗)µ
q2

m2
B −m2

K∗

)

T3(q
2)

]

ℓ̄γµℓ (8)

+

[

− ǫµνρσε
∗νpρK∗qσ

2V (q2)

mB +mK∗

+ iε∗µ(mB +mK∗)A1(q
2)− i(pB + pK∗)µ(ε

∗q)
A2(q

2)

mB +mK∗

− iqµ
2mK∗

q2
(ε∗q)(A3(q

2)−A0(q
2))

]

[

CRLℓ̄γµ(1− γ5)ℓ+ CRRℓ̄γµ(1 + γ5)ℓ
]

+
1

mb

[

− 2imK∗(ε∗q)A0(q
2)
][

(CLRLR − CRLLR)ℓ̄(1 + γ5)ℓ+ (CLRRL − CRLRL)ℓ̄(1− γ5)ℓ
]

}

.

Using the matrix element of B → K∗ℓ+ℓ− decay (see Eq. (8)) and the helicity amplitude

formalism (for more detail see Refs. [22, 23]) for the differential decay rate width, we get

dΓ

dq2dx
=

G2α2

214π5m3
B

|VtbV ∗

ts|2 vλ1/2(m2
B, q

2, m2
K∗)

×
{

∣

∣

∣M+−

+

∣

∣

∣

2
+
∣

∣

∣M+−

−

∣

∣

∣

2
+
∣

∣

∣M++
−

∣

∣

∣

2
+
∣

∣

∣M++
+

∣

∣

∣

2
+
∣

∣

∣M−+
+

∣

∣

∣

2
+
∣

∣

∣M−+
−

∣

∣

∣

2
+
∣

∣

∣M−−

+

∣

∣

∣

2

+
∣

∣

∣M−−

−

∣

∣

∣

2
+
∣

∣

∣M++
0

∣

∣

∣

2
+
∣

∣

∣M+−

0

∣

∣

∣

2
+
∣

∣

∣M−+
0

∣

∣

∣

2
+
∣

∣

∣M−−

0

∣

∣

∣

2
}

, (9)

where superscripts denote helicities of the leptons and subscripts correspond to the helicity

of the K∗ meson. In Eq. (9),

λ(m2
B, q

2, m2
K∗) = m4

B +m4
K∗ + q4 − 2m2

Bq
2 − 2m2

Bm
2
K∗ − 2m2

K∗q2 ,

q2 = (pB − pK∗)2 ,

v =
√

1− 4m2
ℓ/q

2, (velocity of the lepton), and

x = cos θ, (θ = angle between K∗ and ℓ−).

The explicit forms of Mλℓ λℓ

λV
are as follows:

M++
±

= ±
√
2mℓ sin θ

{

(2Ceff
9 + CLL + CLR)H± + 4Ceff

7

mb

q2
H± + (CRR + CRL)h±

}

, (10)

M+−

±
= (−1± cos θ)

√

q2

2

{[

2Ceff
9 + CLL + CLR + v(2C10 + CLR − CLL)

]

H±

+4Ceff
7

mb

q2
H± +

[

CRL + CRR + v(CRR − CRL)
]

h±
}

, (11)

M−+
±

= (1± cos θ)

√

q2

2

{[

2Ceff
9 + CLL + CLR + v(−2C10 + CLL − CLR)

]

H±

5



+4Ceff
7

mb

q2
H± +

[

CRL + CRR + v(CRL − CRR)
]

h±
}

, (12)

M−−

±
= (∓

√
2mℓ sin θ)

{

(2Ceff
9 + CLL + CLR)H± + 4Ceff

7

mb

q2
H±

+(CRL + CRR)h±
}

, (13)

M++
0 = 2mℓ cos θ

{

(2Ceff
9 + CLL + CLR)H0 − 4Ceff

7

mb

q2
H0 + (CRL + CRR)h0

}

+2mℓ

{

(2C10 − CLL + CLR)H
0
S + (−CRL + CRR)h

0
S

}

(14)

+
2

mb

√

q2
{[

√

q2(1− v)(CLRLR − CRLLR)−
√

q2(1 + v)(CLRRL − CRLRL)
]

H0
S

}

,

M+−

0 = −
√

q2 sin θ
{[

(Ceff
9 − C10 + CLL)(1− v) + (Ceff

9 + C10 + CLR)(1 + v)
]

H0

−4Ceff
7

mb

q2
H0 +

[

CRL(1− v) + CRR(1 + v)
]

h0
}

, (15)

M−+
0 = −

√

q2 sin θ
{[

(Ceff
9 − C10 + CLL)(1 + v) + (Ceff

9 + C10 + CLR)(1− v)
]

H0

−4Ceff
7

mb

q2
H0 +

[

CRL(1 + v) + CRR(1− v)
]

h0
}

, (16)

M−−

0 = −2mℓ cos θ
{

(2Ceff
9 + CLL + CLR)H0 − 4Ceff

7

mb

q2
H0 + (CRL + CLL)h0

}

+2mℓ

{

(2C10 − CLL + CLR)H
0
S + (CRR − CRL)h

0
S

}

(17)

+
2

mb

√

q2
{[

√

q2(1 + v)(CLRLR − CRLLR)−
√

q2(1− v)(CLRRL − CRLRL)
]

H0
S

}

,

where

H± = ±λ1/2 V (q2)

mB +mK∗

+ (mB +mK∗)A1(q
2) , (18)

H0 =
1

2mK∗

√
q2

[

− (m2
B −m2

K∗ − q2)(mB +mK∗)A1(q
2) + λ

A2(q
2)

mB +mK∗

]

, (19)

H0
S =

λ1/2

2mK∗

√
q2

[

− (mB +mK∗)A1(q
2) +

A2(q
2)

mB +mK∗

(m2
B −m2

K∗)

+ 2mK∗

[

A3(q
2)− A0(q

2)
]

,

≡ λ1/2

2mK∗

√
q2

[

−2mK∗A0(q
2)
]

(20)

H± = 2
[

±λ1/2T1(q2) + (m2
B −m2

K∗)T2(q
2)
]

, (21)

6



H0 =
1

mK∗

√
q2

{

(m2
B −m2

K∗)(m2
B −m2

K∗ − q2)T2(q
2)

− λ

[

T2(q
2) +

q2

m2
B −m2

K∗

T3(q
2)

]}

, (22)

h± = H± (A1 → −A1, A2 → −A2) , (23)

h0 = H0 (A1 → −A1, A2 → −A2) . (24)

In the present paper, we study the dependence of the following measurable physical

quantities, such as

(i) Γ+/Γ−,

(ii) ΓL/ΓT = Γ0/(Γ+ + Γ−),

(iii) the polarization parameter [2Γ0/(Γ+ + Γ−)− 1], and

(iv) the lepton forward–backward asymmetry and the longitudinal lepton polarization,

on the different “new” Wilson coefficients. Here the subscripts in the decay width denotes

the helicities of the K∗ meson. From Eq. (9), we can easily obtain the explicit expressions

for Γ+, Γ− and Γ0 as

Γ± =
G2α2

214π5m3
B

|VtbV ∗

ts|2
∫

dq2
∫

dx vλ1/2
{

∣

∣

∣M+−

±

∣

∣

∣

2
+
∣

∣

∣M++
±

∣

∣

∣

2

+
∣

∣

∣M−+
±

∣

∣

∣

2
+
∣

∣

∣M−−

±

∣

∣

∣

2
}

, (25)

where the upper(lower) subscript in Γ corresponds to M+(M−) and

Γ0 =
G2α2

214π5m3
B

|VtbV ∗

ts|2
∫

dq2
∫

dx vλ1/2
{

∣

∣

∣M+−

0

∣

∣

∣

2
+
∣

∣

∣M++
0

∣

∣

∣

2

+
∣

∣

∣M−+
0

∣

∣

∣

2
+
∣

∣

∣M−−

0

∣

∣

∣

2
}

. (26)

From Eqs. (25) and (26), the expressions for the ratios Γ+/Γ−, ΓL/ΓT = Γ0/(Γ+ + Γ−) and

the polarization parameter, which is equal to α ≡ 2ΓL/ΓT −1, can easily be obtained. These

quantities are separately measurable from the experiments. In further analysis we will study

the dependence of the branching ratio on new Wilson coefficients which are related to the

decay width by the relation BR(B → K∗ℓ+ℓ−) = Γ(B → K∗ℓ+ℓ−) τB, where τB is the life

time of the B meson.

The lepton forward–backward asymmetry, AFB, is one of the most useful tools in search

of new physics beyond the SM. Especially the determination of the position of the zero

value for AFB can predict possibly new physics contributions. Indeed, existence of the new

7



physics can be confirmed by the shift in the position of the zero value of the forward–

backward asymmetry [7]. Therefore, in the present work we analyze with special emphasis

the dependence of AFB on the different “new” Wilson coefficients. The lepton forward–

backward asymmetry is defined in the following way

d

dq2
AFB(q

2) =

∫ 1

0
dx

dΓ

dq2dx
−
∫ 0

−1
dx

dΓ

dq2dx
∫ 1

0
dx

dΓ

dq2dx
+
∫ 0

−1
dx

dΓ

dq2dx

. (27)

Another very informative quantity in search of new physics is the final lepton polarization,

as shown in Ref. [10]. Here we restrict ourselves only to the study of the longitudinal

polarization of the τ–lepton. The expression for longitudinal polarization can be calculated

from Eq. (9),

PL =

∫ 1

0
dx

{

[

∣

∣

∣M−+
±

∣

∣

∣

2
+
∣

∣

∣M−−

±

∣

∣

∣

2
+
∣

∣

∣M−+
0

∣

∣

∣

2
+
∣

∣

∣M−−

0

∣

∣

∣

2
]

−
[

∣

∣

∣M+−

±

∣

∣

∣

2
+
∣

∣

∣M++
±

∣

∣

∣

2
+
∣

∣

∣M+−

0

∣

∣

∣

2
+
∣

∣

∣M++
0

∣

∣

∣

2
]

}

vλ1/2

∫ 1

0
dx

{

[

∣

∣

∣M−+
±

∣

∣

∣

2
+
∣

∣

∣M−−

±

∣

∣

∣

2
+
∣

∣

∣M+−

±

∣

∣

∣

2
+
∣

∣

∣M++
±

∣

∣

∣

2
+
∣

∣

∣M−+
0

∣

∣

∣

2
+
∣

∣

∣M−−

0

∣

∣

∣

2
+
∣

∣

∣M+−

0

∣

∣

∣

2
+
∣

∣

∣M++
0

∣

∣

∣

2
]

}

vλ1/2
.

3 Numerical Analysis and Conclusions

Having the explicit expressions for the physically measurable quantities, in this Section we

will study the dependence of these quantities on the new Wilson coefficients in Mnew, Eq.

(3). The values of the main input parameters, which appear in the expression for the decay

widths Γ0, Γ+, Γ−, AFB and the polarization parameter α, are:

mb = 4.8 GeV, mc = 1.35 GeV, mτ = 1.78 GeV,

mµ = 0.105 GeV, mB = 5.28 GeV, mK∗ = 0.892 GeV.

We use the following values for the Wilson coefficients of the SM:

CNDR
9 = 4.153, C10 = −4.546, C7 = −0.311,

which correspond to the next-to-leading QCD corrections [24, 25]. The renormalization point

µ and the top quark mass are set to be

µ = mb = 4.8 GeV, mt = 175 GeV.
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(We follow Refs. [26]–[30] in taking into account the long–distance effects of the charmonium

states). For the form factors, we have used the results of the works [20, 21]. Here we would

like to stress that, throughout numerical analysis the central values of the input parameters

are used and their theoretical errors, especially the ones related to the form factors, might

be sizeable, but are not taken into account in the present work.

Let us first study the change in the differential decay rate when the corresponding Wilson

coefficients change. We assume that all new Wilson coefficients CX are real, i.e., we do not

introduce any new physics phase in addition to the one present in the SM. In Figs. 1–3

(Figs. 4–6), we change CLL, CLR, CRR, CRL, CLRLR and CLRRL for the B → K∗µ+µ−

(B → K∗τ+τ−) decays. From these Figures, we can easily see that, far from resonance

regions, dBR/dq2 is more strongly dependent on CLL and also on CRL than on the other

CX ’s. This behavior can be explained as follows:

(i) Considering B → K∗µ+µ− decay, and neglecting the terms proportional to the lepton

mass, the terms coming from CLL and CRL are (see Eqs. (10)–(17))

|MCLL
|2 = (1± cos θ)2

q2

2

∣

∣

∣

∣

∣

2(Ceff
9 − C10 + CLL)H± + 4Ceff

7

mb

q2
H±

∣

∣

∣

∣

∣

2

+ sin2 θ q2
∣

∣

∣

∣

∣

2(Ceff
9 − C10 + CLL)H0 − 4Ceff

7

mb

q2
H0

∣

∣

∣

∣

∣

2

, (28)

|MCRL
|2 = (1± cos θ)2

q2

2

∣

∣

∣

∣

∣

[

2(Ceff
9 − C10)H± + 4Ceff

7

mb

q2
H± + 2CRLh±

∣

∣

∣

∣

∣

2

+ sin2 θ q2
∣

∣

∣

∣

∣

2(Ceff
9 − C10)H0 − 4Ceff

7

mb

q2
H0 + 2CRLh0

∣

∣

∣

∣

∣

2

. (29)

Far from the resonance region, for example q2 ≃ 5 GeV2, Re(Ceff
9 −C10) ≃ 9.5 and Re(Ceff

9 +

C10) ≃ 0.4. Therefore, the interference terms between the terms proportional to (Ceff
9 −C10)

and CLL (CRL) are large and for this reason the contributions coming from CLL and CRL

are large. From these Figures we also see that the contribution of CLL is constructive

(destructive) when CLL = |C10| (CLL = − |C10|). The situation for CRL is opposite to the

previous case, i.e., its contribution is constructive (destructive) when CLL = − |C10| (CLL =

|C10|).
(ii) For the B → K∗τ+τ− decay the situation is similar to the B → K∗µ+µ− transition,

but slightly different. Namely, in this case the largest contribution comes from CLL and the

contribution of the CRL becomes equal to the contributions that come from CRR, CLR, and

etc. This situation can be explained by the fact the term ∼ (1− v2), which is very small for

the muon case, gives destructive contribution in the SM.
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In Fig. 7, we investigate the dependence of the partially integrated branching ratio BR on

the new Wilson coefficients. The range for the integration is chosen 1 GeV2 < q2 < 8 GeV2

for the B → K∗µ+µ− decay and 15 GeV2 < q2 < 20 GeV2 for B → K∗τ+τ− channel, in

order to avoid the long distance contributions due to the J/ψ and its excitations. For the

B → K∗µ+µ− case, it follows from Fig. 7 that the partially integrated branching ratio BR
depends strongly on CLL and CRL, but for the B → K∗τ+τ− decay it depends strongly only

on CLL, which is consistent with the previous results for dBR/dq2. Dependence on the other

coefficients is rather weak. From these Figures it follows that the contributions of CLL and

CRL to BR are positive for CLL > 0 and CRL < 0, and negative for CLL < 0 and CRL > 0.

In Figs. 8–10 (Figs. 11–13) we plot the dependence of the lepton forward–backward

asymmetry on the new Wilson coefficients, within the range − |C10| ≤ CX ≤ |C10|, for the
B → K∗µ+µ− (B → K∗τ+τ−) decay. The experimental bounds on the branching ratio of

the B → K∗µ+µ− and the Bs → µ+µ− decays [31] suggest that this is the right order of

magnitude range for the vector and scalar Wilson coefficients. For the B → K∗µ+µ− case,

it follows form Figs. 8–10 that the lepton forward-backward asymmetry is more sensitive

to the CLL, CLR and CRL than to the other CX ’s. We emphasize that when CLL and CLR

are positive then the zero point of dAFB/dq
2 is shifted to the right, and when CLL and

CLR are negative, it shifts to the left from its corresponding SM value. In other words,

the determination of the zero point of the differential asymmetry tells us not only about

the existence of new physics, but it also can fix the sign of the new Wilson coefficients.

From these Figures, we also see that the lepton forward–backward asymmetry has a weak

dependence on the other Wilson coefficients. From Figs. 11–13, we can deduce the following

results for the B → K∗τ+τ− decay:

(i) Position of the zero value of the dAFB/dq
2 for the B → K∗τ+τ− decay can be useful

for extracting only CLR.

(ii) The value of the dAFB/dq
2 is very sensitive (excluding the resonance region) to CRR

and CLRRL. In other words, analyzing the zero point and magnitude of the dAFB/dq
2 allows

us in principle to determine different CX ’s.

As we have noted earlier, the experimentally measurable quantities, Γ+/Γ−, ΓL/ΓT and

PL, can be useful for distinguishing the effects of new physics from the ones of the SM. In

Figs. 14–15, we present the dependence of the ratios Γ+/Γ− and ΓL/ΓT on CX ’s for the

B → K∗µ+µ− and B → K∗τ+τ− decays, respectively. The main difference compared to the

previous analysis is that the values Γ+/Γ− and ΓL/ΓT are more sensitive to the coefficient

CRL. (The result for the SM can be obtained by substituting CX = 0.) From these Figures,
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we observe that the ratio ΓL/ΓT , when CRL is varied between -4 and 4, changes between

1 and 4.5. Therefore, the measurement of this ratio in experiments can yield unambiguous

information about the existence of new physics. In the B → K∗τ+τ− decay, the ratio Γ+/Γ−

is again more sensitive to the coefficient CRL, while the ratio ΓL/ΓT is more sensitive to the

coefficients CLRLR and CLRRL.

Finally, in Fig. 16 we present the dependence of the longitudinal polarization PL of

τ on the new coefficients CX ’s. We see that PL is sensitive to all the coefficients except

the coefficient CLRLR. The dependence of PL on different coefficients is not the same. For

example, PL always increases when CRL and CLRRL change in the region (−4, 4). However,

PL first decreases when CLL, CLR and CRR increase from -4 to 0, and then increases when

the coefficients increase from 0 to 4.

To summarize, in the present work the most general model independent analysis of the

exclusive B → K∗ℓ+ℓ− decay is presented. This exclusive decay is known to be very clean ex-

perimentally and will be measured at the present asymmetric B factories and future hadronic

B factories, HERA-B, B-TeV and LHC-B. Moreover, the B → K∗ℓ+ℓ− decay is very sen-

sitive to the various extensions of the Standard Model. We have studied the B → K∗ℓ+ℓ−

decay in a model independent manner. The sensitivity to the new coefficients of the dif-

ferential and partially integrated branching ratios, and forward–backward asymmetries are

systematically studied. It is observed that the differential and partially integrated branching

ratio for B → K∗µ+µ− decay is more strongly dependent on CLL and CRL than on the other

CX ’s. The reason for such a strong dependence can be explained by the large interference

between the terms proportional to (Ceff
9 –C10) and CLL (CRL). For B → K∗τ+τ− case, the

partially integrated differential branching ratio is most sensitive to CLL. This situation can

be explained by the fact that the terms ∼ (1− v2) give destructive contribution and, there-

fore, the contributions of the terms ∼ CRL practically become equal to the contributions

from the other coefficients. From an analysis of the position of the zero value of the lepton

forward–backward asymmetry we can determine not only the magnitude, but also the sign

of the new Wilson coefficients.

The other experimentally measurable quantities, ΓL/ΓT and Γ+/Γ−, have also been stud-

ied. It is found that Γ+/Γ− and ΓL/ΓT are sensitive to the CRL for the B → K∗µ+µ− decay.

On the other hand, for the B → K∗τ+τ− decay, Γ+/Γ− is more strongly dependent on CRL

as in the B → K∗µ+µ− case, while ΓL/ΓT is more sensitive to the coefficients CLRLR or

CLRRL. As the final concluding remark, we state that, from the combined analyses of par-

tially integrated differential branching ratio, lepton forward–backward asymmetry and ratios
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of Γ+/Γ− and ΓL/ΓT for the B → K∗µ+µ− and B → K∗τ+τ− decays, we can unequivocally

determine the existence of new physics beyond the Standard Model, and in particular we

can obtain information about the various new Wilson coefficients.
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Figure captions

Fig. 1. Differential branching ratio, dBR / dq2 for B → K∗µ+µ−. The thick solid lines in-

dicates standard model case, i.e, CX = 0. The thin solid, dashed, dotted and dot-dashed line

correspond to CX = −C10,−0.7×C10, 0.7×C10, C10 cases, respectively. Here (a) CX = CLL

and (b) CX = CLR.

Fig. 2. Same as Fig. 1. Here (a) CX = CRR and (b) CX = CRL.

Fig. 3. Same as Fig. 1. Here (a) CX = CLRLR and (b) CX = CLRRL.

Fig. 4. Differential branching ratio, dBR / dq2 for B → K∗τ+τ−. The thick solid lines indi-

cates standard model case, i.e, CX = 0. The thin solid, dashed, dotted and dot-dashed line

correspond to CX = −C10,−0.7×C10, 0.7×C10, C10 cases, respectively. Here (a) CX = CLL

and (b) CX = CLR.

Fig. 5. Same as Fig. 4. Here (a) CX = CRR and (b) CX = CRL.

Fig. 6. Same as Fig. 4. Here (a) CX = CLRLR and (b) CX = CLRRL.

Fig. 7. The dependence of the partially integrated branching ratio on the new Wilson

coeffecients. The range for the integration is chosen (a) 1 GeV2 < q2 < 8 GeV2 for the

B → K∗µ+µ− decay and (b) 15 GeV2 < q2 < 20 GeV2 for the B → K∗τ+τ− decay. The

thick solid, thin solid, thick dashed, thin dashed, dotted and dot-dashed line correspond to

CX = CLL, CLR, CRL, CRR, CLRLR and CLRRL, respectively.

Fig. 8. Differential forward-backward asymmetry, dAFB / dq2 for B → K∗µ+µ−. The

thick solid lines indicates standard model case, i.e, CX = 0. The thin solid, dashed, dotted

and dot-dashed line correspond to CX = −C10,−0.7×C10, 0.7×C10, C10 cases, respectively.

Here (a) CX = CLL and (b) CX = CLR.

Fig. 9. Same as Fig. 8. Here (a) CX = CRR and (b) CX = CRL.

Fig. 10. Same as Fig. 8. Here (a) CX = CLRLR and (b) CX = CLRRL.
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Fig. 11. Differential forward-backward asymmetry, dAFB / dq2 for B → K∗τ+τ−. The

thick solid lines indicates standard model case, i.e, CX = 0. The thin solid, dashed, dotted

and dot-dashed line correspond to CX = −C10,−0.7×C10, 0.7×C10, C10 cases, respectively.

Here (a) CX = CLL and (b) CX = CLR.

Fig. 12. Same as Fig. 11. Here (a) CX = CRR and (b) CX = CRL.

Fig. 13. Same as Fig. 11. Here (a) CX = CLRLR and (b) CX = CLRRL.

Fig. 14. The dependence of (a) Γ+ / Γ− and (b) ΓL / ΓT on the new Wilson coeffe-

cients for B → K∗µ+µ− decay. The thick solid, thin solid, thick dashed, thin dashed, dotted

and dot-dashed line correspond to CX = CLL, CLR, CRL, CRR, CLRLR and CLRRL cases.

Fig. 15. The dependence of (a) Γ+ / Γ− and (b) ΓL / ΓT on the new Wilson coeffe-

cients for B → K∗τ+τ− decay. The thick solid, thin solid, thick dashed, thin dashed, dotted

and dot-dashed line correspond to CX = CLL, CLR, CRL, CRR, CLRLR and CLRRL cases.

Fig. 16. The dependence of τ polarization on the new Wilson coeffecients CX for B →
K∗τ+τ− decay. The thick solid, thin solid, thick dashed, thin dashed, dotted and dot-dashed

line correspond to CX = CLL, CLR, CRL, CRR, CLRLR and CLRRL cases.
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