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Abstract 
In a standard tug-of-war model, two players engage in a component battle each period and a player 

wins the contest if her number of battle victories exceeds the other contestant’s by a certain number. In this 

paper, we introduce a multi-player model of intra-group tug-of-war played by two groups of two players, 
where a player wins the contest if she wins a certain number of battles more than the other player from her 

group before either player from the other group achieves the same against one another. We characterize the 

unique subgame perfect Nash equilibrium of the model and further analyze an asymmetric case with 
different number of players in the competing groups. Our results indicate an extreme discouragement effect 

for the laggards and a strong momentum effect for the winner of the first battle. 
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1. Introduction 

 Following the seminal works by Tullock (1980) and Lazear and Rosen 

(1981), there has been an increased interest in the theoretical and experimental 

investigation of contest-like situations (see Corchón, 2007; Konrad, 2009; 

Dechenaux et al . , 2015 among others). A contest game is a competition between a 

number of players such that each player exerts costly efforts in order to win a 

specific prize. The effort costs are irreversible meaning that a player would always 
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incur the cost independent of whether she wins or loses the contest. There are 

several real-life examples: sports, warfare, political campaigns, firm competition. 

Although most of the contest models in the literature are one-shot games 

where players choose their efforts simultaneously, there also are sequential models 

in which the contending parties compete in a component battle each period such 

that either the winner in each period gets a prize after that period, or the winner in 

the whole contest gets a prize at the end of the contest, or both. Perhaps the most 

common example to such multi-battle contests is a race in which whoever reaches 

a certain number of battle victories wins. Klumpp and Polborn (2006) studied a 

two-player race where the outcome of each component battle is determined by a 

Tullock contest success function (CSF), so that a player’s probability of winning a 

battle is given by the ratio of the player’s effort to the total effort exerted by all 

players. Later, Konrad and Kovenock (2009) analyzed a two-player race employing 

an all-pay auction CSF, which stipulates that whoever exerts the greatest effort wins 

the battle for sure. And recently, utilizing a Tullock CSF, Doğan et al .  (2018) 

generalized the race model to include any number of players. 

Another common multi-battle contest is a tug-of-war, which has a single 

difference from a race: a player wins the contest if her number of battle victories 

exceeds the other contestant’s number of battle victories by a certain number. More 

formally, in a two-player tug-of-war, the game starts from the node 0 as specified 

in Figure 1. In each period, )(i  a win by Player 1 results in a move towards the 

right; and )(ii  a win by Player 2 results in a move towards the left. There is a 

difference threshold 2T  such that Player {1,2}i  wins the contest if she wins 

T  more battles than Player ij   does. For example, the difference threshold is 

assumed to be 3=T  in Figure 1, so that Player {1,2}i  wins the contest once she 

obtains three battle victories more than what Player ij   has, which would move 

the game onto her preferred terminal node indicating iP  wins. 

Figure 1 

A Standard Tug-of-war with Two Players 

 
As a modeling tool, tug-of-war has a wide range of application areas in several 

disciplines, such as economics, political science, and biology. For instance, 

Organski and Lust-Okar (1997) referred to the struggl e about the status of 

Jerusalem, while Yoo (2001) described the relation between the United States and 



METU STUDIES IN DEVELOPMENT 177 

North Korea as examples of a tug-of-war. In biological sciences, Larsson et al .  

(2004) and Zhou et al .  (2004) referred to the interaction between viruses and some 

parts of the immune system as a tug-of-war. Utilizing a tug-of-war model, Schaub 

(1995) represented the conflict over food that occurs between long-tailed macaque 

females. Finally, Bradley et al .  (2005) argued that a tug-of-war takes place between 

male members of wild mountain gorilla groups for the control over reproduction. 

Harris and Vickers (1987) were the first to analyze a model of tug-of-war. In 

their model, there are two players and each battle outcome is determined by a 

Tullock CSF. Recently, Karagözoğlu et al .  (2018) studied a similar model and 

completely characterized its unique Markov perfect equilibrium. They reported 

perseverance showing that players exert positive efforts until the very last battle, 

which is in stark contrast to a previous result in the literature. According to this 

previous result by Konrad and Kovenock (2005), who studied a model of tug-of-

war employing an all-pay auction CSF, there are at most two nodes on which 

players exert positive efforts while they exert zero effort on all of the other nodes. 

This indicates an extreme case of the discouragement effect.1 

To the best of our knowledge, tug-of-war has never been generalized to 

include more than two players in the literature. Such a multi-player model would 

be very similar to the multi-player race studied by Doğan et al .  (2018). These 

authors characterized the unique subgame perfect Nash equilibrium of their model 

and reported another form of extreme discouragement effect. Accordingly, once a 

player falls behind two other players, she would prefer quitting the game, by 

exerting zero effort from that point onwards. This converts the rest of the game into 

a two-player race. As we have shown in Appendix A below, these equilibrium 

results almost trivially carry over to a standard multi-player tug-of-war. 

In this paper, we introduce an intra-group tug-of-war illustrated in Figure 2. 

In our baseline model, there are four players and the difference threshold is two. 

The contest starts from the center node. In each period, )(i  a win by Player 1 results 

in a move upwards; )(ii  a win by Player 2 results in a move downwards; )(iii  a 

win by Player 3 results in a move towards the right; and )(iv  a win by Player 4 

results in a move towards the left. Each node with the label “ iP  wins" is referred to 

as a terminal node; and if one of these terminal nodes is reached, the respective 

                                                 
1  There are several other earlier works on tug-of-war. Agastya and McAfee (2006) studied a version 

where a component battle may result in a draw and showed that there is an equilibrium with players 

choosing not to fight. Häfner and Konrad (2016) analyzed a tug-of-war team contest model and showed 

that eternal peace, as reported by Agastya and McAfee (2006), is no longer observed in any 

equilibrium. Häfner (2017) also studied a team contest model and characterized its unique Markov 

perfect equilibrium. Deck and Sheremeta (2015) conducted the first lab experiment on tug-of-war and 

reported that subjects behave very differently from the predictions by Konrad and Kovenock (2005). 
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player wins the contest. Notice that although this is seemingly a four-player contest, 

there are two groups, {1,2}  and {3,4} , engaged in hidden sub-contests, such that 

if Player i  from group },{ ji  is to win this contest, she must defeat Player j  in the 

respective sub-contest before one of the players in the other group defeats her 

opponent in their own sub-contest. For example, Player 1 wins this contest, if she 

wins two more rounds than Player 2 does, before either Player 3 or 4 wins two more 

rounds than the other player does. 

Figure 2 

An Intra-group Tug-of-war with Four Players 

 

Although the current paper is interested in this model of intra-group tug-of-

war because of its theoretical appeal, we now present a motivation for our model to 

highlight which type of strategic interactions it can represent. Our motivation also 

includes a behavioral flavor, implementing a well-known phenomenon, the decoy 

effect. This phenomenon suggests that when an individual cannot decide between 

two alternatives, A  and C , her preferences would change in favor of A , when a 

third alternative B , which is completely dominated by A  but not by C , becomes 

available. The third alternative here is called a decoy (see Huber et al . , 1982, 2014; 

Bateman et al . , 2008; Frederick et al . , 2014; Yang and Lynn, 2014 among others). 

That being said, we now assume a consumer considering to buy one of four 
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products: A , B , C , and D . Assume that A  and B  have similar characteristics, 

C  and D  have similar characteristics, but there is no other such similarity between 

any other pair of products.2 The suppliers of these products compete against each 

other in different aspects to influence the consumer. Now, for example, if A  wins 

two more battles than B  does, i.e., if A  shows that it dominates B  in two 

additional aspects, before C  or D  achieves a similar domination over the other, 

then B  starts to be seen as a decoy for A , which would change the consumer’s 

preferences in favor of A , so that the consumer would choose A  over the other 

alternatives. Although this type of consumer behavior is not explicitly modeled 

here, we simply argue that our model of intra-group tug-of-war captures the essence 

of this story. 

In this paper, we characterize the equilibrium strategies in the baseline model 

as well as those in an asymmetric model with different number of players in the 

competing groups. In both models, it is shown that any player would start exerting 

zero effort once she falls behind the other player in her group. This indicates an 

extreme discouragement effect for such players. We also find a strong momentum 

effect, suggesting that the winner of the first component battle would have a very 

high chance of winning the tug-of-war. We complete our analysis by comparing 

these observations with the results reported in earlier works on multi-battle contests. 

The implications on and about rent dissipation are further discussed. 

The rest of the paper is organized as follows. Section 2 analyzes the baseline 

model with four players and a difference threshold of two, and Section 3 

investigates an asymmetric version with different number of players in two groups. 

Section 4 concludes. 

2. The model 

 Consider the set of players, {1,2,3,4}=N , who are competing in a model of 

intra-group tug-of-war as specified in Figure 2 above. There is a component battle 

each period, and each player aims to win these battles in order to move the game 

towards her preferred terminal node. In every period t , each player Ni  chooses 

an effort )[0,t

ie  to exert in the respective component battle. The probability 

that Player i  wins this component battle is given by the following Tullock contest 

success function (CSF):  

                                                 
2   Assuming that these alternatives are houses, suppose that A  and B  are located in the city center, 

whereas C  and D  are located outside city center. Similarly, assuming that the consumer considers 

buying a new car, suppose that A  and B  are fuel-efficient cars, whereas C  and D  are sports cars. 

More solid examples can be provided. 
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No prize is given to the winner of a component battle. The winner of the whole 

game gets a prize of 0>V , whereas the losers do not receive any prize. Finally, 

the cost function is assumed to be linear:  
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 Let the node (1,0,1,0)  represent the case in which Players 1 and 3 have the 

same amount of battle victories and Players 2 and 4 have one less battle victories. 

We can denote the other nodes in a similar manner. The following proposition 

reveals the unique subgame perfect Nash equilibrium (SPNE) of this baseline 

model. 

Proposition 1 In an intra-group tug-of-war with four players and a difference 

threshold of two, the unique SPNE is such that [i] when there are two players who 

are one battle victory away from winning the game (e.g., at a node (1,0,1,0)), those 

players exert kV/4 , whereas the other players exert 0 ; [ii] when there is only one 

player who is one battle victory away from winning the game (e.g., at a node 

(1,0,0,0)), that player exerts kV/9815 , her competitor from her group exerts 0 , and 

the other players exert kV/983 ; and [iii] at the initial node, all players exert 

kV/3136370 . 

Proof. We analyze equilibrium via backward induction. We start with the 

node (1,0,1,0)2 T . At this node Player 1 maximizes  
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where V  is the equilibrium expected prize value for Player 1 seen from the node 

(0,0,1,0) , and V  is the equilibrium expected prize value for Player 1 seen from 

the node (1,0,0,0) . The first order condition with respect to 2
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Player 3 has a symmetric first order condition. Moreover, at this particular 

node Player 2 maximizes  
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where V  is the equilibrium expected prize value for Player 1 seen from the node 

(0,1,0,0) .3 The first order condition with respect to 2
2
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Player 4 has a symmetric first order condition. Now, we can see that 
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In the symmetric equilibrium, since Player 1’s probability of winning the 

contest would be lower than 1 at the node (1,0,0,0) and lower than 1/2  at the node 

(0,0,1,0) , we can argue that VV <  and VV <2  . Accordingly, 0<2
2

T
e . This 

means that 0==
*

2
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ee , so that Players 2 and 4 quit the game at this node. This 

is labeled as the discouragement effect. We then conclude that kVee
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1 . 

                                                 
3   Due to symmetry, V  is the equilibrium expected prize value for Player 2 seen from the node 

(0,0,1,0) , and V  is the equilibrium expected prize value for Player 2 seen from the node 

(1,0,0,0) . 
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This yields an expected value of 4/V  to Players 1 and 3, whereas an expected value 

of 0  to Players 2 and 4. 

All of the other nodes with two players who are one battle victory away from 

winning the game, which are (1,0,0,1) , (0,1,1,0) , and (0,1,0,1) , have symmetric 

results. 

We proceed to the analysis of the node (1,0,0,0)1 T . At this node Player 1 

maximizes  
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where 
0V  is the equilibrium expected prize value for Player 1 seen from the node 

(0,0,0,0) . The first order condition with respect to 1
1
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At this node Player 3 maximizes  
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The first order condition with respect to 1
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Player 4 has a symmetric first order condition. Then, we can see that 
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the equilibrium. Moreover, at this particular node Player 2 maximizes4 
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4  If Player 1 wins, the contest ends for sure; and if either Player 3 or 4 wins, then Player 2 would be 

discouraged in the SPNE. 
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The first order condition with respect to 1
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From here we can find that 0=
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3 . This yields an expected value of 196/124V  to Player 1, an 

expected value of 0  to Player 2, and an expected value of 196/V  to each of the 

other players. 

All of the other nodes with one player who is one battle victory away from 

winning the game, which are (0,1,0,0) , (0,0,1,0) , and (0,0,0,1) , have symmetric 

results. 

 Finally, at the node (0,0,0,0)0   Player 1 maximizes  
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Since we also have symmetric first order conditions for the other players, we 

should have *0
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1 === eeee  at the equilibrium. Then we find that each player 

                                                 
5 See Appendix B for this analysis. 
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exerts kV 3136/370 . And this yields an expected value of 3136/134V  to all 

players.   

Our first observation is the extreme discouragement effect. If Player Ni  

from group },{ ji  wins the component battle in the first period, then Player j  would 

be completely discouraged in the next period. If Player i  also wins the component 

battle next period, then the game ends; but if Player i  fails to win, then there appears 

another discouraged player, which means that the game proceeds to a final round in 

which both of the laggards are discouraged. This implies that the game surely ends 

in three periods. All these equilibrium outcomes are similar to the results reported 

by Doğan et al .  (2018) for a multi-player race, which are shown to almost trivially 

carry over to a standard multi-player tug-of-war (see Appendix A). On a related 

note, Konrad and Kovenock (2005) reported that all players are completely 

discouraged on most of the nodes in a two-player tug-of-war with an all-pay auction 

CSF; whereas Karagözoğlu et al .  (2018) reported that both players exert positive 

efforts until the very last battle in a two-player tug-of-war with a Tullock CSF. Here 

we see that our results lie in between these two rather extreme cases. 

The second observation is that the winner of the component battle in the first 

period gains a momentum in the sense that she would have a very high chance of 

winning the tug-of-war. In particular, there is a 5/7  chance that the same player 

wins the next component battle, directly becoming the ultimate winner. With the 

remaining probability, the player would lose the second battle; but then there is a 

1/2  chance that she wins the third battle. This corresponds to a total winning 

probability of 6/7 . This is labeled as a strong momentum effect. To compare with 

earlier results, we can further note that both Doğan et al .  (2018) and Karagözoğlu 

et al .  (2018) reported similar results on the momentum effect. 

From a contest design perspective, a social planner would be interested in the 

amount of rent dissipation, which is defined as the prize value minus the total 

expected value in the equilibrium. Given that the efforts are not productive, it is 

commonly discussed in the literature that exerting efforts to gain a chance of 

earning an exogenously given prize is inefficient, so that rent dissipation is not 

desirable. For a social planner who prefers a lower amount of rent dissipation, our 

model of intra-group tug-of-war appears to be the better alternative. We can see that 

in a four-player race or in a standard four-player tug-of-war, each player has an 

expected value of V0.0401 , which corresponds to a total expected value of 

V0.1604 , so that almost 83.96%  of the rent is dissipated. On the other hand, with 

an expected value of V0.0427  for each player, only 82.92%  of the rent is 

dissipated in our model. 
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3. An asymmetric case 

 The difference between a two-player race and a two-player tug-of-war is 

obvious. In both models, a component battle takes place each period; and a race 

ends when one player collects a certain number of battle victories, whereas a tug-

of-war ends when the difference between the two players’ battle victories reaches a 

certain number. As a consequence, a race always moves forward with no return, 

whereas a tug-of-war might return to a previously visited node, precisely when the 

laggard wins a component battle. Similar definitions and implications apply to 

multi-player versions of these models. Given the extreme discouragement result by 

Doğan et al. (2018) for a multi-player race, and given our equilibrium analysis in 

Appendix A suggesting that the results carry over to a standard multi-player tug-of-

war, we can see that a tug-of-war would never return to a previously visited node 

along the equilibrium path. Therefore, it can be argued that a multi-player race and 

a multi-player tug-of-war reduce to the same model in the unique SPNE. 

As the results by Doğan et al. (2018) apply to any n -player race, it is natural 

to expect for an intra-group tug-of-war that if there is an increase in the number of 

groups or a symmetric increase in the number of players within groups, then most 

of the results provided for the baseline model would carry over. However, if there 

appears an asymmetry in the model with one group being more crowded than the 

other, then one might expect to observe some differences in the equilibrium 

strategies. Here we consider such an asymmetric case where }{1,2,3,4,5=N  with 

groups {1,2}  and {3,4,5} . 

Let (1,1,0))((1,0),  represent the case in which Players 1, 3, and 4 have the 

same amount of battle victories and Players 2 and 5 have one less battle victories. 

We can denote the other nodes in a similar manner. The following proposition 

describes a SPNE of this asymmetric model. 

Proposition 2 In an intra-group tug-of-war with five players and a difference 

threshold of two, there exists a SPNE such that   

• at the node (1,1,0))((1,0), : 
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    • at the node (1,0,0))((1,0), : 
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    • at the node (1,0,0))((0,0), : 
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; and  

    • at the initial node: Players 1 and 2 approximately exert kV/0.1388 , 

whereas Players 3, 4, and 5 approximately exert kV/0.0427 .  

 Proof. See Appendix B.  

According to the equilibrium strategies specified in Proposition 2, an extreme 

discouragement effect appears also in this asymmetric model. We can see that if the 

game is still on after the first two component battles, the laggards would be totally 

discouraged. However, the discouragement effect is now slightly weaker, because 

in the current model, in case the component battle in the first period is won by a 

player from the latter group with three players, all players would stay in the game 

for one more period. Furthermore, similar to the baseline model, these equilibrium 

strategies imply that the game surely ends in three periods. 

As for the momentum effect, we report that if Player 1 or 2 wins the 

component battle in the first period, there is a 7/10  chance that she wins the second 

battle, and there is a 17/20  chance that she wins the whole contest; whereas if 

Player 3, 4, or 5 wins the component battle in the first period, there is a 9/13  chance 

that she wins the second battle, and there is a 11/13  chance that she wins the whole 

contest. This indicates a strong momentum effect, which is relatively stronger for a 

player from the former group with two players. Comparing to the baseline model, 

we can further state that the momentum effect is now slightly weaker, due to the 

fact that there are now more players competing for the prize. 

Interestingly, players exert very asymmetric efforts in the first component 

battle. Although exerting more effort comes with additional costs, it also increases 

the probability of winning the first battle for Players 1 and 2; and as a result, it turns 

out that  

 
.0.0073==0.0729= 0

5

0
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0
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0
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0

1 VVVVandVVV 
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This can be interpreted as “it is almost ten times more beneficial to be in the 

two-player group rather than in the three-player group". This observation is quite 

intuitive, because although all players compete against each other in the component 

battles, each player actually tries to defeat the other member(s) of her group. And 

obviously, a smaller group implies a lower within-group competition, hence a 

higher expected value. 

As for rent dissipation, we can conclude that a social planner who prefers a 

lower amount of rent dissipation would design an intra-group tug-of-war between 

five players rather than a race or a standard tug-of-war. This is because the total 

expected value is approximately VVV 0.1677=0.007330.07292   in our 

model, which indicates that 83.23%  of the rent is dissipated, whereas 87.1%  of 

the rent would be dissipated in a five-player race or in a standard five-player tug-

of-war. 

4. Conclusion 

 We have introduced a model of intra-group tug-of-war in this paper. 

Characterizing its unique SPNE, we have shown that there is an extreme 

discouragement effect for the laggards and there is a strong momentum effect for 

the winner of the first component battle. Then, we have also studied an asymmetric 

case where the competing groups have different number of players and investigated 

the respective changes observed in the equilibrium strategies. All these equilibrium 

results are compared to the previous results reported in the literature on multi-battle 

contests. 

Finally, it can be argued that our results can be generalized to the cases with 

any number of players in any number of groups and with any value of difference 

threshold. Most importantly, the extreme discouragement result would be 

preserved, suggesting that once a player falls behind the other players in her group, 

she would start exerting zero effort from that point onwards. This reduces the rest 

of the game into a two-player race and simplifies the rest of the equilibrium 

analysis. 
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Appendix A 

 In this Appendix, we analyze a standard multi-player tug-of-war with three 

players and a difference threshold of two. The game is illustrated in Figure 3.  

Figure 3 

A Standard Tug-of-war with Three Players 

 

In this contest, )(i  a win by Player 1 results in a move towards the upper left; 

)(ii  a win by Player 2 results in a move towards the right; while )(iii  a win by 

Player 3 results in a move towards the lower left. Player {1,2,3}i  wins the contest 

once her preferred terminal node is reached, i.e., as soon as she wins two component 

battles more than the worst-performing player does. 

As assumed in our baseline model of intra-group tug-of-war, the outcome of 

each component battle is determined by a Tullock CSF, the winner of the whole 

game gets a prize of 0>V , and each player has a linear cost function.  

Proposition 3 In a standard tug-of-war with three players and a difference 

threshold of two, the unique SPNE is such that [i] when there are two players who 

are one battle victory away from winning the game (e.g., at a node (1,1,0)), those 

players exert kV/4 , whereas the other players exert 0 ; [ii] when there is only one 

player who is one battle victory away from winning the game (e.g., at a node 
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(1,0,0)), that player exerts kV/9815 , whereas the other players exert kV/983 ; and 

[iii] at the initial node, all players exert kV/29441 .  

Proof. Let the node (1,1,0)2 T  represent the case in which Players 1 and 2 

have the same amount of victories and Player 3 has one victory less. At this node 

Player 1 maximizes  
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where 
0V  is the equilibrium expected prize value for Player 1 seen from the node 

(0,0,0) . The first order condition with respect to 2
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Player 2 has a symmetric first order condition. We can see that 
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equilibrium. Moreover, at this particular node Player 3 maximizes  

  .,, 2
3

02
3

2
2

2
13

TTTT
keVeeep 

 

The first order condition with respect to 2
3

T
e :  

 
0.=0

2
2

3
2

2
2

1

2
2

2
1 kV

eee

ee

TTT

TT






 

Utilizing 
*

2
2

*
2

1 =
TT

ee  and equalizing the first order conditions with respect to 

2
1

T
e  and 2

3

T
e :  

).(=2 02
3

2
1

02
1 VVeVeVe

TTT


 

This yields  

.
2

=
0

0

2
1

2
3

VV

VV
ee

TT





 



190 Serhat Doğan - Kerim Keskin 

We can argue that /3<0 VV  at the equilibrium. Accordingly, when 0>2
1

T
e , 

we have 0<2
3

T
e . This means that 0=

*
2

3

T
e , so that Player 3 is discouraged. We 

then conclude that kVee
TT

4/==
*

2
2

*
2

1 . This yields an expected value of 4/V  to 

Players 1 and 2, and an expected value of 0  to Player 3. 

      Noting that the equilibrium strategies on the nodes (1,0,1)  and (0,1,1)  

would be symmetric, we now analyze the node (1,0,0)1 T . At this node Player 1 

maximizes  
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At this node Player 2 maximizes  
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Player 3 has a symmetric first order condition. Now, we can see that 
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1
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the equilibrium. Utilizing this and equalizing the first order conditions with respect 

to 1
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We then have .5=5=
*
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T
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2 . This yields an expected value of 196/124V  to Player 1, and 

an expected value of 196/V  to Players 2 and 3. 

      Once again, we note that the equilibrium strategies on the nodes (0,1,0)  

and (0,0,1)  are symmetric. Finally, at the node (0,0,0)0   Player 1 maximizes  
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The first order condition with respect to 
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Since we have symmetric first order conditions for the other players, we 

should have *0

3

*0

2

*0

1 == eee  at the equilibrium. Then we find that each player exerts 

kV 294/41 . And this yields an expected value of 294/22V  to all players. □ 

These results are the same with those reported by Doğan et al .  (2018) for a 

multi-player race. Although we have provided an analysis for the three-player 

version here, observing that the equilibrium analyses in both models follow almost 

identically, it can be argued that the equilibrium results for any generalized model 

of multi-player race would carry over to the corresponding model of tug-of-war. 
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Appendix B 

 Proof of Proposition 1: In the proof above, we have claimed that 0=
*

1
2

T
e  at 

the node (1,0,0,0) . Here we prove this claim. Recall that the first order conditions 

can be written as  

   
   

  .=
2

3)(

,=
4

,=2

2
1

4
1

3
1

2
1

1
1

3

01
2

2
1

4
1

3
1

2
1

1

01
2

1
3

1
2

1
1

2
1

4
1

3
1

2
1

1

01
3

1
1

TTTTTT

TTTTTTTT

TTTTTT

eeeek
V

eVVe

eeeekVe
V

eee

eeeekVee







 

Then we find 1
3

1
2

1
1 53=

TTT
eee   and  

.=
4

5
1

20

0

1
3

TT
e

VV

VV
e





             (1) 
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We can argue that /4<0 VV  at the symmetric equilibrium. Then  
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Finally, we write the first order condition for Player 1 with respect to 
0

1e  at the node 

(0,0,0,0)0   in terms of V , V , and V :  
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Considering the symmetric first order conditions for the other players, we have 
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From this equation, we can see that  
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Since VV <5 0
, the equation (1) implies that 0<1

2

T
e . Accordingly, we conclude 

that 0=
*

1
2

T
e .  

Proof of Proposition 2: We analyze equilibrium via backward induction. 

Throughout this analysis, without loss of generality, we consider the nodes where 

players with a lower index number is more advantaged than the others in their 

respective groups. 

Utilizing the insights obtained from the baseline model, we start our analysis 

of the node (1,1,0))((1,0),1,2 T  under the assumption that 0== *

5

*

2 ee .6 At this 

node Player 1 maximizes  

                                                 
6  This assumption implies that we analyze whether there exists a SPNE in which the disadvantageous 

players at the furthest node are discouraged. At the end of our equilibrium analysis, we should and will 

check whether this assumption is consistent with the corresponding equilibrium expected values. 

Although we cannot guarantee the uniqueness of such a SPNE, we conjecture that there is no SPNE of 

other sort. 
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The first order condition with respect to 1,2
1

T

e :  

 
0.=

2
1,2

4
1,2

3
1,2

1

1,2
4

1,2
3 kV

eee

ee

TTT

TT







 

Since we have symmetric objective function and symmetric first order 

conditions for the other players,7 we should have 
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1 . This yields an 

expected value of 9/V  to Players 1, 3, and 4, whereas an expected value of 0  to 

Players 2 and 5.  

We continue with the node (1,1,0))((0,0),0,2 T . At this node Player 1 

maximizes  
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where 0

iV  is the equilibrium expected prize value for Player i  seen from the node 
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Player 2 has a symmetric first order condition. We can then see that 
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0,2
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at the equilibrium. At this particular node Player 3 maximizes  

                                                 
7  For example, although there is asymmetry in group sizes, Player 3 maximizes 𝑝3 (𝑒1

𝑇1,2 , … , 𝑒5

𝑇1,2) 𝑉 −

 𝑘𝑒3

𝑇1,2  at this node. Taking the first order condition with respect to 𝑒3

𝑇1,2  yields a symmetric first order 

condition. 
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Player 4 has a symmetric first order condition. We can then see that 
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at the equilibrium. Moreover, at this node Player 5 maximizes  
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Our analysis yields 0===
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the other cases leads to a contradiction. Accordingly, kVee
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3 . This 

yields an expected value of 4/V  to Players 3 and 4, and an expected value of 0  to 

each of the other players.  

We continue with the node (1,0,0))((1,0),1,1 T . At this node Player 1 

maximizes  
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where iV
~

 represents the equilibrium expected prize value for Player i  seen from 

the node (1,0,0))((0,0), . The first order condition with respect to 1,1
1
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e :  
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At this particular node Player 2 maximizes  
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At this particular node Player 3 maximizes  
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Moreover, at this node Player 4 maximizes  
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The first order condition with respect to 1,1
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Player 5 has a symmetric first order condition. We can see that 
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yields an expected value of 4/V  to Players 1 and 3, and an expected value of 0  to 

each of the other players. 
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At this particular node Player 2 maximizes  
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Moreover, at this node Player 3 maximizes  
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The first order condition with respect to 1,0
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Considering the symmetric first order conditions for Players 4 and 5, we have 
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Considering the symmetric objective functions and symmetric first order conditions 

for Players 2, 4, and 5, we have 
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Moreover, at this node Player 3 maximizes  
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Utilizing 
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We then have .9=9==9=9
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yields an expected value of 676/308V  to Player 3, and an expected value of 

676/V  to each of the other players.  
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Last, we analyze the node (0,0,0))((0,0),00,0 T  at which Player 1 

maximizes  
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At this particular node Player 3 maximizes  
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Considering the respective symmetric first order conditions for the other players, 

we have 
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Finally, seeing that the respective equilibrium expected values are consistent with 

our assumption that the laggards at the furthest node are discouraged, we verify that 

the strategies described above constitute a SPNE.  
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Özet 

Bir grup-içi halat çekme yarışı modeli 
 

Standart bir halat çekme yarışı modelinin her periyodunda iki oyuncu birbirleri ile savaşır, ve 

periyot zaferi sayısı bakımından diğer oyuncuya karşı belirli bir sayı farkla üstünlük kuran oyuncu halat 

çekme yarışını kazanır. Bu makalemizde, ikişer oyunculu iki grup ile oynanan çok oyunculu bir grup-içi 

halat çekme yarışı modeli ortaya koyuyoruz; öyle ki, her oyuncunun amacı grubundaki diğer oyuncuya 

karşı periyot zaferi sayısı bakımından belirli bir sayı farkla üstünlük kurmak, fakat bunu bunun aynısını 

diğer gruptaki oyunculardan birisi o gruptaki diğer oyuncuya karşı yapmadan başarmış olmak. Önce 

modelimizdeki alt-oyun mükemmel Nash dengesini karakterize ediyoruz, sonra da gruplardaki oyuncu 

sayılarının farklı olduğu asimetrik bir durumu çalışıyoruz. Sonuçlarımız ilk periyottaki savaşı kazanmanın 

güçlü bir momentum etkisi yarattığını ve ilk savaşları kaybetmenin son derece motivasyon kırıcı bir etkisi 

olduğunu gösteriyor. 

Anahtar kelimeler: Yarışma, çok savaşlı yarışma, halat çekme yarışı, grup-içi halat çekme yarışı, Tullock 

yarışması, alt-oyun mükemmel Nash dengesi. 

JEL kodları: C72, D74 

  

  


