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1. Introduction 

 An assignment game is a special case of two-sided matching markets in which 

monetary transfers are allowed. In this market, agents on one side of the market are 

matched with the agents on the other side of the market. I label without a loss of 

generality these two sides as firms and workers. The matching is one to one and 

monetary transfers (e.g., wage payments) are allowed. Therefore, a worker can only 

be matched (or work) to one firm, and each firm can employ only one worker. One 

commonly used solution concept for such markets is the core. The core outcomes 

specify which bilateral employment agreements are expected and how the agents 

divide their gains. In this paper, I construct the first algorithm that reaches to the all 

core outcomes for assignment games with money. 

Shapley and Shubik (1972) show that every assignment game has non-empty 

core and core payoffs have a nice structure. The payoff structure is a non-empty 

complete lattice, and there is a polarization of interests in the core. This means that 

there is a stable outcome which is the most preferred by every agent on one side of 
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the market while being the least preferred by every agent on the other side of the 
market. Geometrically, the core is a closed, convex polyhedron whose dimension is 
equal to at most the minimum of the number of members in one group or in the other 
(Shapley and Shubik (1972)). 

 Kucuksenel (2011) constructs a map 𝑇𝑇 on the set of feasible payoffs such that 
the set of fixed points of 𝑇𝑇 is equal to the core outcomes. In this paper, I construct 
the first algorithm to find all core outcomes by iterating 𝑇𝑇 for the assignment game. 
This type of fixed point argument has been used in assignment problems with side 
payments before, but they only characterized certain points in the interior of the core 
(a subset of the core: symmetrically bargained allocations) as stationary points of a 
rebargaining process between players (Rochford (1984)). Moreover, fixed-point 
methods have been used in matching markets without side transfers (NTU games), 
see for example Adachi (2000), Echenique and Oviedo (2004), Echenique and 
Oviedo (2006) or Echenique and Yenmez (2007) for applications of a fixed point 
approach for different environments. The algorithms to find core outcomes are also 
provided in mentioned studies related to assignment problems without side 
transfers. Different algorithms to find only extreme points of core outcomes in two-
sided matching problems with one-way monetary transfers are also provided by 
Afacan (2013), and Abizada (2016).  

 The organization of the rest of the paper is as follows: In the next section, I 
give a brief introduction to the Shapley and Shubik assignment game and provide 
some of the well-known results using linear programming formulation. In Section 
3, I present the formulation in Kucuksenel (2011) to represent the core as fixed 
points of a map. In Section 4, I introduce the algorithm and show that the algorithm 
reaches to the all possible core outcomes in the assignment games. Section 5 shows 
that the extension of the formulation using core outcomes is not possible. The 
discussion and future research agenda follows in Section 6. 

2. Assignment games with money 
This section gives a brief description of assignment games and provides some 

well-known results via linear programming proofs. I refer the reader to Shapley and 
Shubik (1972) or Roth and Sotomayor (1990) for more discussions about and 
justifications of this setup. Our exposition is identical to Kucuksenel (2011) in this 
section. 

The game in coalitional function form with side payments is definedby three-
tuple Γ = 〈𝐹𝐹,𝑊𝑊, 𝛼𝛼〉 where 

1. 𝐹𝐹 = {𝑓𝑓1,… , 𝑓𝑓𝑚𝑚} is a set of firms, 

2. 𝑊𝑊 = {𝑤𝑤1,… ,𝑤𝑤𝑚𝑚} is a set of workers, 
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3. 𝛼𝛼 is a 𝑚𝑚 × 𝑛𝑛 matrix of nonnegative numbers {𝛼𝛼𝑓𝑓𝑓𝑓 ∈ ℝ+: (𝑓𝑓, 𝑤𝑤) ∈ 𝐹𝐹 × 𝑊𝑊} 
where 𝛼𝛼𝑓𝑓𝑓𝑓 is the amount of income which the pairwise partnership produce 
if the worker 𝑤𝑤 works for the firm 𝑓𝑓.  Note that 𝛼𝛼𝑘𝑘𝑘𝑘 = 0 for all 𝑘𝑘 ∈ 𝐹𝐹 ∪ 𝑊𝑊. 
The side payments in the pairwise partnership can be considered as a salary 
payment from firm 𝑓𝑓 to worker 𝑤𝑤. I assume that agents only care about their 
own monetary payoffs. If firm 𝑓𝑓 hires worker 𝑤𝑤, the worker receives a salary 
𝑡𝑡𝑓𝑓𝑓𝑓 and the firm receives a profit 𝜋𝜋𝑓𝑓𝑓𝑓 = 𝛼𝛼𝑓𝑓𝑓𝑓 − 𝑡𝑡𝑓𝑓𝑓𝑓. See Roth and 
Sotomayor (1990) for more about the assumptions on the preferences of 
agents.  

An assignment 𝜇𝜇: 𝐹𝐹 ∪ 𝑊𝑊 → 𝐹𝐹 ∪ 𝑊𝑊 is a one-to-one mapping of order two 
(that is 𝜇𝜇2(𝑘𝑘) = 𝑘𝑘) such that if 𝜇𝜇(𝑓𝑓) ≠ 𝑓𝑓 then 𝜇𝜇(𝑓𝑓) ∈ 𝑊𝑊 and if 𝜇𝜇(𝑤𝑤) ≠ 𝑤𝑤 then 
𝜇𝜇(𝑤𝑤) ∈ 𝐹𝐹. Let  be the set of all assignments. An assignment 𝜇𝜇 can also be 
represented as a vector 𝑥𝑥 ∈ {0,1}𝐹𝐹×𝑊𝑊, such that 𝑥𝑥𝑓𝑓𝑓𝑓 = 1 if 𝜇𝜇(𝑓𝑓) = 𝑤𝑤 and 𝑥𝑥𝑓𝑓𝑓𝑓 = 0, 
otherwise. Hence, ∑ 𝑥𝑥𝑓𝑓𝑓𝑓 ≤ 1 𝑓𝑓∈𝑊𝑊 for all 𝑓𝑓 ∈ 𝐹𝐹 and ∑ 𝑥𝑥𝑓𝑓𝑓𝑓 ≤ 1 𝑓𝑓∈𝐹𝐹  for all 𝑤𝑤 ∈ 𝑊𝑊. 

 An assignment 𝑥𝑥 is optimal if for all 𝑥𝑥′ ∈ , ∑ 𝛼𝛼𝑓𝑓𝑓𝑓𝑥𝑥𝑓𝑓𝑓𝑓 ≥(𝑓𝑓,𝑓𝑓)∈𝐹𝐹×𝑊𝑊
∑ 𝛼𝛼𝑓𝑓𝑓𝑓𝑥𝑥′𝑓𝑓𝑓𝑓 (𝑓𝑓,𝑓𝑓)∈𝐹𝐹×𝑊𝑊 . Let 𝑋𝑋 be the set of optimal assignments. The optimal 
assignment is usually unique. If there is more than one optimal assignment, a slight 
perturbation of the values of the pairwise partnerships will result in a unique optimal 
assignment. 

 Any agent is free to remain single and hence receive zero. The worth of an 
arbitrary coalition equals to the sums of the pairwise coalitions it can form with pairs 
consisting of one agent from 𝐹𝐹 and one from 𝑊𝑊. That is for all coalitions 𝑆𝑆, 

 

𝑉𝑉(𝑆𝑆) = {
0    𝑖𝑖𝑓𝑓 𝑆𝑆 ⊆ 𝐹𝐹 𝑜𝑜𝑜𝑜 𝑆𝑆 ⊆ 𝑊𝑊,

𝑚𝑚𝑚𝑚𝑥𝑥𝜓𝜓𝛴𝛴𝑖𝑖∈𝐹𝐹∩𝑆𝑆𝛼𝛼𝑖𝑖𝜓𝜓(𝑖𝑖) 𝑖𝑖𝑓𝑓 |𝐹𝐹 ∩ 𝑆𝑆| ≤ |𝑊𝑊 ∩ 𝑆𝑆|,
𝑚𝑚𝑚𝑚𝑥𝑥𝜙𝜙𝛴𝛴𝑗𝑗∈𝑊𝑊∩𝑆𝑆𝛼𝛼𝜙𝜙(𝑗𝑗)𝑗𝑗 𝑖𝑖𝑓𝑓 |𝐹𝐹 ∩ 𝑆𝑆| ≥ |𝑊𝑊 ∩ 𝑆𝑆|,

 

 
where 𝜓𝜓 and 𝜙𝜙 are are one-to-one mappings defined as 𝜓𝜓: 𝐹𝐹 ∩ 𝑆𝑆 → 𝑊𝑊 ∩ 𝑆𝑆 and 
𝜙𝜙: 𝑊𝑊 ∩ 𝑆𝑆 → 𝐹𝐹 ∩ 𝑆𝑆. 

 
Definition 1 The pair of vectors (𝑢𝑢, 𝑣𝑣), with 𝑢𝑢 ∈ ℝ𝑚𝑚 and 𝑢𝑢 ∈ ℝ𝑛𝑛, is a feasible 
payoff for 𝛤𝛤 = 〈𝐹𝐹, 𝑊𝑊, 𝛼𝛼〉 if there is an assignment 𝑥𝑥 such that 

 ∑ 𝑢𝑢𝑓𝑓 + ∑ 𝑣𝑣𝑓𝑓 = ∑ 𝛼𝛼𝑓𝑓𝑓𝑓𝑥𝑥𝑓𝑓𝑓𝑓.(𝑓𝑓,𝑓𝑓)∈𝐹𝐹×𝑊𝑊𝑓𝑓∈𝑊𝑊𝑓𝑓∈𝐹𝐹  

 In this case, I say (𝑢𝑢, 𝑣𝑣) and 𝑥𝑥 are compatible with each other, and I call 
((𝑢𝑢, 𝑣𝑣); 𝑥𝑥) a feasible outcome. 
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Definition 2 A feasible outcome ((𝑢𝑢, 𝑣𝑣); 𝑥𝑥) is stable (or the payoff (𝑢𝑢, 𝑣𝑣) with an 
assignment 𝑥𝑥 is stable) if 
 

(i) 𝑢𝑢𝑓𝑓 ≥ 0, 𝑣𝑣𝑤𝑤 ≥ 0 (individual rationality) 
(ii) 𝑢𝑢𝑓𝑓 + 𝑣𝑣𝑤𝑤 ≥ 𝛼𝛼𝑓𝑓𝑤𝑤 for all (𝑓𝑓, 𝑤𝑤) ∈ 𝐹𝐹 × 𝑊𝑊. 
 
 Note that condition (ii) only eliminates deviations by pair of agents since the 

set of pairwise stable outcomes coincides with the set of group stable outcomes in 
this framework. Let 𝑆𝑆(Γ) be the set of stable payoffs. 

 Consider the assignment problem for the coalition of all players 
 
(AP)    max 𝑧𝑧 = ∑ 𝛼𝛼𝑓𝑓𝑤𝑤𝑥𝑥𝑓𝑓𝑤𝑤 (𝑓𝑓,𝑤𝑤)∈𝐹𝐹×𝑊𝑊   
  s.t.     𝛴𝛴𝑤𝑤∈𝑊𝑊𝑥𝑥𝑓𝑓𝑤𝑤 ≤ 1 for all 𝑓𝑓 ∈ 𝐹𝐹, 

  𝛴𝛴𝑓𝑓∈𝐹𝐹𝑥𝑥𝑓𝑓𝑤𝑤 ≤ 1 for all 𝑤𝑤 ∈ 𝑊𝑊, 
  𝑥𝑥𝑓𝑓𝑤𝑤 ≥ 0 for all (𝑓𝑓, 𝑤𝑤) ∈ 𝐹𝐹 × 𝑊𝑊. 
 

The optimization problem is associated with the following dual linear 
program: 

 
(DAP)  min 𝑑𝑑 = ∑ 𝑢𝑢𝑓𝑓 𝑓𝑓∈𝐹𝐹 + ∑ 𝑣𝑣𝑤𝑤 𝑤𝑤∈𝑊𝑊   
  s.t.     𝑢𝑢𝑓𝑓 + 𝑣𝑣𝑤𝑤 ≥ 𝛼𝛼𝑓𝑓𝑤𝑤 for all (𝑓𝑓, 𝑤𝑤) ∈ 𝐹𝐹 × 𝑊𝑊, 

  𝑢𝑢𝑓𝑓, 𝑣𝑣𝑤𝑤 ≥ 0. 
 
Therefore, (DAP) formulates the problem of finding payoff vectors in the core 

of the assignment game. The existence of optimal solutions of (AP) and duality 
theorem show that the set of stable payoff vectors is nonempty. Moreover, in the 
game the set of stable outcomes and the core are the same. 
 
Theorem 1 [Shapley and Shubik (1972)] The core of an assignment game is 
nonempty and is precisely equal to the set of solutions of the (DAP). 

3. The 𝑇𝑇 mapping 
In this section, I present the formulation in Kucuksenel (2011) that fully 

characterizes the core as the set of fixed points of a certain function. I assume that 
|𝐹𝐹| = |𝑊𝑊| = 𝑛𝑛 to simplify the formulation. I shall also assume that for all 𝑖𝑖 ∈ 𝐹𝐹 
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𝑢𝑢𝑖𝑖 ∈ {0,1, … , 𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗∈𝑊𝑊𝛼𝛼𝑖𝑖𝑗𝑗} and for all 𝑗𝑗 ∈ 𝑊𝑊 𝑣𝑣𝑗𝑗 ∈ {0,1, … , 𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖∈𝐹𝐹𝛼𝛼𝑖𝑖𝑗𝑗} to make the 
payoff space discrete. These assumptions simplify the notation, but all results hold 
without these assumptions. 

I can now proceed to define the formulation by following the identical 
mathematical notation in Kucuksenel (2011). A firm-permutation is a bijection 𝜋𝜋𝐹𝐹 
from 𝐹𝐹 to 𝐹𝐹, and a worker-permutation is a bijection 𝜋𝜋𝑊𝑊 from 𝑊𝑊 to 𝑊𝑊. This type of 
permutations is useful in defining the order of agents. I denote 𝜋𝜋𝐹𝐹

−1(𝑖𝑖) ∈ 𝐹𝐹 as the 𝑖𝑖𝑡𝑡ℎ 
firm and 𝜋𝜋𝑊𝑊

−1(𝑗𝑗) ∈ 𝑊𝑊 as the 𝑗𝑗𝑡𝑡ℎ worker. Let 𝑌𝑌 be the set of possible payoffs such 
that: 

𝑌𝑌 = {((𝑢𝑢𝑖𝑖)𝑖𝑖∈𝐹𝐹, (𝑣𝑣𝑗𝑗)𝑖𝑖∈𝑊𝑊) | for all 𝑖𝑖 ∈ 𝐹𝐹, 0 ≤ 𝑢𝑢𝑖𝑖 ≤ 𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗∈𝑊𝑊𝛼𝛼𝑖𝑖𝑗𝑗 ; for all 𝑗𝑗 ∈ 𝑊𝑊, 0 ≤
𝑣𝑣𝑗𝑗 ≤ 𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖∈𝐹𝐹𝛼𝛼𝑖𝑖𝑗𝑗}. 

Given (𝑢𝑢, 𝑣𝑣), 𝜋𝜋𝐹𝐹, and 𝜋𝜋𝑊𝑊, let 

𝑈𝑈(𝑢𝑢𝜋𝜋𝐹𝐹
−1(𝑖𝑖), 𝑣𝑣) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗∈𝑊𝑊𝑖𝑖(𝛼𝛼𝜋𝜋𝐹𝐹

−1(𝑖𝑖)𝑗𝑗 − 𝑣𝑣𝑗𝑗), 

𝑉𝑉(𝑢𝑢, 𝑣𝑣𝜋𝜋𝑊𝑊
−1(𝑗𝑗)) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖∈𝐹𝐹𝑗𝑗(𝛼𝛼𝑖𝑖𝜋𝜋𝑊𝑊

−1(𝑗𝑗) − 𝑢𝑢𝑖𝑖), 

where 𝑊𝑊1 = 𝑊𝑊 and for all 𝑖𝑖 ≥ 2  

𝑊𝑊𝑖𝑖 = 𝑊𝑊𝑖𝑖−1\𝑚𝑚𝑖𝑖𝑚𝑚{𝑗𝑗: 𝑗𝑗 ∈ 𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚(𝛼𝛼𝜋𝜋𝐹𝐹
−1(𝑖𝑖−1)𝑗𝑗 − 𝑣𝑣𝑗𝑗)}, 

and 𝐹𝐹1 = 𝐹𝐹 and for all 𝑗𝑗 ≥ 2 

𝐹𝐹𝑗𝑗 = 𝐹𝐹𝑗𝑗−1\𝑚𝑚𝑖𝑖𝑚𝑚{𝑖𝑖: 𝑖𝑖 ∈ 𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚(𝛼𝛼𝑖𝑖𝜋𝜋𝑊𝑊
−1(𝑗𝑗−1) − 𝑢𝑢𝑖𝑖)}. 

It is possible that the outcome of the mapping depends on the order of players. 
For some (𝑢𝑢, 𝑣𝑣) ∈ 𝑌𝑌, the outcome of the mapping does not depend on the exact order 
of players. Let (𝑢𝑢, 𝑣𝑣) ∈ ℱ if there exists a tie breaking rule, 𝜋𝜋𝐹𝐹, such that for all 𝑖𝑖 ∈
𝐹𝐹, 𝜋𝜋𝐹𝐹(𝑖𝑖, 𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗∈𝑊𝑊(𝛼𝛼𝑖𝑖𝑗𝑗 − 𝑣𝑣𝑗𝑗)) ∈ 𝑊𝑊𝑖𝑖. I call 𝜋𝜋𝐹𝐹 as firm-consistent tie breaking rule. 
If there is a firm-consistent tie breaking rule, 𝑈𝑈(. ) is independent of the order of 
firms. That is, 𝑈𝑈(𝑢𝑢𝑖𝑖, 𝑣𝑣) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗∈𝑊𝑊𝑖𝑖(𝛼𝛼𝑖𝑖𝑗𝑗 − 𝑣𝑣𝑗𝑗) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗∈𝑊𝑊(𝛼𝛼𝑖𝑖𝑗𝑗 − 𝑣𝑣𝑗𝑗). Let (𝑢𝑢, 𝑣𝑣) ∈
𝒲𝒲 if there exists a worker-consistent tie breaking rule, 𝜋𝜋𝑊𝑊, such that for all 𝑗𝑗 ∈ 𝑊𝑊, 
𝜋𝜋𝑊𝑊(𝑗𝑗, 𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖∈𝐹𝐹(𝛼𝛼𝑖𝑖𝑗𝑗 − 𝑢𝑢𝑖𝑖)) ∈ 𝐹𝐹𝑗𝑗. This implies 𝑉𝑉(. ) is independent of the order of 
workers. Thus, 𝑉𝑉(𝑢𝑢, 𝑣𝑣𝑗𝑗) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖∈𝐹𝐹𝑗𝑗(𝛼𝛼𝑖𝑖𝑗𝑗 − 𝑢𝑢𝑖𝑖) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖∈𝐹𝐹(𝛼𝛼𝑖𝑖𝑗𝑗 − 𝑢𝑢𝑖𝑖). If there exist 
both firm and worker consistent tie breaking rules, then let (𝑢𝑢, 𝑣𝑣) ∈ 𝔅𝔅. Hence, 𝔅𝔅 =
ℱ ∩ 𝒲𝒲. Let also (𝑢𝑢, 𝑣𝑣) ∈ 𝒵𝒵 if and only if there does not exist any types of consistent 
tie breaking rules. I call ℱ as the set of firm-order independent payoffs, 𝒲𝒲 as the 
set of worker-order independent payoffs, 𝔅𝔅 as the set of order independent payoffs, 
and 𝒵𝒵 as the set of order dependent payoffs. Note that 𝒵𝒵 = 𝑌𝑌\(ℱ ∪ 𝒲𝒲). If (𝑢𝑢, 𝑣𝑣) ∉
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ℱ((𝑢𝑢, 𝑣𝑣) ∉ 𝒲𝒲), I use a fixed tie breaking rule 𝜋𝜋𝐹𝐹(𝑖𝑖, 𝑆𝑆) = 𝑚𝑚𝑖𝑖𝑚𝑚{𝑗𝑗: 𝑗𝑗 ∈ 𝑆𝑆} for all 𝑆𝑆 ⊆
𝑊𝑊 (𝜋𝜋𝑊𝑊(𝑗𝑗, 𝑆𝑆) = 𝑚𝑚𝑖𝑖𝑚𝑚{𝑖𝑖: 𝑖𝑖 ∈ 𝑆𝑆} for all 𝑆𝑆 ⊆ 𝐹𝐹, respectively). I refer the reader to 
Kucuksenel (2011) for more details and examples related to the tie breaking rules. 

Let 𝑇𝑇: 𝑌𝑌 → 𝑌𝑌 be a mapping such that 𝑇𝑇𝑖𝑖(𝑢𝑢, 𝑣𝑣) = 𝑚𝑚𝑚𝑚𝑚𝑚{𝑈𝑈(𝑢𝑢𝑖𝑖, 𝑣𝑣), 0} =
𝑈𝑈(𝑢𝑢𝑖𝑖, 𝑣𝑣) ∨ 0 if 𝑖𝑖 ∈ 𝐹𝐹 and 𝑇𝑇𝑗𝑗(𝑢𝑢, 𝑣𝑣) = 𝑚𝑚𝑚𝑚𝑚𝑚{𝑉𝑉(𝑢𝑢, 𝑣𝑣𝑗𝑗), 0} = 𝑉𝑉(𝑢𝑢, 𝑣𝑣𝑗𝑗) ∨ 0 if 𝑗𝑗 ∈ 𝑊𝑊. 
Moreover, denote ℰ(𝑇𝑇) = {(𝑢𝑢, 𝑣𝑣) ∈ 𝑌𝑌: (𝑢𝑢, 𝑣𝑣) = 𝑇𝑇(𝑢𝑢, 𝑣𝑣)} as the set of fixed points 
of 𝑇𝑇, and ℰ 𝐴𝐴(𝑇𝑇) = {(𝑢𝑢, 𝑣𝑣) ∈ 𝐴𝐴 ⊆ 𝑌𝑌: (𝑢𝑢, 𝑣𝑣) = 𝑇𝑇(𝑢𝑢, 𝑣𝑣)} be the set of fixed points of 
𝑇𝑇 in the set of payoffs 𝐴𝐴 ∈ {ℱ, 𝒲𝒲, 𝔅𝔅, 𝒵𝒵}. Given a payoff vector (𝑢𝑢, 𝑣𝑣), 𝑇𝑇 first 
searches for consistent tie breaking rules. If it is not possible to find a consistent tie 
breaking then 𝑇𝑇 uses the tie breaking rule defined for the set of order dependent 
payoffs. 

The main result about the mapping can now be stated. The following result 
shows that the core (or stable) payoffs of the assignment game are equal to the set 
of fixed points of the aforementioned mapping. Note that core outcomes are the 
Cartesian product of the core payoffs and the set of optimal assignments. 
 
Proposition 1 [Kucuksenel (2011)] ℰ𝔅𝔅(𝑇𝑇) = 𝑆𝑆(𝛤𝛤) = 𝐶𝐶(𝛤𝛤). 

 
I know define the following binary relation ≿𝐹𝐹 on 𝑌𝑌. 
 

Definition 3 (𝑢𝑢, 𝑣𝑣) ∈ 𝑌𝑌. Define a partial ordering ≿𝐹𝐹 by (𝑢𝑢, 𝑣𝑣) ≿𝐹𝐹 (𝑢𝑢′, 𝑣𝑣′) ⇔ 𝑢𝑢 ≥
𝑢𝑢′𝑚𝑚𝑚𝑚𝑎𝑎 𝑣𝑣′ ≥ 𝑣𝑣. 

 
The following lemma about the structure of the core is useful for the next 

section. 
 

Lemma 1 Let (𝑢𝑢, 𝑣𝑣) ∈ ℰ𝔅𝔅(𝑇𝑇), (𝑢𝑢′, 𝑣𝑣′) ∈ ℰ𝔅𝔅(𝑇𝑇), and (𝑢𝑢, 𝑣𝑣) ≿𝐹𝐹 (𝑢𝑢′, 𝑣𝑣′). If 𝑢𝑢𝑓𝑓 −
𝑢𝑢′

𝑓𝑓 = 𝑡𝑡, then there is 𝑤𝑤 ∈ 𝑊𝑊 such that 𝑣𝑣′𝑤𝑤 − 𝑣𝑣𝑤𝑤 = 𝑡𝑡. 
 
Proof Since (𝑢𝑢, 𝑣𝑣) ∈ 𝐶𝐶(𝛤𝛤), (𝑢𝑢′, 𝑣𝑣′) ∈ 𝐶𝐶(𝛤𝛤), it is the case that (𝑢𝑢, 𝑣𝑣) ∈ 𝔅𝔅, (𝑢𝑢′, 𝑣𝑣′) ∈
𝔅𝔅, 𝑢𝑢𝑓𝑓 + 𝑣𝑣𝑤𝑤 ≥ 𝛼𝛼𝑓𝑓𝑤𝑤 and 𝑢𝑢′

𝑓𝑓 + 𝑣𝑣′
𝑤𝑤 ≥ 𝛼𝛼𝑓𝑓𝑤𝑤 for all (𝑓𝑓, 𝑤𝑤) ∈ 𝐹𝐹 × 𝑊𝑊. Moreover, |𝐹𝐹| =

|𝑊𝑊| = 𝑚𝑚 and 𝛼𝛼𝑓𝑓𝑤𝑤 ≥ 0 for all (𝑓𝑓, 𝑤𝑤) ∈ 𝐹𝐹 × 𝑊𝑊. This implies that for each 𝑓𝑓 ∈ 𝐹𝐹 there 
exists 𝑤𝑤 ∈ 𝑊𝑊 such that 𝑢𝑢𝑓𝑓 + 𝑣𝑣𝑤𝑤 = 𝛼𝛼𝑓𝑓𝑤𝑤. Suppose this is not the case. That is, there 
is 𝑓𝑓 such that 𝑢𝑢𝑓𝑓 + 𝑣𝑣𝑤𝑤 > 𝛼𝛼𝑓𝑓𝑤𝑤 for all 𝑤𝑤 ∈ 𝑊𝑊. This implies that 𝑓𝑓 is not involved with 
any worker in the optimal assignment (Shapley and Shubik (1972)). This is a 
contradiction since 𝑓𝑓 is matched with a worker in the optimal assignment due to the 
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ℱ((𝑢𝑢, 𝑣𝑣) ∉ 𝒲𝒲), I use a fixed tie breaking rule 𝜋𝜋𝐹𝐹(𝑖𝑖, 𝑆𝑆) = 𝑚𝑚𝑖𝑖𝑚𝑚{𝑗𝑗: 𝑗𝑗 ∈ 𝑆𝑆} for all 𝑆𝑆 ⊆
𝑊𝑊 (𝜋𝜋𝑊𝑊(𝑗𝑗, 𝑆𝑆) = 𝑚𝑚𝑖𝑖𝑚𝑚{𝑖𝑖: 𝑖𝑖 ∈ 𝑆𝑆} for all 𝑆𝑆 ⊆ 𝐹𝐹, respectively). I refer the reader to 
Kucuksenel (2011) for more details and examples related to the tie breaking rules. 

Let 𝑇𝑇: 𝑌𝑌 → 𝑌𝑌 be a mapping such that 𝑇𝑇𝑖𝑖(𝑢𝑢, 𝑣𝑣) = 𝑚𝑚𝑚𝑚𝑚𝑚{𝑈𝑈(𝑢𝑢𝑖𝑖, 𝑣𝑣), 0} =
𝑈𝑈(𝑢𝑢𝑖𝑖, 𝑣𝑣) ∨ 0 if 𝑖𝑖 ∈ 𝐹𝐹 and 𝑇𝑇𝑗𝑗(𝑢𝑢, 𝑣𝑣) = 𝑚𝑚𝑚𝑚𝑚𝑚{𝑉𝑉(𝑢𝑢, 𝑣𝑣𝑗𝑗), 0} = 𝑉𝑉(𝑢𝑢, 𝑣𝑣𝑗𝑗) ∨ 0 if 𝑗𝑗 ∈ 𝑊𝑊. 
Moreover, denote ℰ(𝑇𝑇) = {(𝑢𝑢, 𝑣𝑣) ∈ 𝑌𝑌: (𝑢𝑢, 𝑣𝑣) = 𝑇𝑇(𝑢𝑢, 𝑣𝑣)} as the set of fixed points 
of 𝑇𝑇, and ℰ 𝐴𝐴(𝑇𝑇) = {(𝑢𝑢, 𝑣𝑣) ∈ 𝐴𝐴 ⊆ 𝑌𝑌: (𝑢𝑢, 𝑣𝑣) = 𝑇𝑇(𝑢𝑢, 𝑣𝑣)} be the set of fixed points of 
𝑇𝑇 in the set of payoffs 𝐴𝐴 ∈ {ℱ, 𝒲𝒲, 𝔅𝔅, 𝒵𝒵}. Given a payoff vector (𝑢𝑢, 𝑣𝑣), 𝑇𝑇 first 
searches for consistent tie breaking rules. If it is not possible to find a consistent tie 
breaking then 𝑇𝑇 uses the tie breaking rule defined for the set of order dependent 
payoffs. 

The main result about the mapping can now be stated. The following result 
shows that the core (or stable) payoffs of the assignment game are equal to the set 
of fixed points of the aforementioned mapping. Note that core outcomes are the 
Cartesian product of the core payoffs and the set of optimal assignments. 
 
Proposition 1 [Kucuksenel (2011)] ℰ𝔅𝔅(𝑇𝑇) = 𝑆𝑆(𝛤𝛤) = 𝐶𝐶(𝛤𝛤). 

 
I know define the following binary relation ≿𝐹𝐹 on 𝑌𝑌. 
 

Definition 3 (𝑢𝑢, 𝑣𝑣) ∈ 𝑌𝑌. Define a partial ordering ≿𝐹𝐹 by (𝑢𝑢, 𝑣𝑣) ≿𝐹𝐹 (𝑢𝑢′, 𝑣𝑣′) ⇔ 𝑢𝑢 ≥
𝑢𝑢′𝑚𝑚𝑚𝑚𝑎𝑎 𝑣𝑣′ ≥ 𝑣𝑣. 

 
The following lemma about the structure of the core is useful for the next 

section. 
 

Lemma 1 Let (𝑢𝑢, 𝑣𝑣) ∈ ℰ𝔅𝔅(𝑇𝑇), (𝑢𝑢′, 𝑣𝑣′) ∈ ℰ𝔅𝔅(𝑇𝑇), and (𝑢𝑢, 𝑣𝑣) ≿𝐹𝐹 (𝑢𝑢′, 𝑣𝑣′). If 𝑢𝑢𝑓𝑓 −
𝑢𝑢′

𝑓𝑓 = 𝑡𝑡, then there is 𝑤𝑤 ∈ 𝑊𝑊 such that 𝑣𝑣′𝑤𝑤 − 𝑣𝑣𝑤𝑤 = 𝑡𝑡. 
 
Proof Since (𝑢𝑢, 𝑣𝑣) ∈ 𝐶𝐶(𝛤𝛤), (𝑢𝑢′, 𝑣𝑣′) ∈ 𝐶𝐶(𝛤𝛤), it is the case that (𝑢𝑢, 𝑣𝑣) ∈ 𝔅𝔅, (𝑢𝑢′, 𝑣𝑣′) ∈
𝔅𝔅, 𝑢𝑢𝑓𝑓 + 𝑣𝑣𝑤𝑤 ≥ 𝛼𝛼𝑓𝑓𝑤𝑤 and 𝑢𝑢′

𝑓𝑓 + 𝑣𝑣′
𝑤𝑤 ≥ 𝛼𝛼𝑓𝑓𝑤𝑤 for all (𝑓𝑓, 𝑤𝑤) ∈ 𝐹𝐹 × 𝑊𝑊. Moreover, |𝐹𝐹| =

|𝑊𝑊| = 𝑚𝑚 and 𝛼𝛼𝑓𝑓𝑤𝑤 ≥ 0 for all (𝑓𝑓, 𝑤𝑤) ∈ 𝐹𝐹 × 𝑊𝑊. This implies that for each 𝑓𝑓 ∈ 𝐹𝐹 there 
exists 𝑤𝑤 ∈ 𝑊𝑊 such that 𝑢𝑢𝑓𝑓 + 𝑣𝑣𝑤𝑤 = 𝛼𝛼𝑓𝑓𝑤𝑤. Suppose this is not the case. That is, there 
is 𝑓𝑓 such that 𝑢𝑢𝑓𝑓 + 𝑣𝑣𝑤𝑤 > 𝛼𝛼𝑓𝑓𝑤𝑤 for all 𝑤𝑤 ∈ 𝑊𝑊. This implies that 𝑓𝑓 is not involved with 
any worker in the optimal assignment (Shapley and Shubik (1972)). This is a 
contradiction since 𝑓𝑓 is matched with a worker in the optimal assignment due to the 
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assumptions that |𝐹𝐹| = |𝑊𝑊| = 𝑛𝑛 and 𝛼𝛼𝑓𝑓𝑓𝑓 ≥ 0 for all (𝑓𝑓, 𝑤𝑤) ∈ 𝐹𝐹 × 𝑊𝑊. Thus, 
𝑇𝑇𝑓𝑓(𝑢𝑢, 𝑣𝑣) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑓𝑓∈𝑊𝑊(𝛼𝛼𝑓𝑓𝑓𝑓 − 𝑣𝑣𝑓𝑓) ∨ 0 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑓𝑓∈𝑊𝑊(𝛼𝛼𝑓𝑓𝑓𝑓 − 𝑣𝑣𝑓𝑓) = 𝑢𝑢𝑓𝑓 and 𝑇𝑇𝑓𝑓(𝑢𝑢′, 𝑣𝑣′) 
= 𝑚𝑚𝑚𝑚𝑚𝑚𝑓𝑓∈𝑊𝑊(𝛼𝛼𝑓𝑓𝑓𝑓 − 𝑣𝑣′

𝑓𝑓) ∨ 0 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑓𝑓∈𝑊𝑊(𝛼𝛼𝑓𝑓𝑓𝑓 − 𝑣𝑣′
𝑓𝑓) = 𝑢𝑢′

𝑓𝑓 = 𝑢𝑢𝑓𝑓 − 𝑡𝑡. Thus 𝑢𝑢𝑓𝑓 =
𝑚𝑚𝑚𝑚𝑚𝑚𝑓𝑓∈𝑊𝑊(𝛼𝛼𝑓𝑓𝑓𝑓 − 𝑣𝑣′

𝑓𝑓 + 𝑡𝑡). Therefore, there is 𝑤𝑤 ∈ 𝑊𝑊 such that 𝑣𝑣𝑓𝑓 = 𝑣𝑣′𝑓𝑓 − 𝑡𝑡.  

4. The new Algorithm 
The 𝑇𝑇-algorithm uses the formulation of 𝑇𝑇 mapping. It starts at some (𝑢𝑢, 𝑣𝑣) ∈

𝑌𝑌 and iterate 𝑇𝑇(𝑢𝑢, 𝑣𝑣) until two iterations are identical. The algorithm stops when 
two iterations are identical (𝑇𝑇(𝑢𝑢, 𝑣𝑣)= (𝑢𝑢, 𝑣𝑣)). I prove that when the algorithm stops, 
it must be at a stable payoff. Moreover, I show that all stable payoffs can be reached 
through by extending the algorithm. The main intuition behing the 𝑇𝑇-algorithm is 
similar to the one in Echenique and Oviedo (2006). 
 
𝑇𝑇-algorithm: 

1. Set (𝑢𝑢0, 𝑣𝑣0) = (𝑢𝑢, 𝑣𝑣) where (𝑢𝑢, 𝑣𝑣) ∈ 𝑌𝑌. Set (𝑢𝑢1, 𝑣𝑣1) = 𝑇𝑇(𝑢𝑢0, 𝑣𝑣0) and 𝑘𝑘 = 1. 

2. While (𝑢𝑢𝑘𝑘, 𝑣𝑣𝑘𝑘) ≠ (𝑢𝑢𝑘𝑘−1, 𝑣𝑣𝑘𝑘−1), do: 

(a) set 𝑘𝑘 = 𝑘𝑘 + 1 

(b) set (𝑢𝑢𝑘𝑘, 𝑣𝑣𝑘𝑘) = 𝑇𝑇(𝑢𝑢𝑘𝑘−1, 𝑣𝑣𝑘𝑘−1). 

3. Set 𝜏𝜏 = (𝑢𝑢𝑘𝑘, 𝑣𝑣𝑘𝑘). Stop. 

 
Proposition 2 If the 𝑇𝑇-algorithm stops at 𝜏𝜏 ∈ 𝔅𝔅, then 𝜏𝜏 is a stable payoff. If (𝑢𝑢𝑘𝑘, 𝑣𝑣𝑘𝑘) 
is in the set of stable payoffs, for some iteration 𝑘𝑘 of the 𝑇𝑇-algorithm, then the 
algorithm stops at 𝜏𝜏 = (𝑢𝑢𝑘𝑘, 𝑣𝑣𝑘𝑘). 
 
Proof If the algorithm stops at 𝜏𝜏 ∈ 𝔅𝔅, then (𝑢𝑢𝑘𝑘, 𝑣𝑣𝑘𝑘) = (𝑢𝑢𝑘𝑘−1, 𝑣𝑣𝑘𝑘−1) = 𝜏𝜏. Then, 
𝜏𝜏 = 𝑇𝑇(𝑢𝑢𝑘𝑘−1, 𝑣𝑣𝑘𝑘−1) = 𝑇𝑇(𝜏𝜏), so 𝜏𝜏 ∈ ℰ(𝑇𝑇). By Proposition 1, 𝜏𝜏 ∈ 𝑆𝑆(𝛤𝛤). Moreover, 
by the formulation of Shapley and Shubik (1972), there is an optimal assignment 𝑚𝑚 
such that (𝜏𝜏; 𝑚𝑚) ∈ 𝐶𝐶(𝛤𝛤). To prove the second part, observe that if (𝑢𝑢𝑘𝑘, 𝑣𝑣𝑘𝑘) is a 
stable payoff, then (𝑢𝑢𝑘𝑘, 𝑣𝑣𝑘𝑘) is a fixed point of 𝑇𝑇 by Proposition 1. Then the 
algorithm stops at 𝜏𝜏 = (𝑢𝑢𝑘𝑘, 𝑣𝑣𝑘𝑘).  
 

The above result is the counterpart of the result provided by Roth and Vande 
Vate (1990) for assignment games without money. They show that “randomly 
chosen blocking pairs” process starting from an arbitrary matching surely results in 
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a stable matching for one-to-one assignment games without money. Proposition 2 
states that starting at an arbitrary (𝑢𝑢, 𝑣𝑣) payoff, 𝑇𝑇-algorithm results in a stable payoff 
when the algorithm stops. This algorithm is also closely related to the auction based 
algorithm provided by Demange, Gale and Sotomayor (1986) to find one of the 
extremal core payoffs, buyer-optimal payoffs (or the minimum price allocation), in 
the assignment problem of multiple items. Their dynamic auction mechanism also 
starts with a non-core payoff where all item prices are zero and identifies one of the 
core payoffs by increasing the prices of overdemanded items. The extension of the 
dynamic auction mechanism to this more general model of job assignment problem 
also produces the stable payoff. My contribution is related to providing an algorithm 
that uses the 𝑇𝑇-algorithm in the first part to reach an extremal stable payoff, and then 
reaches to all interior core payoffs in the second part of the algorithm.   

I now provide the second algorithm to find all extremal and interior core 
payoffs. The second algorithm starts from an initial payoff vector in which on one 
side of the market each agent receives the best possible payoff, and on the other side 
of the market, each agent receives the worst possible payoff. Let 
 

(𝑢𝑢𝑌𝑌, 𝑣𝑣𝑌𝑌) = (𝑚𝑚𝑚𝑚𝑚𝑚𝑤𝑤∈𝑊𝑊𝛼𝛼𝑓𝑓1𝑤𝑤, … , 𝑚𝑚𝑚𝑚𝑚𝑚𝑤𝑤∈𝑊𝑊𝛼𝛼𝑓𝑓𝑛𝑛𝑤𝑤, 0, … ,0), 

(𝑢𝑢𝑌𝑌, 𝑣𝑣𝑌𝑌) = (0, … ,0, 𝑚𝑚𝑚𝑚𝑚𝑚𝑓𝑓∈𝐹𝐹𝛼𝛼𝑓𝑓𝑤𝑤1, … , 𝑚𝑚𝑚𝑚𝑚𝑚𝑓𝑓∈𝐹𝐹𝛼𝛼𝑓𝑓𝑤𝑤𝑛𝑛 ). 

 
Moreover, let 𝑒𝑒𝑙𝑙

𝑛𝑛 be the 𝑙𝑙𝑡𝑡ℎ unit vector in ℝ𝑛𝑛, i.e. 𝑒𝑒𝑙𝑙
𝑛𝑛 = (0, . . .1,0, . . . ,0) ∈ ℝ𝑛𝑛, where 

1 is the 𝑙𝑙𝑡𝑡ℎ element of 𝑒𝑒𝑙𝑙
𝑛𝑛. 

 
Algorithm 2: 
 

1. Set (𝑢𝑢0, 𝑣𝑣0) = (𝑢𝑢𝑌𝑌, 𝑣𝑣𝑌𝑌) Set (𝑢𝑢1, 𝑣𝑣1) = 𝑇𝑇(𝑢𝑢0, 𝑣𝑣0) and 𝑘𝑘 = 1. 

2. While (𝑢𝑢𝑘𝑘, 𝑣𝑣𝑘𝑘) ≠ (𝑢𝑢𝑘𝑘−1, 𝑣𝑣𝑘𝑘−1), do: 

(a) set 𝑘𝑘 = 𝑘𝑘 + 1 

(b) set (𝑢𝑢𝑘𝑘, 𝑣𝑣𝑘𝑘) = 𝑇𝑇(𝑢𝑢𝑘𝑘−1, 𝑣𝑣𝑘𝑘−1). 

3. Set 𝜏𝜏 = (𝑢𝑢𝑘𝑘, 𝑣𝑣𝑘𝑘). 

4. Let ℰ̂ = 𝜏𝜏. The possible states of the algorithm is 𝑌𝑌. Start at state 𝛺𝛺0 where 

𝛺𝛺0 = {(𝑢𝑢𝑌𝑌 ∧ 𝑢𝑢𝑘𝑘 + 𝑒𝑒𝑙𝑙
𝑛𝑛, 0 ∨ 𝑣𝑣𝑘𝑘 − 𝑒𝑒𝑚𝑚

𝑛𝑛 ), (0 ∨ 𝑢𝑢𝑘𝑘 − 𝑒𝑒𝑙𝑙
𝑛𝑛, 𝑣𝑣𝑌𝑌 ∧ 𝑣𝑣𝑘𝑘 + 𝑒𝑒𝑚𝑚

𝑛𝑛 )} ⊂ 𝑌𝑌 

for all 1 ≤ 𝑙𝑙 and 𝑚𝑚 ≤ 𝑛𝑛. Let the state of the algorithm be Ω. While 𝛺𝛺′ ≠ ∅ do the 
following subroutine to get a new state 𝛺𝛺′. Then set 𝛺𝛺 = 𝛺𝛺′. 
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a stable matching for one-to-one assignment games without money. Proposition 2 
states that starting at an arbitrary (𝑢𝑢, 𝑣𝑣) payoff, 𝑇𝑇-algorithm results in a stable payoff 
when the algorithm stops. This algorithm is also closely related to the auction based 
algorithm provided by Demange, Gale and Sotomayor (1986) to find one of the 
extremal core payoffs, buyer-optimal payoffs (or the minimum price allocation), in 
the assignment problem of multiple items. Their dynamic auction mechanism also 
starts with a non-core payoff where all item prices are zero and identifies one of the 
core payoffs by increasing the prices of overdemanded items. The extension of the 
dynamic auction mechanism to this more general model of job assignment problem 
also produces the stable payoff. My contribution is related to providing an algorithm 
that uses the 𝑇𝑇-algorithm in the first part to reach an extremal stable payoff, and then 
reaches to all interior core payoffs in the second part of the algorithm.   

I now provide the second algorithm to find all extremal and interior core 
payoffs. The second algorithm starts from an initial payoff vector in which on one 
side of the market each agent receives the best possible payoff, and on the other side 
of the market, each agent receives the worst possible payoff. Let 
 

(𝑢𝑢𝑌𝑌, 𝑣𝑣𝑌𝑌) = (𝑚𝑚𝑚𝑚𝑚𝑚𝑤𝑤∈𝑊𝑊𝛼𝛼𝑓𝑓1𝑤𝑤, … , 𝑚𝑚𝑚𝑚𝑚𝑚𝑤𝑤∈𝑊𝑊𝛼𝛼𝑓𝑓𝑛𝑛𝑤𝑤, 0, … ,0), 

(𝑢𝑢𝑌𝑌, 𝑣𝑣𝑌𝑌) = (0, … ,0, 𝑚𝑚𝑚𝑚𝑚𝑚𝑓𝑓∈𝐹𝐹𝛼𝛼𝑓𝑓𝑤𝑤1, … , 𝑚𝑚𝑚𝑚𝑚𝑚𝑓𝑓∈𝐹𝐹𝛼𝛼𝑓𝑓𝑤𝑤𝑛𝑛 ). 

 
Moreover, let 𝑒𝑒𝑙𝑙

𝑛𝑛 be the 𝑙𝑙𝑡𝑡ℎ unit vector in ℝ𝑛𝑛, i.e. 𝑒𝑒𝑙𝑙
𝑛𝑛 = (0, . . .1,0, . . . ,0) ∈ ℝ𝑛𝑛, where 

1 is the 𝑙𝑙𝑡𝑡ℎ element of 𝑒𝑒𝑙𝑙
𝑛𝑛. 

 
Algorithm 2: 
 

1. Set (𝑢𝑢0, 𝑣𝑣0) = (𝑢𝑢𝑌𝑌, 𝑣𝑣𝑌𝑌) Set (𝑢𝑢1, 𝑣𝑣1) = 𝑇𝑇(𝑢𝑢0, 𝑣𝑣0) and 𝑘𝑘 = 1. 

2. While (𝑢𝑢𝑘𝑘, 𝑣𝑣𝑘𝑘) ≠ (𝑢𝑢𝑘𝑘−1, 𝑣𝑣𝑘𝑘−1), do: 

(a) set 𝑘𝑘 = 𝑘𝑘 + 1 

(b) set (𝑢𝑢𝑘𝑘, 𝑣𝑣𝑘𝑘) = 𝑇𝑇(𝑢𝑢𝑘𝑘−1, 𝑣𝑣𝑘𝑘−1). 

3. Set 𝜏𝜏 = (𝑢𝑢𝑘𝑘, 𝑣𝑣𝑘𝑘). 

4. Let ℰ̂ = 𝜏𝜏. The possible states of the algorithm is 𝑌𝑌. Start at state 𝛺𝛺0 where 

𝛺𝛺0 = {(𝑢𝑢𝑌𝑌 ∧ 𝑢𝑢𝑘𝑘 + 𝑒𝑒𝑙𝑙
𝑛𝑛, 0 ∨ 𝑣𝑣𝑘𝑘 − 𝑒𝑒𝑚𝑚

𝑛𝑛 ), (0 ∨ 𝑢𝑢𝑘𝑘 − 𝑒𝑒𝑙𝑙
𝑛𝑛, 𝑣𝑣𝑌𝑌 ∧ 𝑣𝑣𝑘𝑘 + 𝑒𝑒𝑚𝑚

𝑛𝑛 )} ⊂ 𝑌𝑌 

for all 1 ≤ 𝑙𝑙 and 𝑚𝑚 ≤ 𝑛𝑛. Let the state of the algorithm be Ω. While 𝛺𝛺′ ≠ ∅ do the 
following subroutine to get a new state 𝛺𝛺′. Then set 𝛺𝛺 = 𝛺𝛺′. 
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SUBROUTINE: Let 𝛺𝛺′ = ∅. For each (𝑢𝑢, 𝑣𝑣) ∈ 𝛺𝛺, run 𝑇𝑇(𝑢𝑢, 𝑣𝑣). If 𝑇𝑇(𝑢𝑢, 𝑣𝑣) =
(𝑢𝑢, 𝑣𝑣) and (𝑢𝑢, 𝑣𝑣) ∈ 𝔅𝔅 add (𝑢𝑢, 𝑣𝑣) to ℰ̂ and add {(𝑢𝑢𝑌𝑌 ∧ 𝑢𝑢 + 𝑒𝑒𝑙𝑙

𝑛𝑛, 0 ∨ 𝑣𝑣 − 𝑒𝑒𝑚𝑚𝑛𝑛 ), (0 ∨
𝑢𝑢 − 𝑒𝑒𝑙𝑙

𝑛𝑛, 𝑣𝑣𝑌𝑌 ∧ 𝑣𝑣 + 𝑒𝑒𝑚𝑚𝑛𝑛 )}\ℰ̂ to 𝛺𝛺′ for all 1 ≤ 𝑙𝑙 and 𝑚𝑚 ≤ 𝑛𝑛. 
 

Now I use the following Example to show the details of the algorithm.  
Example 1 [Shapley-Shubik (1972)]. Let 𝛤𝛤 = 〈{𝑓𝑓1, 𝑓𝑓2, 𝑓𝑓3}, {𝑤𝑤1, 𝑤𝑤2, 𝑤𝑤3}, 𝛼𝛼〉 be an 
assignment game where 𝛼𝛼 is 
 

 𝑤𝑤1 𝑤𝑤2 𝑤𝑤3 
𝑓𝑓1 5 8 2 
𝑓𝑓2 7 9 6 
𝑓𝑓3 2 3 0 

 
Algorithm 2 starts at an initial payoff vector in which firms receive the best possible 
payoff and workers receive the worst possible payoff. That is, (𝑢𝑢0, 𝑣𝑣0) =
(8,9,3,0,0,0). Then, the algorithm does 𝑇𝑇(8,9,3,0,0,0) = (8,7,0,0,0,0). Note that all 
firms want to be matched with 𝑤𝑤2, and all workers want to be matched with 𝑓𝑓2 in 
this initial payoff. This implies that the payoff is in the set of order dependent 
payoffs, and hence I use the fixed tie breaking rule. Firm 1's payoff is maximized 
by matching with worker 2: 𝑇𝑇1(8,9,3,0,0,0) = (𝛼𝛼12 − 0) ∨ 0 = 8. Then, firm 2's 
payoff is maximized by matching with worker 1 given that only available options 
are worker 1 and worker 3: 𝑇𝑇2(8,9,3,0,0,0) = (𝛼𝛼11 − 0) ∨ 0 = 7. Then, firm 3's 
payoff is maximized by matching with worker 3: 𝑇𝑇3(8,9,3,0,0,0) = (𝛼𝛼33 − 0) ∨
0 = 0.  The argument for the workers is also similar: 𝑇𝑇4(8,9,3,0,0,0) = (𝛼𝛼31 − 3) ∨
0 = 0, 𝑇𝑇5(8,9,3,0,0,0) = (𝛼𝛼12 − 8) ∨ 0 = 0 and 𝑇𝑇6(8,9,3,0,0,0) = (𝛼𝛼23 − 9) ∨
0 = 0. Then, the algorithm proceeds as 𝑇𝑇(8,7,0,0,0,0) = (8,7,0,2,2,0), 
𝑇𝑇(8,7,0,2,2,0) = (6,6,0,2,2,0), 𝑇𝑇(6,6,0,2,2,0) = (6,6,0,2,3,0), 𝑇𝑇(6,6,0,2,3,0) =
(5,6,0,2,3,0) and 𝑇𝑇(5,6,0,2,3,0) = (5,6,0,2,3,0). This implies 𝜏𝜏 = (5,6,0,2,3,0). 
Now, the subroutine starts with initial payoffs  

𝛺𝛺0 = {(6,6,0,1,3,0), (6,6,0,2,2,0), (6,6,0,2,3,0), (5,7,0,1,3,0), (5,7,0,2,2,0), 
(5,7,0,2,3,0), (5,6,1,1,3,0), (5,6,1,2,2,0), (5,6,1,2,3,0), (4,6,0,3,3,0), (4,6,0,2,4,0),
(4,6,0,2,3,1), (5,5,0,3,3,0), (5,5,0,2,4,0), (5,5,0,2,3,1), (5,6,0,3,3,0), (5,6,0,2,4,0), 
(5,6,0,2,3,1)}.
Note that for all (𝑢𝑢, 𝑣𝑣) ∈ {(5,6,1,1,3,0), (4,6,0,2,4,0)} ⊂ 𝛺𝛺0, 𝑇𝑇(𝑢𝑢, 𝑣𝑣)= (𝑢𝑢, 𝑣𝑣). 
Then, add {(5,6,1,1,3,0), (4,6,0,2,4,0)} to ℰ̂. The new state is 

𝛺𝛺 = {(5,6,1,1,3,0) + (𝑒𝑒𝑙𝑙
3, −𝑒𝑒𝑚𝑚

3 ), (5,6,1,1,3,0) + (−𝑒𝑒𝑙𝑙
3, 𝑒𝑒𝑚𝑚

3 ), (4,6,0,2,4,0)
+ (𝑒𝑒𝑙𝑙

3, −𝑒𝑒𝑚𝑚
3 ), (4,6,0,2,4,0) + (−𝑒𝑒𝑙𝑙

3, 𝑒𝑒𝑚𝑚
3 )}\{(5,6,0,2,3,0)}.
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For all (𝑢𝑢, 𝑣𝑣) ∈ {(4,6,1,1,4,0), (4,5,0,2,4,1), (3,6,0,2,5,0)} ⊂ 𝛺𝛺, 𝑇𝑇(𝑢𝑢, 𝑣𝑣)= (𝑢𝑢, 𝑣𝑣). 
Then, add {(4,6,1,1,4,0), (4,5,0,2,4,1), (3,6,0,2,5,0)} to ℰ̂. The new state is 
𝛺𝛺′ = {(4,6,1,1,4,0) + (𝑒𝑒𝑙𝑙

3, −𝑒𝑒𝑚𝑚
3 ), (4,6,1,1,4,0) + (−𝑒𝑒𝑙𝑙

3, 𝑒𝑒𝑚𝑚
3 ), (4,5,0,2,4,1) +

(𝑒𝑒𝑙𝑙
3, −𝑒𝑒𝑚𝑚

3 ), (4,5,0,2,4,1) + (−𝑒𝑒𝑙𝑙
3, 𝑒𝑒𝑚𝑚

3 ), (3,6,0,2,5,0) + (𝑒𝑒𝑙𝑙
3, −𝑒𝑒𝑚𝑚

3 ), (3,6,0,2,5,0) +
(−𝑒𝑒𝑙𝑙

3, −𝑒𝑒𝑚𝑚
3 )}\ℰ̂.

It is only the case that for (3,5,0,2,5,1) ∈ 𝛺𝛺′, 𝑇𝑇(3,5,0,2,5,1) = (3,5,0,2,5,1). Then 
add (3,5,0,2,5,1) to ℰ̂. The new state is 
𝛺𝛺′′ = {(3,5,0,2,5,1) + (𝑒𝑒𝑙𝑙

3, −𝑒𝑒𝑚𝑚
3 ), (3,5,0,2,5,1) + (−𝑒𝑒𝑙𝑙

3, 𝑒𝑒𝑚𝑚
3 )}\ℰ̂. 

Note that there are not any (𝑢𝑢, 𝑣𝑣) ∈ 𝛺𝛺′′ such that 𝑇𝑇(𝑢𝑢, 𝑣𝑣)= (𝑢𝑢, 𝑣𝑣). Then the new 
state is ∅. This implies the algorithm stops and the core of the assignment game is 
ℰ̂ = {(5,6,0,2,3,0), (5,6,1,1,3,0), (4,6,0,2,4,0), (4,6,1,1,4,0), (4,5,0,2,4,1), 
(3,6,0,2,5,0), (3,5,0,2,5,1)}. 
 
Theorem 2 The set ℰ̂ produced by Algorithm 2 coincides with the core payoffs 
𝐶𝐶(𝛤𝛤) of the assignment game. 
 
Proof  First I prove that the algorithm reaches a fixed point after a finite 𝑘𝑘 number 
of iterations. Then, I know that 𝜏𝜏 = (𝑢𝑢𝑘𝑘, 𝑣𝑣𝑘𝑘) ∈ 𝑆𝑆(𝛤𝛤) by Proposition 2. Then, I show 
that ℰ̂ ⊆ 𝑆𝑆(𝛤𝛤), and 𝑆𝑆(𝛤𝛤) ⊆ ℰ̂ by using direct proofs. 
 

I want to show that the first part of Algorithm 2, 𝑇𝑇-algorithm, reaches a fixed 
point. That is for some finite 𝑘𝑘, 𝜏𝜏 = (𝑢𝑢𝑘𝑘, 𝑣𝑣𝑘𝑘) = (𝑢𝑢𝑘𝑘−1, 𝑣𝑣𝑘𝑘−1). Assume this does not 
hold for any 𝑘𝑘. Then, {(𝑢𝑢𝑘𝑘, 𝑣𝑣𝑘𝑘)} is an infinite sequence of distinct payoffs in 𝑌𝑌. 
However, there exists a finite number of payoffs that is for all 𝑓𝑓 ∈ 𝐹𝐹 𝑢𝑢𝑓𝑓 ∈
{0,1, … , 𝑚𝑚𝑚𝑚𝑚𝑚𝑤𝑤∈𝑊𝑊𝛼𝛼𝑓𝑓𝑤𝑤} and for all 𝑤𝑤 ∈ 𝑊𝑊 𝑣𝑣𝑤𝑤 ∈ {0,1, … , 𝑚𝑚𝑚𝑚𝑚𝑚𝑓𝑓∈𝐹𝐹𝛼𝛼𝑓𝑓𝑤𝑤}, contradicting 
to the initial assumption. This implies there is 𝑘𝑘 < ∞ such that 𝑇𝑇-algorithm reaches 
a fixed point. 

Now I show that the rest of Algorithm 2 stops after a finite number of steps. 
Let 𝑀𝑀 ⊆ Y be the collection of states visited by the algorithm. Let 𝑑𝑑1(𝛺𝛺), where 
𝛺𝛺 ⊆ M, be the minimum of the Euclidean distance between payoffs in 𝛺𝛺 and =
(𝑢𝑢𝑌𝑌, 𝑣𝑣𝑌𝑌) and 𝑑𝑑2(𝛺𝛺) be the minimum of the Euclidean distance between payoffs in 
𝛺𝛺 and (𝑢𝑢𝑌𝑌, 𝑣𝑣𝑌𝑌). If 𝛺𝛺 = ∅, let 𝑑𝑑1(𝛺𝛺) = 𝑑𝑑2(𝛺𝛺) = 0. I consider 𝑑𝑑1(𝛺𝛺) and 𝑑𝑑2(𝛺𝛺) 
because if the state is {(𝑢𝑢𝑌𝑌, 𝑣𝑣𝑌𝑌), (𝑢𝑢𝑌𝑌, 𝑣𝑣𝑌𝑌)}, {(𝑢𝑢𝑌𝑌, 𝑣𝑣𝑌𝑌)}, or {(𝑢𝑢𝑌𝑌, 𝑣𝑣𝑌𝑌)} the next state is 
∅ by the definition of the subroutine. Let 𝛺𝛺′ and 𝛺𝛺′′ be successive states in the 
algorithm. It is clear from the definition that 𝑑𝑑1(𝛺𝛺′) > 𝑑𝑑1(𝛺𝛺′′) and 𝑑𝑑2(𝛺𝛺′) >
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For all (𝑢𝑢, 𝑣𝑣) ∈ {(4,6,1,1,4,0), (4,5,0,2,4,1), (3,6,0,2,5,0)} ⊂ 𝛺𝛺, 𝑇𝑇(𝑢𝑢, 𝑣𝑣)= (𝑢𝑢, 𝑣𝑣). 
Then, add {(4,6,1,1,4,0), (4,5,0,2,4,1), (3,6,0,2,5,0)} to ℰ̂. The new state is 
𝛺𝛺′ = {(4,6,1,1,4,0) + (𝑒𝑒𝑙𝑙

3, −𝑒𝑒𝑚𝑚
3 ), (4,6,1,1,4,0) + (−𝑒𝑒𝑙𝑙

3, 𝑒𝑒𝑚𝑚
3 ), (4,5,0,2,4,1) +

(𝑒𝑒𝑙𝑙
3, −𝑒𝑒𝑚𝑚

3 ), (4,5,0,2,4,1) + (−𝑒𝑒𝑙𝑙
3, 𝑒𝑒𝑚𝑚

3 ), (3,6,0,2,5,0) + (𝑒𝑒𝑙𝑙
3, −𝑒𝑒𝑚𝑚

3 ), (3,6,0,2,5,0) +
(−𝑒𝑒𝑙𝑙

3, −𝑒𝑒𝑚𝑚
3 )}\ℰ̂.

It is only the case that for (3,5,0,2,5,1) ∈ 𝛺𝛺′, 𝑇𝑇(3,5,0,2,5,1) = (3,5,0,2,5,1). Then 
add (3,5,0,2,5,1) to ℰ̂. The new state is 
𝛺𝛺′′ = {(3,5,0,2,5,1) + (𝑒𝑒𝑙𝑙

3, −𝑒𝑒𝑚𝑚
3 ), (3,5,0,2,5,1) + (−𝑒𝑒𝑙𝑙

3, 𝑒𝑒𝑚𝑚
3 )}\ℰ̂. 

Note that there are not any (𝑢𝑢, 𝑣𝑣) ∈ 𝛺𝛺′′ such that 𝑇𝑇(𝑢𝑢, 𝑣𝑣)= (𝑢𝑢, 𝑣𝑣). Then the new 
state is ∅. This implies the algorithm stops and the core of the assignment game is 
ℰ̂ = {(5,6,0,2,3,0), (5,6,1,1,3,0), (4,6,0,2,4,0), (4,6,1,1,4,0), (4,5,0,2,4,1), 
(3,6,0,2,5,0), (3,5,0,2,5,1)}. 
 
Theorem 2 The set ℰ̂ produced by Algorithm 2 coincides with the core payoffs 
𝐶𝐶(𝛤𝛤) of the assignment game. 
 
Proof  First I prove that the algorithm reaches a fixed point after a finite 𝑘𝑘 number 
of iterations. Then, I know that 𝜏𝜏 = (𝑢𝑢𝑘𝑘, 𝑣𝑣𝑘𝑘) ∈ 𝑆𝑆(𝛤𝛤) by Proposition 2. Then, I show 
that ℰ̂ ⊆ 𝑆𝑆(𝛤𝛤), and 𝑆𝑆(𝛤𝛤) ⊆ ℰ̂ by using direct proofs. 
 

I want to show that the first part of Algorithm 2, 𝑇𝑇-algorithm, reaches a fixed 
point. That is for some finite 𝑘𝑘, 𝜏𝜏 = (𝑢𝑢𝑘𝑘, 𝑣𝑣𝑘𝑘) = (𝑢𝑢𝑘𝑘−1, 𝑣𝑣𝑘𝑘−1). Assume this does not 
hold for any 𝑘𝑘. Then, {(𝑢𝑢𝑘𝑘, 𝑣𝑣𝑘𝑘)} is an infinite sequence of distinct payoffs in 𝑌𝑌. 
However, there exists a finite number of payoffs that is for all 𝑓𝑓 ∈ 𝐹𝐹 𝑢𝑢𝑓𝑓 ∈
{0,1, … , 𝑚𝑚𝑚𝑚𝑚𝑚𝑤𝑤∈𝑊𝑊𝛼𝛼𝑓𝑓𝑤𝑤} and for all 𝑤𝑤 ∈ 𝑊𝑊 𝑣𝑣𝑤𝑤 ∈ {0,1, … , 𝑚𝑚𝑚𝑚𝑚𝑚𝑓𝑓∈𝐹𝐹𝛼𝛼𝑓𝑓𝑤𝑤}, contradicting 
to the initial assumption. This implies there is 𝑘𝑘 < ∞ such that 𝑇𝑇-algorithm reaches 
a fixed point. 

Now I show that the rest of Algorithm 2 stops after a finite number of steps. 
Let 𝑀𝑀 ⊆ Y be the collection of states visited by the algorithm. Let 𝑑𝑑1(𝛺𝛺), where 
𝛺𝛺 ⊆ M, be the minimum of the Euclidean distance between payoffs in 𝛺𝛺 and =
(𝑢𝑢𝑌𝑌, 𝑣𝑣𝑌𝑌) and 𝑑𝑑2(𝛺𝛺) be the minimum of the Euclidean distance between payoffs in 
𝛺𝛺 and (𝑢𝑢𝑌𝑌, 𝑣𝑣𝑌𝑌). If 𝛺𝛺 = ∅, let 𝑑𝑑1(𝛺𝛺) = 𝑑𝑑2(𝛺𝛺) = 0. I consider 𝑑𝑑1(𝛺𝛺) and 𝑑𝑑2(𝛺𝛺) 
because if the state is {(𝑢𝑢𝑌𝑌, 𝑣𝑣𝑌𝑌), (𝑢𝑢𝑌𝑌, 𝑣𝑣𝑌𝑌)}, {(𝑢𝑢𝑌𝑌, 𝑣𝑣𝑌𝑌)}, or {(𝑢𝑢𝑌𝑌, 𝑣𝑣𝑌𝑌)} the next state is 
∅ by the definition of the subroutine. Let 𝛺𝛺′ and 𝛺𝛺′′ be successive states in the 
algorithm. It is clear from the definition that 𝑑𝑑1(𝛺𝛺′) > 𝑑𝑑1(𝛺𝛺′′) and 𝑑𝑑2(𝛺𝛺′) >
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𝑑𝑑2(𝛺𝛺′′). Since 𝑀𝑀 is a finite set, 𝑑𝑑1(. ) and 𝑑𝑑2(. ) takes only a finite number of values. 
Thus, after a finite number of steps the algorithm stops, i.e., 𝛺𝛺 = ∅. 

Now, I want to show that ℰ̂ ⊆ 𝑆𝑆(𝛤𝛤). Let (𝑢𝑢, 𝑣𝑣) ∈ ℰ̂. This implies that (𝑢𝑢, 𝑣𝑣) =
𝑇𝑇(𝑢𝑢, 𝑣𝑣) and (𝑢𝑢, 𝑣𝑣) ∈ 𝔅𝔅 by the definition of the algorithm and hence (𝑢𝑢, 𝑣𝑣) ∈ ℰ𝔅𝔅(𝑇𝑇). 
By Proposition 1, ℰ𝔅𝔅(𝑇𝑇) = 𝑆𝑆(𝛤𝛤). Therefore, (𝑢𝑢, 𝑣𝑣) ∈ 𝑆𝑆(𝛤𝛤) which proves that ℰ̂ ⊆
𝑆𝑆(𝛤𝛤). 

Next, I want to show that 𝑆𝑆(𝛤𝛤) ⊆ ℰ̂. Let (𝑢𝑢, 𝑣𝑣) ∈ 𝑆𝑆(𝛤𝛤) = ℰ𝔅𝔅(𝑇𝑇). Suppose, by 
way of contradiction, that (𝑢𝑢, 𝑣𝑣)ℰ̂. This implies 𝜏𝜏 = (𝑢𝑢𝑘𝑘, 𝑣𝑣𝑘𝑘) ≠ (𝑢𝑢, 𝑣𝑣) and 
(𝑢𝑢, 𝑣𝑣)M so that the algorithm's states do not contain (𝑢𝑢, 𝑣𝑣). Then, either 
𝜏𝜏 ≿𝐹𝐹 (𝑢𝑢, 𝑣𝑣) or (𝑢𝑢, 𝑣𝑣) ≿𝐹𝐹 𝜏𝜏. Suppose, without a loss of generality, 𝜏𝜏 ≿𝐹𝐹 (𝑢𝑢, 𝑣𝑣) and 
𝑚𝑚𝑚𝑚𝑚𝑚𝑓𝑓∈𝐹𝐹(𝑢𝑢𝑓𝑓𝑘𝑘 − 𝑢𝑢𝑓𝑓) = 𝑡𝑡. By Lemma 1, there is 𝑤𝑤 ∈ 𝑊𝑊 such that 𝑣𝑣𝑤𝑤 − 𝑣𝑣𝑤𝑤𝑘𝑘 = 𝑡𝑡. Now, 
I show that (𝑢𝑢𝑌𝑌 ∧ 𝑢𝑢 + 𝑒𝑒𝑓𝑓𝑛𝑛, 0 ∨ 𝑣𝑣 − 𝑒𝑒𝑔𝑔𝑛𝑛)M for all 1 ≤ 𝑓𝑓and 𝑔𝑔 ≤ 𝑛𝑛. Suppose this is 
not the case. Then, there is a state 𝛺𝛺𝑐𝑐 of the algorithm and 𝑚𝑚, 𝑏𝑏 ∈ [1, 𝑛𝑛] such that 
(𝑢𝑢𝑌𝑌 ∧ 𝑢𝑢 + 𝑒𝑒𝑎𝑎𝑛𝑛, 0 ∨ 𝑣𝑣 − 𝑒𝑒𝑏𝑏𝑛𝑛) ∈ 𝛺𝛺𝑐𝑐 ⊆ M. This is only possible if (𝑢𝑢, 𝑣𝑣)  is in the 
previous state 𝛺𝛺𝑐𝑐−1 ⊆ M by the definition of the subroutine; a contradiction since I 
assumed that (𝑢𝑢, 𝑣𝑣)M. Using the same argument, I can also conclude that 
{(𝑢𝑢𝑌𝑌 ∧ 𝑢𝑢 + 𝑒𝑒𝑓𝑓𝑛𝑛 + 𝑒𝑒ℎ𝑛𝑛, 0 ∨ 𝑣𝑣 − 𝑒𝑒𝑔𝑔𝑛𝑛 − 𝑒𝑒𝑘𝑘𝑛𝑛)}M for all 1 ≤ ℎ and 𝑘𝑘 ≤ 𝑛𝑛. Repeating the 
same argument 𝑡𝑡 − 1 times implies (𝑢𝑢𝑌𝑌 ∧ 𝑢𝑢𝑘𝑘 − 𝑒𝑒𝑙𝑙𝑛𝑛, 0 ∨ 𝑣𝑣𝑘𝑘 + 𝑒𝑒𝑔𝑔𝑛𝑛)M, which is a 
contradiction since I have shown that there is 𝜏𝜏 = (𝑢𝑢𝑘𝑘, 𝑣𝑣𝑘𝑘) ∈ ℰ̂ and (𝑢𝑢𝑌𝑌 ∧ 𝑢𝑢𝑘𝑘 −
𝑒𝑒𝑙𝑙𝑛𝑛, 0 ∨ 𝑣𝑣𝑘𝑘 + 𝑒𝑒𝑔𝑔𝑛𝑛) ∈ 𝛺𝛺0 ⊆ M. This implies that (𝑢𝑢, 𝑣𝑣) ∈ 𝑀𝑀, and hence (𝑢𝑢, 𝑣𝑣) ∈ ℰ̂. 
The case where (𝑢𝑢, 𝑣𝑣) ≿𝐹𝐹 𝜏𝜏 is also similar.  

5. Formulation with core outcomes 
It would be nice to find a construction such that fixed points will directly 

provide the core outcomes. However unlike the assignment literature without 
money, it is not possible to work with core outcomes in this setup. In the rest of the 
paper, I define a reasonable construction which can work with outcomes. Then, I 
provide examples to show that this type of formulation is not possible. 

Let 𝜋𝜋 be a pre-assignment if 𝜋𝜋: 𝐹𝐹 ∪𝑊𝑊 → 𝐹𝐹 ∪𝑊𝑊 such that 𝜋𝜋(𝑓𝑓) ∈ 𝑊𝑊 ∪ {𝑓𝑓} 
for all 𝑓𝑓 ∈ 𝐹𝐹, and 𝜋𝜋(𝑤𝑤) ∈ 𝐹𝐹 ∪ {𝑤𝑤} for all 𝑤𝑤 ∈ 𝑊𝑊. Let Π be the set of all pre-
assignment vectors. Define a map 𝑇𝑇′: 𝑌𝑌 × Π → 𝑌𝑌 × Π such that 𝑇𝑇𝑓𝑓′((𝑢𝑢, 𝑣𝑣); 𝜋𝜋(𝑓𝑓)) =
(𝑚𝑚𝑚𝑚𝑚𝑚𝑈𝑈𝑓𝑓(𝑢𝑢, 𝑣𝑣) ∨ 0;𝑤𝑤) where 𝑤𝑤 ∈ 𝑚𝑚𝑎𝑎𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚(𝛼𝛼𝑓𝑓𝑤𝑤 − 𝑣𝑣𝑤𝑤) for all 𝑓𝑓 ∈ 𝐹𝐹 and 
𝑇𝑇𝑤𝑤′ ((𝑢𝑢, 𝑣𝑣); 𝜋𝜋(𝑤𝑤)) = (𝑚𝑚𝑚𝑚𝑚𝑚𝑉𝑉𝑤𝑤(𝑢𝑢, 𝑣𝑣) ∨ 0; 𝑓𝑓) where 𝑓𝑓 ∈ 𝑚𝑚𝑎𝑎𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚(𝛼𝛼𝑓𝑓𝑤𝑤 − 𝑢𝑢𝑓𝑓) for all 
𝑤𝑤 ∈ 𝑊𝑊. Then I could show that the fixed points of 𝑇𝑇′ is equivalent to the core. 
However, this type of formulation is not possible in this framework since there 
might be more than one optimal assignment and different (pre)assignments might 
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correspond to same payoffs. Then, fixed point of 𝑇𝑇′ may fail to induce an 
assignment. On the other hand, by using our formulation core payoffs can always 
be found and core outcomes will be equal to the Cartesian product of the fixed points 
and the set of optimal assignments which is constructed. 

 
Example 2 [Shapley-Shubik (1972)]. Let 𝛤𝛤 = 〈{𝑓𝑓1, 𝑓𝑓2, 𝑓𝑓3}, {𝑤𝑤1, 𝑤𝑤2, 𝑤𝑤3}, 𝛼𝛼〉 be an 
assignment game where 𝛼𝛼 is 
 

 𝑤𝑤1 𝑤𝑤2 𝑤𝑤3 
𝑓𝑓1 0 2 0 
𝑓𝑓2 2 0 2 
𝑓𝑓3 0 2 0 

 
There are four optimal assignments, 

{(0,1,0; 1,0,0; 0,0,1), (0,1,0; 0,0,1; 1,0,0), (0,0,1; 1,0,0; 0,1,0), (1,0,0; 0,0,1; 0,1,0)} 
with value ∑ 𝛼𝛼𝑓𝑓𝑓𝑓𝑥𝑥𝑓𝑓𝑓𝑓 (𝑓𝑓,𝑓𝑓)∈𝐹𝐹×𝑊𝑊 = 4. The core of the game given by 𝐶𝐶(𝛤𝛤) =
(0,2,0,0,2,0) × 𝑋𝑋. Moreover, ((0,2,0,0,2,0); 𝜋𝜋) where 𝜋𝜋(𝑓𝑓1) = 𝑤𝑤1, 𝜋𝜋(𝑓𝑓2) = 𝑤𝑤3, 
𝜋𝜋(𝑓𝑓3) = 𝑤𝑤2, 𝜋𝜋(𝑤𝑤1) = 𝑓𝑓3, 𝜋𝜋(𝑤𝑤2) = 𝑓𝑓1 and 𝜋𝜋(𝑤𝑤3) = 𝑓𝑓3 is a fixed point of 𝑇𝑇′ with 
appropriate tie breaking rule but 𝜋𝜋 is not an assignment. Hence 
((0,2,0,0,2,0); 𝜋𝜋)C(Γ). 

Using Example 1, I can show that a construction like 𝑇𝑇′ will not work even 
though there is a unique optimal assignment. In the example, there exists a unique 
optimal assignment given by 𝑋𝑋 = {(0,1,0; 0,0,1; 1,0,0)} with value 
∑ 𝛼𝛼𝑓𝑓𝑓𝑓𝑥𝑥𝑓𝑓𝑓𝑓 (𝑓𝑓,𝑓𝑓)∈𝐹𝐹×𝑊𝑊 = 16. It is easy to see that (3,5,0,2,5,1) is a core payoff. 
Moreover, ((3,5,0,2,5,1); 𝜋𝜋) where 𝜋𝜋(𝑓𝑓1) = 𝑤𝑤1, 𝜋𝜋(𝑓𝑓2) = 𝑤𝑤3, 𝜋𝜋(𝑓𝑓3) = 𝑤𝑤2,  
𝜋𝜋(𝑤𝑤1) = 𝑓𝑓3, 𝜋𝜋(𝑤𝑤2) = 𝑓𝑓1 and 𝜋𝜋(𝑤𝑤3) = 𝑓𝑓2 is a fixed point of 𝑇𝑇′ with appropriate tie 
breaking rule but 𝜋𝜋 is not an assignment. Hence ((3,5,0,2,5,1); 𝜋𝜋) is not in the core 
of the game. 

6. Final remarks 
In my formulation, I work with payoffs and construct optimal assignments 

rather than directly working with outcomes. The main reason for that is different 
(pre) assignments might lead to a same payoff structure and the mapping defined on 
feasible outcomes may fail to induce an assignment. Moreover, defining a partial 
order on the Cartesian product of the payoffs and (pre)assignments is a problem. 
Such a formulation (if it is not impossible) which works also with outcomes, seems 
to be an important follow-up to our work. The extension of our algorithm to many-
to-one and many-to-many assignment games will be a subject of my future work. 
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Moreover, extension of this algorithm to assignment games with externalities (e.g., 
Sasaki and Toda (1996)) seems like an interesting path to follow. 
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Özet 

Atama oyunlarında çekirdek çözümlerini bulmak için bir algoritma  

Bu makalede, paranın bulunduğu atama oyunlarında çekirdek çözümlerini bulmak için bir 
algoritma sunulmaktadır. Tasarlanan algoritma çift taraflı eşleşme literatüründe bulunan benzer sabit nokta 
yöntemlerini kullanarak bütün çekirdek çözümü kümesi elemanlarına kolayca ulaşmaktadır.   

Anahtar kelimeler: Eşleşme, atama oyunu, çekirdek çözümü, algoritma. 

JEL kodları: C78.  


