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Abstract

A new approximation scheme to the centrifugal term is proposed to obtain the l 6= 0 bound-state

solutions of the Schrödinger equation for an exponential-type potential in the framework of the

hypergeometric method. The corresponding normalized wave functions are also found in terms

of the Jacobi polynomials. To show the accuracy of the new proposed approximation scheme,

we calculate the energy eigenvalues numerically for arbitrary quantum numbers n and l with two

different values of the potential parameter σ0. Our numerical results are of high accuracy like the

other numerical results obtained by using program based on a numerical integration procedure for

short-range and long-range potentials. The energy bound-state solutions for the s-wave (l = 0)

and σ0 = 1 cases are given.
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I. INTRODUCTION

The exact analytic solutions of the wave equations (nonrelativistic and relativistic) are

only possible for certain potentials of physical interest under consideration since they contain

all the necessary information on the quantum system. It is well known that the exact

solutions of these wave equations are only possible in a few simple cases such as the Coulomb,

the harmonic oscillator, pseudoharmonic potentials and others [1-5]. Recently, the analytic

exact solutions of the wave equation with some exponential-type potentials are impossible

for l 6= 0 states. Approximation methods have to be used to deal with the centrifugal term

like the Pekeris approximation [6-8] and the approximated scheme suggested by Greene

and Aldrich [9]. Some of these exponential-type potentials include the Morse potential

[10], the Hulthén potential [11], the Pöschl-Teller [12], the Woods-Saxon potential [13], the

Kratzer-type and pseudoharmonic potentials [14], the Rosen-Morse-type potentials [15], the

Manning-Rosen potential [15-22], other multiparameter exponential-type potentials [23,24]

and hyperbolical potential [25-27].

In this work, we attempt to study another exponential-type potential called the hyper-

bolical potential [25-27]

V (r) = D [1− σ0 coth(αr)] , (1)

where D, α and σ0 are three positive parameters. It is indicated in [25] that this exponential-

type potential is closely related to the Morse, the Kratzer, the Coulomb, the harmonic

oscillator and other potential functions. The properties and applications of this potential

are given in [25,26]. It is known that for this potential the Schrödinger equation (SE) can

be solved for the s-wave, angular momentum quantum number l = 0. However, for a general

solution, it is need to include some approximations if one wants to obtain analytical or

semianalytical solutions to the SE. For the l 6= 0 case, the potential (1) can not be solved

exactly without an approximation to the centrifugal term [22]. Hence, in the previous

papers, several approximations have been developed to find better analytical formulas for

the hyperbolical potential [27].

Our aim in this work is to attempt to study the arbitrary l-state solutions of the

Schrödinger equation for the hyperbolical potential. In order to improve the accuracy of

our previous approximation [20,21], we propose and apply a new approximation scheme for
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the centrifugal term in the form:

1

r2
≈ 4α2

[
c0 +

e−2αr

1− e−2αr
+

(
e−2αr

1− e−2αr

)2
]
, (2)

where c0 is a proper shift to be found by the expansion procedures. Thus, with this new

approximation scheme, we calculate the l 6= 0 energy levels and wavefunctions of the hyper-

bolical potential using the hypergeometric approach (Nikiforov and Uvarov) N-U method.

This method has shown its power in calculating the exact energy levels for some solvable

quantum systems [13,14,20-22]. The approximation given by (2) has proved its power and

accuracy over the other currently used approximations in literature [16-21]. It has been

applied recently on the Manning-Rosen potential [22] and has also proved its power and

efficiency when compared with the other numerical simulations for the non-approximated

problem used to calculate the energy bound states. It provides good results which are in

agreement with the numerical integration method by Lucha and Schöberl [28].

The paper is organized as follows: In Section II we breifly present the N-U method. In

Section III, we present the new proposed approximation scheme and apply it to calculate

the l-wave eigensolutions of the SE for the hyperbolical potential by the N-U method. In

Section IV, we present our numerical results for energy eigenvalues numerically for arbitrary

quantum numbers n and l with two different values of the potential parameter σ0. Section V,

is devoted to study two special cases, the s-wave (l = 0) case and the σ0 = 1 exponential-type

potential. Finally, we make a few concluding remarks in Section VI.

II. THE NIKIFORV-UVAROV METHOD

The Nikiforov-Uvarov (N-U) method is based on solving the second-order linear differen-

tial equation by reducing it to a generalized equation of hypergeometric type [29]. In this

method after employing an appropriate coordinate transformation z = z(r), the Schrödinger

equation can be written in the following form:

ψ′′
n(z) +

τ̃(z)

σ(z)
ψ′
n(z) +

σ̃(z)

σ2(z)
ψn(z) = 0, (3)

where σ(z) and σ̃(z) are the polynomials with at most of second-degree, and τ̃(s) is a first-

degree polynomial. The special orthogonal polynomials [29] reduce Eq. (3) to a simple
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form by employing ψn(z) = φn(z)yn(z), and choosing an appropriate function φn(z). Con-

sequently, Eq. (3) can be reduced into an equation of the following hypergeometric type:

σ(z)y′′n(z) + τ(z)y′n(z) + λyn(z) = 0, (4)

where τ(z) = τ̃(z) + 2π(z) (its derivative must be negative) and λ is a constant given in the

form

λ = λn = −nτ ′(z)−
n (n− 1)

2
σ′′(z), n = 0, 1, 2, ... (5)

It is worthwhile to note that λ or λn are obtained from a particular solution of the form

y(z) = yn(z) which is a polynomial of degree n. Further, yn(z) is the hypergeometric-type

function whose polynomial solutions are given by Rodrigues relation

yn(z) =
Bn

ρ(z)

dn

dzn
[σn(z)ρ(z)] , (6)

where Bn is the normalization constant and the weight function ρ(z) must satisfy the dif-

ferential equation: [29]

w′(z)−

(
τ(z)

σ(z)

)
w(z) = 0, w(z) = σ(z)ρ(z). (7)

In order to determine the weight function given in Eq. (7), we must obtain the following

polynomial:

π(z) =
σ′(z)− τ̃(z)

2
±

√(
σ′(z)− τ̃ (z)

2

)2

− σ̃(z) + kσ(z). (8)

In principle, the expression under the square root sign in Eq. (8) can be arranged as the

square of a polynomial. This is possible only if its discriminant is zero. In this case, an

equation for k is obtained. After solving this equation, the obtained values of k are included

in the N-U method and here there is a relationship between λ and k by k = λ− π′(z). After

this point an appropriate φn(z) can be extracted from the differential equation:

φ′(z)−

(
π(z)

σ(z)

)
φ(z) = 0. (9)

III. ANALYTICAL SOLUTIONS

A. An Impoved Approximation Scheme

The approximation is based on the expansion of the centrifugal term in a series of expo-

nentials depending on the intermolecular distance r and keeping terms up to second order.
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Therefore, instead of using the approximation in [9,11,19], we use this choice of approxima-

tion:
1

r2
≈ (2α)2

[
c0 + v(r) + v2(r)

]
, v(r) =

e−2αr

1− e−2αr
,

1

r2
≈ (2α)2

[
c0 +

1

e2αr − 1
+

1

(e2αr − 1)2

]
, (10)

which has a similar form of the hyperbolical potential. Changing the coordinate to x by

using x = (r − r0)/r0, one obtains

(1 + x)−2 = γ2

[
c0 +

1

eγ(1+x) − 1
+

1

(eγ(1+x) − 1)
2

]
, γ = 2αr0 (11)

and expanding Eq. (11) around r = r0 (x = 0), we obtain the following Taylor’s expansion:

1− 2x+O(x2) = γ2
(
c0 +

1

eγ − 1
+

1

(eγ − 1)2

)

− γ3
(

1

eγ − 1
+

3

(eγ − 1)2
+

2

(eγ − 1)3

)
x+O(x2), (12)

from which we obtain

γ2
[
c0 +

1

eγ − 1
+

1

(eγ − 1)2

]
= 1,

γ3
(

1

eγ − 1
+

3

(eγ − 1)2
+

2

(eγ − 1)3

)
= 2. (13)

Therefore the shifting paramete, c0, can be found from the solution of the above two equa-

tions as:

c0 =
1

γ2
−

1

eγ − 1
−

1

(eγ − 1)2
= 0.0823058167837972, (14)

where e is the base of the natural logarithms, e = 2.718281828459045 and the parameter

γ = 0.4990429999. Hence, we have the following substitution for the centrifugal term:

1

r2
= lim

α→0
4α2

[
1

γ2
−

1

eγ − 1
−

1

(eγ − 1)2
+

e−2αr

1− e−2αr
+

(
e−2αr

1− e−2αr

)2
]
. (15)

Finally, it is worth to note that, in the case if c0 = 0, the approximation given in Eq. (10)

is identical to the commonly used approximation in the previous works [9,11,19-21].

5



B. Energy Eigenvalues and Eigenfunctions Solution

To study any quantum physical system characterized by the empirical potential given in

Eq. (1), we solve the original SE which is given in the well known textbooks [1,2]
(
p2

2m
+ V (r)

)
ψ(r,θ, φ) = Eψ(r,θ, φ), (16)

where the potential V (r) is taken as the hyperbolical potential (1). Using the separation

method with the wavefunction ψ(r,θ, φ) = r−1R(r)Ylm(θ, φ), we obtain the following radial

Schrödinger eqauation as

d2Rnl(r)

dr2
+

{
2µEnl

h̄2
−

2µD

h̄2

[
1− σ0

(
eαr + e−αr

eαr − e−αr

)]2
− 4α2l(l + 1)

(
c0 +

e−2αr

(1− e−2αr)2

)}

×Rnl(r) = 0. (17)

Since the SE with the above hyperbolical potential has no analytical solution for l-waves,

we have used the approximation to the centrifugal term given by case 1. The other approx-

imations will be left for future investigations. To solve it by the N-U method, we need to

recast Eq. (17) into the form of Eq. (3) changing the variables r → z through the mapping

function r = f(z) and making the following definitions:

z = e−2αr, ν =
µD

2α2h̄2
, ε′ =

√
−
µEnl

2α2h̄2
+∆El, Enl <

2α2h̄2

µ
∆El, ∆El = l(l + 1)c0, (18)

we obtain the following hypergeometric equation:

d2R(z)

dz2
+

(1− z)

z(1− z)

dR(z)

dz
+

1

[z(1 − z)]2

×
{
−ε′2 − ν (1− σ0)

2 +
[
2ν

(
1− σ2

0

)
+ 2ε′2 − l(l + 1)

]
z −

[
ν (1 + σ0)

2 + ε′2
]
z2
}
R(z) = 0.

(19)

It is shown from Eq. (18) that for bound state (real) solutions, we require:

z =





0, when r → ∞,

1, when r → 0,
(20)

and as a result the radial wavefunctions Rnl(z) → 0 for the values of z given in Eq. (18). To

apply the N-U method, we compare Eq. (19) with Eq. (3) and obtain the following values

for the parameters:

τ̃(z) = 1− z, σ(z) = z − z2,
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σ̃(z) = −
[
ν (1 + σ0)

2 + ε′2
]
z2 +

[
2ν

(
1− σ2

0

)
+ 2ε′2 − l(l + 1)

]
z − ε′2 − ν (1− σ0)

2 . (21)

If one inserts these values of parameters into Eq. (8), with σ′(z) = 1 − 2z, the following

linear function is obtained

π(z) = −
z

2
±

1

2

√
a2z2 + a1z + a0, (22)

where a2 = 1+ 4
[
ε′2 + ν (1 + σ0)

2 − k
]
, a1 = 4 {k + l(l + 1)− 2ν (1− σ2

0)− 2ε′2} and a0 =

4
[
ε′2 + ν (1− σ0)

2] . According to this method the expression in the square root has to be

set equal to zero, that is, ∆ = a2z
2 + a1z + a0 = 0. Thus the constant k can be determined

as

k = −
1

4

[
(1 + 2l)2 + 16νσ0(σ0 − 1)− 1

]
± β(1 + 2δ), (23)

where

β =

√
ε′2 + ν (1− σ0)

2, δ =
1

2

[
−1 +

√
16νσ2

0 + (1 + 2l)2
]
. (24)

In this regard, we can find four possible functions for π(z) as

π(z) = −
z

2
±

1

2

×





(2β − 2δ − 1) z − 2β, for k = − [(1 + 2l)2 + 16νσ0(σ0 − 1)− 1] /4 + β(1 + 2δ),

(2β + 2δ + 1) z − 2β; for k = − [(1 + 2l)2 + 16νσ0(σ0 − 1)− 1] /4− β(1 + 2δ).

(25)

We must select

k = −
z

2
−

1

2
[(2β + 2δ + 1) z − 2β] , (26)

in order to obtain the polynomial, τ(z) = τ̃(z) + 2π(z) having negative derivative as

τ(z) = 1− 2z − [2β + 2δ + 1] z − 2β, τ ′(z) = −(2β + 2δ + 3). (27)

We can also write the values of λ = k+ π′(z) and λn = −nτ ′(z)− n(n−1)
2

σ′′(z), n = 0, 1, 2, ...

as

λ = −
1

4

[
(1 + 2l)2 + 16νσ0(σ0 − 1)− 1

]
− [β + δ + 1] , (28)

λn = n(n + 2β + 2δ + 2), n = 0, 1, 2, · · · (29)

respectively. Additionally, using the definition of λ = λn and solving the resulting equation

for ε′, allows one to obtain

β = −
(n+ 1)2 + l(l + 1) + (2n+ 1)δ − 4νσ0(1− σ0)

2(n+ δ + 1)
=

√
−
µEnl

2α2h̄2
+∆El + ν (1− σ0)

2.

(30)
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Hence, we obtain analytically the following discrete bound-energy levels

Enl = (1− σ0)
2D +

2α2h̄2l(l + 1)

µ

[
1

γ2
−

1

eγ − 1
−

1

(eγ − 1)2

]

−
2α2h̄2

µ

[
(n+ 1)2 + l(l + 1) + (2n+ 1)δ − 4νσ0(1− σ0)

2(n + δ + 1)

]2
, 0 ≤ n, l <∞ (31)

where n = 0, 1, 2, · · · and l signify the usual radial and angular momentum quantum num-

bers, respectively.

Let us now find the corresponding radial part of the normalized wave functions. Using

σ(z) and π(z) in Eqs. (21) and (26), we obtain

φ(z) = zβ(1− z)δ+1, (32)

ρ(z) = z2β(1− z)2δ+1, (33)

ynl(z) = Cnz
−2β(1− z)−(2δ+1) d

n

dzn
[
zn+2β(1− z)n+2δ+1

]
. (34)

The functions ynl(z), up to a numerical factor, are in the form of Jacobi polynomials, i.e.,

ynl(z) ≃ P
(2β,2δ+1)
n (1 − 2z), valid physically in the interval (0 ≤ r < ∞ → 0 ≤ z ≤ 1) [30].

Therefore, the radial part of the wave functions can be found by substituting Eqs. (32) and

(34) into Rnl(z) = φ(z)ynl(z) as

Rnl(r) = Nnle
−2αβr(1− e−2αr)1+δP (2β,2δ+1)

n (1− 2e−2αr), (35)

where β and δ are given in Eq. (24) and Nnl is a normalization factor to be determined from

the normalization condition:which gives [20-22]

Nnl =
1√
s(n)

,

s(n) =
(−1)n

2α

Γ(n + 2δ + 2)Γ(n+ 2β + 1)2

Γ(n+ 2β + 2δ + 2)

×
n∑

p,r=0

(−1)p+rΓ(n+ 2β + r − p+ 1)(p+ 2δ + 2)

p!r!(n− p)!(n− r)!Γ(n+ 2β − p+ 1)Γ(2β + r + 1)(n+ 2β + r + 2δ + 2)
. (36)
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IV. NUMERICAL RESULTS

To show the accuracy of the new approximation scheme, we calculate the energy eigen-

values for various n and l quantum numbers with two different values of the parameter σ0.

The results calculated by Eq. (31) are compared with those obtained by a MATHEMAT-

ICA package programmed by Lucha and Schöberl [28] as shown in Table 1 for short-range

potential (small α) and long-range potential (large α). It provides that the new proposed

approximation scheme to the centrifugal term in Eq. (2), even when the potential parame-

ter α becomes large, produces energy eigenvalues of high accuracy like the other numerical

methods [28]. Consequently, this is also an illustration to assess the validity and usefulness

of our present approximation. Further, it is quite simple, computationally efficient, reliable

and accurate.

V. DISCUSSIONS

We have used the hypergeometric method (N-U) to solve the radial SE with the

exponential-type potentials for arbitrary l-states. We have derived the binding energy spec-

tra in Eq. (31) and their corresponding normalized wave functions in Eq. (35).

Firstly, let us attempt to study the s-wave case (l = 0). Hence, the energy eigenvalue and

the radial eigen function solutions; (31) and (35), reduce to the following forms:

En = D(1− σ0)
2 −

2α2h̄2

µ

[
(n + 1)2 + (2n+ 1)δ1 − 4νσ0(1− σ0)

2(n+ δ1 + 1)

]2
, 0 ≤ n <∞, (37)

and

Rnl(r) = Nnle
−2αβ1r(1− e−2αr)1+δ1P (2β1,2δ1+1)

n (1− 2e−2αr), (38)

respectively, with

β1 =

√
−
µEn

2α2h̄2
+

µD

2α2h̄2
(1− σ0)

2, δ1 =
1

2

[
−1 +

√
1 +

8µDσ2
0

α2h̄2

]
, (39)

and Nnl is given in Eq. (36). This result is in agreement with Ref. [27].

Secondly, we further discuss another special case σ0 = 1. As a result, the potential (1)

reduces to

V (r) =
4De−4αr

(1− e−2αr)2
. (40)

9



The corresponding energy levels and radial wave functions are given by

Enl =
2α2h̄2l(l + 1)

µ

[
1

γ2
−

1

eγ − 1
−

1

(eγ − 1)2

]
−
2α2h̄2

µ

[
(n+ 1)2 + l(l + 1) + (2n+ 1)δ2

2(n+ δ2 + 1)

]2
,

(41)

and

Rnl(r) = Nnle
−2αβ2r(1− e−2αr)1+δ2P (2β2,2δ2+1)

n (1− 2e−2αr), (42)

respectively, with

β2 =

√
−
µEnl

2α2h̄2
+
l(l + 1)

γ2
−
l(l + 1)

eγ − 1
−

l(l + 1)

(eγ − 1)2
, δ2 =

1

2

[
−1 +

√
8µD

α2h̄2
+ (1 + 2l)2

]
,

(43)

and Nnl is given in Eq. (36). This result essentially coincides with that of Manning-Rosen

potential with the special case A = 0 and D = α3(1−α)h̄2

2µ
as shown in our recent work [22].

VI. COCLUDING REMARKS

The arbirary l-wave solutions of the SE with an exponential-type potential have been

obtained approximately by proposing an improved shifted approximation to the centrifugal

term. It is found that the normalized wave functions can be expressed by means of the

Jacobi polynomials. With this approximation scheme, we can easily build an analytic for-

mulations [Eqs. (31) and (35)] and use it to evaluate eigenvalues and eigenfunctions. This

approximation scheme has also been used with great success in problems which do not have

exact solutions for l 6= 0 case with exponential-type potentials like Manning-Rosen poten-

tial and hyperbolic potential. Essentially, two special cases for the s-wave case (l = 0) and

σ0 = 1 and found that these results have been reduced to those given in [25-27]. To show the

accuracy of our results, we have calculated the eigenvalues numerically for arbitrary n and

l with two different values of the parameter σ0. We found that the results obtained by (31)

are in good agreement with those obtained by using the MATHEMATICA program based

on the numerical integration procedure for short-range potential (small α) and long-range

potential (large α) [28]. As a demonstration of the accuracy of our results, Table 1 shows

that the estimated energy eigenvalues can be computed up to 0.001 − 0.13 %. However,

the accuracy of the energy eigenvalues in [27] is computed up to 0.051 − 1.0 %. Therefore,

the accuracy of the present model reaches up to 10 − 50 times better than the estimations

provided by [27].
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TABLE I: Energy eigenvalues as a function of the parameter α for 2p, 3p, 3d, 4p, 4d, 4f, 5p, 5d, 5f,

5g, 6p, 6d, 6f and 6g states for σ0 = 0.1, 0.2 and D = 10 in atomic units (h̄ = µ = 1).

σ0 = 0.1 σ0 = 0.2

states α present Dong et al [27] Lucha et al [28] present Dong et al [27] Lucha et al [28]

2p 0.10 2.61874 2.61556 2.61935 1.20876 1.20559 1.20903

0.15 3.90544 3.89830 3.90645 1.86636 1.85922 1.86689

0.20 5.00331 4.99062 5.00457 2.52000 2.50731 2.52080

0.25 5.88594 5.86611 5.88725 3.14666 3.12683 3.14766

3p 0.10 4.73540 4.73223 4.73638 2.68308 2.67990 2.68358

0.15 6.04543 6.03829 6.04649 3.67127 3.66413 3.67198

0.20 6.91663 6.90394 6.91733 4.46516 4.45247 4.46579

0.25 7.48400 7.46417 7.48358 5.09231 5.07247 5.09235

3d 0.10 3.62699 3.61747 3.62769 1.57873 1.56921 1.57920

0.15 5.29404 5.27263 5.29510 2.54773 2.52631 2.54859

0.20 6.47492 6.43684 6.47598 3.48119 3.44311 3.48228

4p 0.10 6.00287 5.99969 6.00390 3.75692 3.75375 3.75758

0.15 7.11526 7.10812 7.11589 4.81215 4.80501 4.81274

0.20 7.71903 7.70634 7.71826 5.53111 5.51842 5.53087

4d 0.10 5.33129 5.32177 5.33216 2.95257 2.94305 2.95317

0.15 6.73583 6.71441 6.73642 4.10410 4.08268 4.10470

0.20 7.54480 7.50672 7.54331 5.00179 4.96371 5.00137

4f 0.10 4.68965 4.67061 4.69058 2.07342 2.05438 2.07417

0.15 6.42992 6.38708 6.43112 3.35622 3.31338 3.35742

0.20 7.43397 7.35782 7.43334 4.47408 4.39793 4.47486

5p 0.10 6.80345 6.80027 6.80432 4.54946 4.54628 4.55015

5d 0.10 6.37762 6.36810 6.37842 3.95677 3.94725 3.95740

5f 0.10 5.98063 5.96159 5.98147 3.31497 3.29593 3.31567

5g 0.10 5.62805 5.59631 5.62926 2.64017 2.60844 2.64124

6p 0.10 7.32416 7.32099 7.32476 5.13763 5.13446 5.13824

6d 0.10 7.04824 7.03872 7.04873 4.69929 4.68977 4.69979

6f 0.10 6.79479 6.77575 6.79528 4.22654 4.20751 4.22706

6g 0.10 6.57377 6.54204 6.57452 3.73301 3.70128 3.7337814
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