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fragmentation or shattering with no large, colmergagments left [1, 11]. Although the shattering
mechanism has not been explicitly defined in the fiteeg this may be physically similar to failure of
brittle solids observed under very high compreskyeels where failure waves reduced spall (tensile)
and shear strength of brittle material, drasticaliysing inelastic, shear-iaded micro-cracking [14—

16]. King [17] defines the breakage mode “shattering” as a series of fracture steps, induced by a rapi
application of compressive stress, in which there is a sequential re-breakage of successive generatic
of daughter fragments until all of the energy available for fracture is dissipated. However, re-breakagt
events have not been sufficiently elucidated within the context of single-particle studies because of th
difficulty in monitoring the fragmentation sequence in an extremely short duration of impact loading.
There might still be some indirect evidence from éhstdies that could be linked to re-breakage. For
example, the reason for the secondary crack formatis related to the unbalanced stresses in high-
velocity, single-particle impact [6, 7] and toettcontinued loading on meridian-fracture-related
fragments by compression tester [1, 10]. Therefdespite the limited information, it may be possible
that the aforementioned breakage patterns inheririlyde re-breakage events. Kapur et al. [18] also
supported re-breakage of progeny particles and stated that re-breakage at high impact energy lev
provide self-similar product size distributions.

Although the abovementioned studies widely explain the breakage phenomena of brittle solids
there is generally lack of clear mathematical relations between any breakage mode and it
corresponding fragment distribution. The objective &f gaper is to find quiative evidences for the
modes of breakage mentioned above, through impact-related breakage parameters and self-simil
progeny distributions. For this purpose, drop-weight tests were performed on six single-size classe
(particle sizes ranging from 25.4 to 3.35 mm) oftRod cement clinker. Each size class was stressed
with various impact energy levels, and the cqroesling product size distritions of each energy
level were decomposed to breakage probability pnagieny size distributions, both in discrete and
cumulative forms, for further evaluation.

1.1 Breakage probability and breakage function

For any given single-size class of particles, two important breakage parameters can be generated frc
the product size distributions of single-partidchepact: (a) breakage qoability and (b) breakage
function. The former can be defined as the cumulative mass fraction of single-size particles which ar
broken upon application of a specific impact gyed/g, kJ/kg or kwh/t). Impact breakage function
can be represented in two different forms: the discrete breakage function, denotgdaas the
cumulative breakage function, denotedBas The former is the mass percentage (or fraction) of
material broken from a single-size feed (indexed as ‘1’) which, upon breakage, goes to a finer siz
interval "

b =pi/P,, wherei>1 (D)

wherep; is the mass percentage of product retained in size d¢las®d P, is the cumulative mass
percentage of breakage product passing from the upper sieve of size interval ‘2. Equation 1 can b
graphically shown by plottindp;; values against the geometric amesizes of the corresponding
intervals . This function represents the discrete size distribution of progeny particles. The
cumulative breakage functioB,s, is the cumulative mass fraction of progeny fragments broken from
size 1, which appears less than the upper size of size intérval *

Bi1=P;/P,, wherei> 1 (2)

where Pi is the cumulative mass percentage of materials passing from the upper sieve of size interv
‘i’. Obviously, this will yield the cumulative size distribution of progeny particles. Equation 2 can be
graphically represented by plotting ed8h value against the corresponding upper sieve size of size
interval i’.
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2 Materials and methods

Six size fractions (-25.4+19.0, -19.0+12.7, -12.%89.-9.53+6.35, -6.35+4.7 and -4.7+3.35 mm) of
Portland cement clinker were used as the experimental material. The oxide contents of each siz
fractionswere measured by a Spectro 1Q X-rayrisoence (XRF) spectrometer and the results are
given in Table 1. These results showed that the chemical compositions of the tested size classes we
very similar, inferring material homogeneity in all of the tested size fractions.

Table 1.Chemical composition of the experimental single-size clinker fractions.

Clinker Percentage in the size fractions
Constituents | -25.4+19.0 | -19.0+12.7 | -12.7+9.53 [ -9.53+6.35 [ -6.35+4.7 | -4.7+3.35
mm mm mm mm mm mm
CaO 66.39 65.51 67.35 64.62 67.78 64.93
SiO, 19.12 19.77 18.59 20.02 17.35 20.33
Fe,0s 3.62 3.62 3.82 3.53 3.63 3.69
Al,O4 5.13 5.56 4.62 5.82 5.36 5.75
SO, 1.59 1.33 151 1.31 1.34 1.26
MgO 2.28 2.37 2.03 2.43 1.32 2.43
()Lr?:ér';l‘t’lzf]) 0.02 0.01 0.01 0.01 0.02 0.01

The drop-weight test was used to perform sigigticle breakage tests. The test consists of
dropping a cylindrical steel weight from a knownidig to a single particle placed on a steel base
plate. The specific impact ener@y (kJ/kg) imparted on to a single-size class of particles can be
determined by varying the drop weight and the drop height using Eq. 3.

Eis = [0.00981M:(ho-hy)]/m 3)

whereM is the mass of the drop weight (kdp), is the initial drop height (mm) measured from the
surface of anvil to the bottom of the drop weidhtis the offset height (mm) between the bottom of
the drop weight and surface of the anvil after impacting on the particlen entthe average weight of

a particle in the set of tested particles (g). For each experiment, 1, 2 or 20 kg drop-weights along wit
drop-heights ranging from 0.03 to 1 m were used to produce a wide raBgeTdie experimental set

of specific impact energies and the number of padistressed for each size class is given in Table 2.

Table 2.E; levels and the number of particles stressed for each sample class.

Fracions (mm) E;, (kJ/kg) Number of particles stressed
-25.4+19.0 0.04,0.18, 0.40, 0.79, 1.48, 2.12, 3.17, 4.46, 6.26 20-50
-19.0+12.7 0.11, 0.22, 0.40, 0.79, 1.58, 3.17, 6.4, 8.89 150-180
-12.7+9.53 0.11,0.40, 0.79, 1.58, 2.23, 3.17, 5.40, 6.12, 9.18 100-200
-9.53+6.35 0.36,0.79, 1.98, 3.31, 7.96, 15.66 200-250
-6.35+4.7 0.83, 1.62, 3.17, 6.26, 12.24, 18.36, 24.77 250-350
-4.7+3.35 1.94,3.92,7.85, 11.95, 17.68, 24.08, 27.40 300-350
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3 Results and discussion

Figure 1 shows the distribution of discrete breakage functions for all of the size classes at a range ¢
specific impact energies. The dibuitions are left-skewed (the long tail on the left) with a distinct
major peak located at the coarse end of the breakage product size range. The peak becomes sho
and wider, and shifts towards the finer sizes with an increase in the specific energy input. From th
fragmentation pattern viewpoint, the sequentigdnsition from meridian/secondary cracks to
oblique/radial cracks and shatteringegdately explains this variation in the shape of the distributions
since the meridian/secondary cracks forming at low §pesmergy inputs are expected to give mainly

a few coarse fragments of similar size. Wherebbque/radial cracks andhattering at relatively
higher energy inputs are expected to produce many fragments having a wide size range. In fac
a similar variation in the fragment size distributimas also observed by Salman et al. [19] in the
transition from low to high velocity impaétagmentation of aluminum oxide particles.

Figure 1. Discrete breakage functions of all size classes. B.P.= breakage probability.
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Figure 2 also shows that the discrete breakage functipy® approach a limiting distribution
around 500 um, irrespective of the parent particle size if the specific energy input is increased abov
12 kJ/kg. The limiting distribution may arise by the following reasons: First, the progeny will become
so small that successive fracturing might be diffidulterestingly, Yashima et al. [20] reported in an
earlier study on single-particle impact breakage of natural materials that the specific fracture energie
increased rapidly for particles less than 500 um. Secondly, successive breakage events eventua
form a pile of fragments between the flat surfaces of the anvil and the drop weight, such that particle
bed breakage, rather than single-particle breakage, prevails either during the later stages of tt
primary impact or during the impacts after rebounds of the drop weight.

Figure 2. The discrete breakage functions remaining fixed for the specific energy inputs higher than
12 kJ/kg.

As the mode of breakage for a single particldependent to a large extem the applied impact
energy, it seems logical that the size distribution of progeny fragments must be non-similar dependin
on the mode of breakage the netlparticle undergoes. Still, it is noteworthy that even though the
mother particle size is different, the size distributions of progeny fragments change in the same
manner (Figure 1). This brings out the question et particle, irrespective of its size, will pass
through the same, distinct modes of breakagem(freeridian cracking to oblique/radial cracks and
shattering) as the breakage energy increases. A grapiéeais of testing this could be to plot a set of
cumulative breakage functions obtained at different levels of the impact energy against a normalize
size, that is, a particle size rescaled by the median fragmentdsigeof the breakage function.

If these set of normalized curves from such plots fall onto either the same curve or a narrow banc
then the distributions are called self-similar reflegtsimilar breakage patterns [21]. Figure 3 shows
semi-logarithmic plots of cumulative breakage fumes against the normalized size for the whole set

of drop-weight breakage data obtained under various combinations of mother particle size and applie
specific impact energy. The plots show that the cumulative breakage functions are non-similar
indicating different breakage patterns depending on the prevailing breakage mode. However, if the
data are re-plotted in groups of similar bragé probabilities (Figure 4), we obtain self-similar
distributions regardless of mother particle sizel déne specific impact energy, indicating similar
breakage patterns. In fact, this finding was previously supported by Vogel and Peukert [22] such tha
the similar breakage pattern leattsthe same breakage probability for geometrically similar and
physically identical particles.
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Figure 3. Normalized cumulative breakage functions of all size-classes at different impact energy levels.

Figure 4. Normalized cumulative breakage functions of all size-classes re-plotted in groups of different breakage
probabilities (B.P.= Breakage Probability).

4 Conclusions

Single particle breakage of cement clinker particles produces different progeny distributions or
breakage functions where the change in theapseb shows evidence for the distinct modes of
breakage (meridian cracks to ohi@radial cracks and shattering). Irrespective of the mother practice
size, the shapes of the discrete breakage funcistribaditions approach a limited distribution for
specific energies higher than 12 kJ/kg, irrespective of the mother particle size. Self-similar, impact-
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rel

ated progeny size distributions can only be achieved if the particles either have the same breaka

probability for any energy input or they dmoken in the same mode of breakage.
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