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Abstract

We present bound state masses of the self-conjugate and non-self-conjugate

mesons in the context of the Schrödinger equation taking into account the

relativistic kinematics and the quark spins. We apply the usual interaction

by adding the spin dependent correction. The hyperfine splittings for the

2S charmonium and 1S bottomonium are calculated. The pseudoscalar and

vector decay constants of the Bc meson and the unperturbed radial wave

function at the origin are also calculated. We have obtained a local equation

with a complete relativistic corrections to a class of three attractive static

interaction potentials of the general form V (r) = −Ar−β + κrβ + V0, with

β = 1, 1/2, 3/4 which can also be decomposed into scalar and vector parts in

the form VV (r) = −Ar−β+(1−ǫ)κrβ and VS(r) = ǫκrβ+V0; where 0 ≤ ǫ ≤ 1.

The energy eigenvalues are carried out up to the third order approximation

using the shifted large-N-expansion technique.

I. INTRODUCTION

Theoretical interest has risen in the study of the spectroscopy of Bc meson in the

framework of heavy quarkonium theory [1]. Moreover, the discovery of the Bc (the low-

est pseudoscalar 1S
0
state) was reported in 1998 by the Collider Detector at Fermilab

(CDF) collaboration in 1.8 TeV p-p collisions at the Fermilab [2] with an observed mass

MBc
= 6.40 ± 0.39 ± 0.13 GeV has inspired new theoretical interest in the subject [3-6].

Further, Kwong and Rosner [7] predicted the masses of the lowest vector (triplet) and pseu-

doscalar (singlet) states of the Bc systems using an empirical mass formula and a logarithmic
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potential. Eichten and Quigg [1] calculated the energies and decays of the Bc system that

was based on the QCD-motivated potential of Buchmüller and Tye [8] . Gershtein et al. [9]

also presented a detailed account of the energies and decays of the Bc system and used a

QCD sum-rule calculations. Baldicchi and Prosperi [6] have computed the cb and entire

light-heavy quarkonium spectrum based on an effective mass operator with full relativis-

tic kinematics. Fulcher [4] extended the treatment of the spin-dependent potentials to the

full radiative one-loop level and thus included effects of the running coupling constant in

these potentials. He also used the renormalization scheme developed by Gupta and Radford

[10] . On the other hand, Motyka and Zalewiski [11] proposed a nonrelativistic potential

model to reproduce the masses of the known bb spectrum within the experimental errors

using a new proposed potential form for quarkonia. They also extended their work [11] by

suplementing the Hamiltonian with the standard spin-dependent terms and produced the

cc and cb quarkonium mass spectra, leptonic decay constant and also decay widths. The

shifted large-N expansion technique (SLNET) [12] was applied to get the spin-averaged data

(SAD) of both QQ and qQ mesons using a group of quarkonium potentials [13] and very

recently was utilized to study the cb system in the context of Schrödinger equation and also

semi-relativistic quark model [14].

Recently, in 2002, the ALEPH collaboration has searched for the pseudoscalar bottomo-

nium meson, the ηb in two-photon interactions at LEP2 with an integrated luminosity of 699

pb−1 collected at e+e− centre-of mass energies from 181 GeV to 209 GeV. One candidate

event is found in the six-charged-particle final state and none in the four-charged-particle

final state. The candidate ηb (ηb → KSK
−π+π−π+) has reconstructed invariant mass of

9.30± 0.02± 0.02 GeV [15]. Theoretical estimates (from perturbative QCD and lattice non-

relativistic QCD of the mass splitting between ηb(1S) and Υ(1S), M(Υ(13S1)) = 9.460 GeV,

are reported (cf. [15] and references therein).

Further, in 2002, the Belle Collaboration [16] has observed a new pseudoscalar char-

monium state, the ηc(2S), in exclusive B −→ KKSK
−π+ decays. The measured mass

of the ηc(2S), M(ηc(2S)) = 3654 ± 14 MeV. It is close to the ηc(2S) mass observed
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by the same group in the experiment e+e− −→ J/ψηc where M(ηc(2S)) = 3622 ± 12

MeV was found [17]. It is giving rise to a small hyperfine splitting for the 2S state,

∆hfs(2S,exp)= M(23S1) − M(21S0) = 32 ± 14 MeV [18]. Badalian and Bakker [19] cal-

culated the hyperfine splitting for the 2S charmonium state, ∆hfs(2S)= 57 ± 8 MeV, in a

recent work. Recksiegel and Sumino developed a new formalism [20] based on perturbative

QCD to compute the hyperfine splittings of the bottomonium spectrum as well as the fine

and hyperfine splittings of the charmonium spectrum [21].

The motivation of the present calculations is to extend the SLNET [12-14] to the treat-

ment of the Schrödinger equation [13,14] by considering the spin dependent term VSD(r)

that gives the splitting of the singlet and triplet states and of each L ≥ 1 level into the four

states 1L1,
3LL−1,

3LL and 3LL+1. We also present solution for the Schrödinger equation to

determine the bound state masses of the cc, bb, and cb mesons taking into account the spin-

spin, spin-orbit and tensor interactions [22-29]. The spin effects are treated as perturbation

to the static potential. We also calculate the masses of the recently found new charmonium

ηc(2S) and the searched bottomonium ηb(1S) mesons together with the hyperfine splittings

of their states.

The outline of this paper is as following: In Section II, we first review briefly the analytic

solution of the Schrödinger equation for unequal mass case (mq 6= mQ) [14]. Section III

is devoted for the class of three static potentials, which are decomposed into scalar and

vector parts and also for their spin corrections. The cases of pure vector, pure scalar and

equal mixture of vector-scalar coupling interactions are investigated. The pseudoscalar and

vector decay constants of the Bc meson are briefly presented in Section IV. Finally, Section V

contains our conclusions. Appendix A, and B contain some definitions as well as the formulas

necessary to carry out the above mentioned computations.
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II. WAVE EQUATION

We shall consider bound states consisting of fermions with masses mq and mQ and their

spins S1, S2, interacting via a spherically symmetric central potential V (r). Radial part of

the Schrödinger equation in the N-dimensional space (in units h̄ = 1) [12-14] is:

{
− 1

4µ

d2

dr2
+

[k − (1− a)][k − (3− a)]

16µr2
+ Veff(r)

}
u(r) = En,ℓu(r), (1)

where µ = (mqmQ) /(mq + mQ) denotes the reduced mass for the two bound interacting

particles. Here En,ℓ denotes the Schrödinger binding energy, and k = N + 2l − a, with a

representing a proper shift to be calculated later on and l is the angular quantum number.

We follow the shifted 1/k expansion method [13,14] by defining

V (r(x)) =
k
2

Q

[
V (r0) +

V ′(r0)r0x

k̄1/2
+
V ′′(r0)r

2
0x

2

2k̄
+ · · ·

]
, (2)

and also the energy eigenvalue expansion [13]

En,ℓ =
k
2

Q

[
E0 + E1/k + E2/k

2
+ E3/k

3
+O

(
1/k

4
)]
, (3)

where x = k
1/2

(r/r0 − 1) with r0 is an arbitrary point where the Taylor expansions is being

performed about and Q is a scale to be set equal to k
2
at the end of our calculations.

Following our previous works [13,14], we rewrite down the results as

E0 = V (r0) +
Q

16µr20
, (4)

E1 =
Q

r20

[(
nr +

1

2

)
ω − (2− a)

8µ

]
, (5)

E2 =
Q

r20

[
(1− a)(3− a)

16µ
+ α(1)

]
, (6)

and

E3 =
Q

r20
α(2), (7)
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where α(1) and α(2) are listed in Appendix A. Here the quantity r0 is chosen to minimize the

leading term, E0 [13,14]

dE0

dr0
= 0 and

d2E0

dr20
> 0. (8)

Therefore, r0 satisfies the relation

Q = 8µr30V
′(r0), (9)

and to solve for the shifting parameter a, the next contribution to the energy eigenvalue E1

is chosen to vanish [12].

a = 2− 4(2nr + 1)µω, (10)

with

ω =
1

4µ

[
3 +

r0V
′′(r0)

V ′(r0)

]1/2
. (11)

Once r0 is being determined, with the choice k =
√
Q which rescales the potential, we get

an analytic expression the energy eigenvalues (3). The Coulomb potential is considered as

a testing case, the results are found to be strongly convergent and highly accurate. The

calculations of the energy eigenvalues were carried out up to the second order correction.

Therefore, the bound state energy to the third order becomes

En,l = E0 +
1

r20

[
(1− a)(3− a)

16µ
+ α(1) +

α(2)

k
+O

(
1

k
2

)]
. (12)

Once the problem is collapsed to its actual dimension N = 3, it simply rests the task of

relating the coefficients of our equation to the one-dimensional anharmonic oscillator in order

to read the energy spectrum. One obtains

1 + 2l + (2nr + 1)

[
3 +

r0V
′′(r0)

V ′(r0)

]1/2
=
[
8µr30V

′(r0)
]1/2

. (13)

We finally write the bound state mass for spinless particles as

M(qQ) = mq +mQ + 2En,l. (14)
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where mq and mQ are the constituent meson masses whereas n = nr + 1 is the principal

quantum number. As stated before [13,14], for a fixed n the computed energies become

more accurate as l increases. This is expected since the expansion parameter 1/k becomes

smaller as l becomes larger since the parameter k is proportional to n and appears in the

denominator in higher-order correction.

III. HEAVY QUARKONIUM AND BC MESON MASS SPECTRA

The spin-independent potential (which may be velocity dependent) essentially yields

SAD. Furthermore, the spin-dependent term VSD(r) gives the splitting both of the 3S1 and

1S0, with S = S1 +S2 is 1 and 0 for triplet and singlet states, respectively, and of each level

into the four states 3LL−1,
3LL,

3LL+1 and 1L1. Thus the potential takes [23,26,28-30]

Veff(r) = Vstatic(r) + VSD(r) + VSI(r), (15)

with spin-dependent and spin-independent perturbation terms are given in Refs. [26,28,30].

Further, the static potential [14,31] takes the general form

Vstatic(r) = −Ar−β + κrβ + V0; β = 1, 1/2, 3/4, A, κ ≥ 0 (16)

which has a limited character of Ref. [11,32], (i.e., same β), where V0 may be of either sign.

The form (16) includes three types of static potentials. The first static potential we consider

is the Cornell [33] potential (β = 1) which is one of the earliest QCD-motivated potentials

in the literature

VC(r) = −A
r
+ κr + V0, (17)

where A = 4αs/3, is a short range gluon exchange, and κ is a confinement constant. The

second potential is that of Song and Lin [34] (β = 1/2) which is given by

VS−L(r) = − A

r1/2
+ κr1/2 + V0. (18)
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The third potential is an intermediate case between the last mentioned potentials and is

called Turin potential [31] (β = 3/4) which has the form

VT (r) = − A

r3/4
+ κr3/4 + V0. (19)

The class of static potentials in Eq. (16) must satisfy the following conditions [31]

dV

dr
> 0,

d2V

dr2
≤ 0. (20)

On the other hand, the expression (16) can be rewritten in a more general form with two

different power parameters α and β as [32]:

V (r) = −Ar−α + κrβ + V0, (21)

where α 6= β.Motyka and Zalewiski [11] utilized the form (21) by setting α = 1 and β = 1/2;

that is,

V (r) = −A
r
+ κ

√
r + V0, (22)

The potential form (22) belongs to the class of generality (21) and was successfuly used by

Motyka et al. in fitting the cc spectrum and later on extended to the bb and Bc spectroscopy

[11]. In this work we devote our study to the first class of generality (16) leaving the second

class of generality (21) for further study. We will use a fairly flexible parameterization of

the potentials of (16) in fitting the data and take the nonrelativistic interaction as a sum of

scalar and vector terms as it follows from the Lorentz invariance theory [26,29]

VV (r) = −Ar−β + (1− ǫ)κrβ, (23)

and

VS(r) = ǫκrβ + V0, (24)

where ǫ is the mixing coefficient. The vector term incorporates the expected short-distance

behavior from single-gluon exchange. We have also included a multiple of the long-range
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interaction in VV (r) to see the nature of the confining interaction. Here, we investigate the

cases of pure scalar confinement (ǫ = 1), equal mixture of scalar-vector couplings (ǫ = 1/2)

and a pure vector case (ǫ = 0).

The total spin-dependent potential VSD(r) given by [23-25,28-30]

VSD(r) = VA + VS =
1

4

[
1

m2
q

− 1

m2
Q

] [
V ′
V (r)− V ′

S(r)

r

]
L · S−

+
L · S
mqmQ

V ′
V (r)

r
+

1

2

[
L · S1

m2
q

+
L · S2

m2
Q

] [
V ′
V (r)− V ′

S(r)

r

]

+
2

3

S1 · S2

mqmQ

[
∇2VV (r)

]
+

S12

mqmQ

[
−V ′′

V (r) +
V ′
V (r)

r

]
, (25)

where S1 and S2 are the quark spins, S− = S1−S2, L = x× p is the relative orbital angular

momentum, and S12 = T − (S1 · S2) /3 where T = (S1 · r̂)(S2 · r̂) is the tensor operator

with the versor r̂ = r/r . The spin dependent correction (25), which is responsible for the

hyperfine splitting of the mass levels, in the short-range is generally used in the form for

S-wave (L = 0) (cf. e.g., [23,30]):

Vhfs(r) =
2

3
(S1 · S2)∇2

[
−4αs
3rβ

]
, (26)

and the one responsible for the fine splittings used for P - and D-waves (L 6= 0) is:

Vfs(r) =
1

mqmQ

{
L · S
r

[(
1 +

1

4

m2
q +m2

Q

mqmQ

)
V ′
V (r)−

1

4

m2
q +m2

Q

mqmQ
V ′
S(r)

]

+
2

3
(S1 · S2)∇2

[
κ(1− ǫ)rβ

]
+
[
T − 1

3
(S1 · S2)

] [
V ′′
V (r) +

V ′
V (r)

r

]}
, (27)

where the matrix element can be evaluated in terms of the expectation values 〈L · S1〉 =

〈L · S2〉 = 1
2
〈L · S〉. Hence, Eq. (27) is the complete spin-dependent potential in QCD

through order m2. For bound state constituents of spin S1 = S2 = 1/2, the scalar product

of their spins S1 · S2 and L · S are to be found in the Appendix B. The appearance of a

Coulomb-like contribution ∼ 1/r in the vector part of the potential causes some problems
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due to the relation ∇2(1/r) = −4πδ(3)(x), in the spin-spin interaction (26) involves a delta

function of the S-wave (L = 0). Thus, for Cornell potential, the hyperfine splitting potential

(26) gives

Veff(r) = −A
r
+ κr +

32παs
9mqmQ

δ(3)(r)(S1 · S2) + V0; where β = 1. (28)

Therefore for the energy of spin-spin interaction we have approximately:

Ess =
1

2Mn,0

∆M2
ss 〈S1 · S2〉 , (29)

where Mn,0 is given in Eq. (14) and the singlet-triplet mass squared difference

∆M2
ss =M2

S=1 −M2
S=0 ≃

32

9
αsκ, (30)

for light qq systems (in the instantaneous-limit approximation) [23], and

∆M2
ss =M2

S=1 −M2
S=0 ≃

256

3π2
αsκ, (31)

for heavy quarkonia (hydrogen-like trial functions) [23]. All these predictions for the mass-

squared difference are independent of the mass of the particles which constitute the bound

state. Further, for the Song-Lin and Turin potentials, it also give

Veff (r) = −A

rβ
+ κrβ +

8β(1− β)παs
9mqmQr2

r−βS1 · S2 + V0; where β = 1/2, 3/4. (32)

Like most authors (cf. [1]), we determine the coupling constant αs(m
2
c) from the well mea-

sured hyperfine splitting for the 1S(cc) state [18]

∆EHF(1S, exp) =MJ/ψ −Mηc = 117.2± 1.5 MeV, (33)

and also for the 2S(cc) state [16-19]

∆EHF(2S, exp) =Mψ′ −Mηc′
= 32± 14 MeV, (34)

for each desired potential. On the other hand, the Eq. (27), for P , D, · · · waves (L 6= 0)

case, gives
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Veff(r) = Vstatic(r) + g(r)
[
FLS−

(L · S−) + FLS (L · S) + FSS (S1 · S2) + FTT
]
, (35)

with a given set of spin-dependent quantities

FLS−
=

[
1

4

m2
Q −m2

q

mqmQ

[
Ar−β + (1− ǫ) κrβ

]]
, (36)

FLS =

[(
1 +

1

4

m2
q +m2

Q

mqmQ

) [
Ar−β + (1− 2ǫ)κrβ

]
+ ǫκrβ

]
, (37)

FSS =

[
−(2 + β)

3
Ar−β + β (1− ǫ) κrβ

]
, (38)

and

FT =
[
(2 + β)Ar−β + (2− β) (1− ǫ) κrβ

]
, (39)

where g(r) = β
mqmQr2

is a necessary coupling function. The spin-independent corrections in

Eq. (15) are explicitly given in Refs. [28,30] which are not treated in our present work.

A. Singlet states

For parastates (L = J) or (S = 0) case, we have parity P = (−1)J+1 and charge conju-

gation C = (−1)L. Thus, the potential (35) can be rewritten as

Veff (r) = Vstatic(r)−
1

4
(3FSS + FT ) +

√
1

10
(2L+ 3)(2L− 1)FLS−

, (40)

which can be substituted in Eq. (1) and also by setting k = N + 2J − a therein. Further,

Eqs. (28) and (32) give

Veff(r) = −A
r
+ κr − 8παs

3mqmQ
δ(3)(r) + V0, (41)

and

Veff(r) = −A

rβ
+ κrβ − 2β(1− β)παs

3mqmQr2
r−β + V0; where β = 1/2, 3/4, (42)
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respectively, which generate singlet states with opposite quark and antiquark spins of the

signature n1S0. Furthermore, Eq. (40) can be rewritten simply as

VJ=L(r) = g(r)




1

4

m2
Q −m2

q

mqmQ

√
1

10
(2L+ 3)(2L− 1)

[
Ar−β + (1− ǫ)κrβ

]

− 1

2
(1 + β)(1− ǫ)κrβ

}
+ Vstatic(r) (43)

which generates states of the signatures n1P1, n1D2, n1F3, n1G4, · · · .

B. Triplet states

For triplet (S = 1) case, we have the known inequality |L− S| ≤ J ≤ L + S that gives

J = L and L± 1 :

1. States J = L

Here, the parity P = (−1)J+1and the charge conjugation C = (−1)L+1. The potential in

Eq. (35) takes the following simple form

Veff(r) = Vstatic(r) +
1

4
(FSS + FT − 4FLS) +

√
1

10
(2L+ 3)(2L− 1)FLS−

, (44)

which can be substituted in (1) together with k = N +2J−a therein. Further, the potential

(44) reads

VJ=L(r) = −g(r)
2

{[(
4− β

3
+

1

2

m2
q +m2

Q

mqmQ

)
Ar−β +

(
1 +

1

2

m2
q +m2

Q

mqmQ

)
(1− 2ǫ)κrβ + ǫκrβ

]

−1

2

m2
Q −m2

q

mqmQ

√
1

10
(2L+ 3)(2L− 1)

[
Ar−β + (1− ǫ)κrβ

]


+ Vstatic, (45)

which generates states like n3P1, n
3D2, n

3F3, n
3G4, · · · .

12



2. States J = L± 1

We have the parity P = (−1)J and the charge conjugation C = (−1)L+1. The eigenfunc-

tion is a superposition of two components with orbital momentum L = J +1 and L = J − 1

which have equal space parity

ψS,J(r) = uJ−1(r)Y
m
J−1,1,J(θ, ϕ) + uJ+1(r)Y

m
J+1,1,J(θ, ϕ). (46)

The action of the tensor operator, T, on the two components of the wavefunction in Eq.

(46) is

TuJ±1Y
m
J±1,1,J(r̂) = ∓ 1

4(2J + 1)
uJ±1Y

m
J±1,1,J(r̂) +

1

2

√
J(J + 1)

2J + 1
uJ∓1Y

m
J∓1,1,J(r̂). (47)

Therefore, a set of equations are obtained



−

1

4µ

d2

dr2
+

[
k − (1− a)

] [
k − (3− a)

]

16µr2
+ Vstatic(r)−En,J+1 − (J + 2)FLS

+
1

4

(
FSS −

FT
(2J + 1)

)}
un,J+1(r) =

√
J(J + 1)

2 (2J + 1)
FT un,J−1(r), (48)

and


−

1

4µ

d2

dr2
+

[
k − (1− a)

] [
k − (3− a)

]

16µr2
+ Vstatic(r)−En,J−1 + (J − 1)FLS

+
1

4

(
FSS +

FT
(2J + 1)

)}
un,J−1(r) =

√
J(J + 1)

2 (2J + 1)
FT un,J+1(r), (49)

where k = N + 2J + 2 − a. Therefore, Eqs. (48) and (49) describe states such as

n3P2, n
3D3, n

3F2, n
3H4, n

3P0, n
3D1, · · · . Here we may consider numerically the system

obtained and separate equations by dropping out the mixed terms to see their effect on

the spectrum of the masses. Consequently one can rewrite (48) and (49) in the following

simplest forms

VJ=L−1(r) = −g(r)
{
(L+ 1)

[(
1 +

1

4

m2
q +m2

Q

mqmQ

) [
Ar−β + (1− 2ǫ)κrβ

]
+ ǫκrβ

]
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+
1

4

1

(2L− 1)

[
(2 + β)Ar−β + (2− β) (1− ǫ) κrβ

]

+
1

4

[
(2 + β)

3
Ar−β − β (1− ǫ) κrβ

]}
+ Vstatic(r), (50)

for states n3P0, n
3D1, n

3F2, n
3H4, · · · and

VJ=L+1(r) = g(r)

{[(
1 +

1

4

m2
q +m2

Q

mqmQ

) [
Ar−β + (1− 2ǫ) κrβ

]
+ ǫκrβ

]
L

+
1

4

1

(2L+ 3)

[
(2 + β)Ar−β + (2− β) (1− ǫ) κrβ

]

−1

4

[
(2 + β)

3
Ar−β − β (1− ǫ) κrβ

]}
+ Vstatic(r), (51)

for states n3P2, n
3D3, · · · . Further, for triplet S-wave, we have

Veff (r) = −A
r
+ κr +

8παs
9mqmQ

δ(3)(r) + V0, (52)

and

Veff(r) = −A

rβ
+ κrβ +

2β(1− β)παs
9mqmQr2

r−β + V0; where β = 1/2, 3/4, (53)

which describe states such as n3S1.

3. State J = 0

Equations (50) and (51) degenerate into a single equation with an effective potential

Veff(r) = Vstatic(r) +
1

4
(FSS − FT − 8FLS), (54)

and also by setting k = N + 2− a therein. Further, Eq. (54) becomes

VJ=0(r) = −
{
1 + g(r)

[
2 +

1

2

m2
q +m2

Q

mqmQ
+

2 + β

3

]}
Ar−β

+

{
1− g(r)

2

[
(5− β) (1− ǫ) +

(
m2
q +m2

Q

mqmQ

)
(1− 2ǫ)

]}
κrβ + V0. (55)

which only describes states such as n3P0.
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IV. PSEUDOSCALAR AND VECTOR DECAY CONSTANTS OF THE BC

MESON

The Bc can decay via electromagnetic and pionic transitions into the lightest pseudoscalar

ground state Bc. The significant contribution to the Bc total decay rate comes from the

annihilation of the c quark and b antiquark into the vector boson W+ which decays into

a lepton and a neutrino or a quark-antiquark pair. The weak annihilation decay rate is

determined by the pseudoscalar constant of the Bc meson.

The nonrelativistic expression for the decay constants is given by [35-37]

fNRP = fNRV =

√
12

MP,V (qQ)
|ΨP,V (0)| , (56)

where ΨP,V (0) is the meson wave function at the origin (r = 0), fP and fV , P corresponds

to the pseudoscalar Bc and V to to the vector B∗
c mesons and MP,V (qQ) are the masses of

the Bc and B
∗
c mesons.

V. RESULTS AND CONCLUSIONS

We have given further tests for the potential model in the context of Schrödinger equation

using SLNET and also extended our earlier formalism for the SAD spectra [14] to the

calculation of all the states by introducing the spin corrections. The obtained mass formula

(14) include fine and hyperfine splitting of the energy levels. This mass formula is able

to describe with some accuracy the spectra of all quark-antiquark bound states. We have

obtained the self-conjugate meson spectroscopy using a group of three static potential model.

This model has also been extended to comprise various cases of pure scalar confinement

(ǫ = 1), scalar-vector couplings (ǫ = 1/2) and the vector confinement (ǫ = 0) interactions.

The parameters used are shown in Table I. Our results for mass spectrum of cc, bb, and cb

systems with the static potentials, in the flavour-independent case are presented in Tables

II-IV. Different sets of parameters for the Cornell potential are used to produce the binding

masses of heavy quarkonium states as shown in Tables V. Further, the cb mass spectrum

15



is given in Table VI. In the equal scalar and vector couplings, we have found that our fits

are very good with level values and accurate to a few MeV. For convenience we compare

explicitly the predicted and measured spin splitting energy for different L states. We find

that the apparent success is achieved for the predicted χb2 − χb1 = 24 MeV and χb1 − χb0 =

33 MeV in the average for the three potentials and are very close to the experimental values

21 MeV and 32 MeV respectively. Furthermore, the predicted χ′
b2 − χ′

b1 = 13 MeV and

χ′
b1 − χ′

b0 = 16 MeV in the average for the three potentials which are exactly same as

the experimental value 13 MeV and close to 23 MeV, respectively. The predicted hyperfine

splitting ∆hfs(1S) =M(Υ(1S))−M(ηb(1S)) = 80+6
−8 MeV, (cf. [15]),∆hfs(2S) =M(Υ′(2S))−

M(η′b(2S)) = 22+3
−2 MeV, and ∆hfs(3S) = M(Υ′′(3S)) −M(η′′b (3S)) = 14+2

−1 MeV are nearly

close to the theoretically calculated values 62 MeV, 40 MeV, and 15 MeV, respectively, (cf.

[15,21]). Further, The hyperfine splitting for the 2S charmonium state is calculated and the

predicted number is ∆hfs(2S) = M(ψ(2S))−M(ηc(2S)) = 56+4
−8 MeV for flavour dependent

case and 56+18
−8 MeV for flavour independent case, (cf. [16-19]). Badalian and Bakker in

their recent work [19] calculated and predicted the number as ∆hfs(2S,theory) =57± 8 MeV

giving M(ηc(2S) =3630±8 MeV. Clearly, the precision of the experiments [2] requires a

very substantial improvement to be sensitive to the bound-state mass differences between

the various calculations. In this regard, from the global chi-square fitting values, there is a

clear preference for the Song-Lin (ǫ = 1), Turin (ǫ = 1/2) and Cornell (ǫ = 1/2) potentials,

respectively. Therefore, we have found that the Song-Lin (ǫ = 1) potential is the best

one fitting the cc and bb quarkonia.whereas the Cornell (ǫ = 1/2) potential is the worst

one. Further, the Cornell (ǫ = 1/2) potential seems to be the best fitting one for the cc

quarkonium. In the pure scalar confinement (ǫ = 1) couplings, we have found that our fits

are fairly good with level values and accurate to several MeV. Further, the case of the vector

confinement (ǫ = 0) interaction is being ruled out in our study since it gives the worst fit to

the spectra. We make the general remark as once β value increases, the ǫ value decreases.

We have compared explicitly the predicted and measured spin splitting energy for different

L states and found that splitting approximation can be improved significantly by increasing

16



the quantum number L.

The deviations from experiment are more considerable. The calculation and parameters

are also model dependent [14]. Moreover, we tried another set of parameters for the Cornell

potential without permitting any additive constant, that is, V0 = 0 (cf. last column in

Table I). We have also found that the ǫ = 1/2 case is the best fitting one, in this work,

for the cc quarkonium and the worst one for the bb quarkonium (cf. Table V). It is clear

that the coulomb-like parameter A is in accordance with the ideas of asymptotic freedom is

expected for the strong gauge-coupling constant of QCD [14]. For better fit to the quarko-

nium spectra, the QCD coupling constant αs(µ
2) should be dependent on the quark-flavour.

The consideration of the variation of the effective Coulomb interaction constant becomes

especially essential for the Υ particle, for which αs(Υ) 6= αs(ψ)
1.

The calculated values of the pseudoscalar and vector decay constants of the Bc me-

son using the nonrelativistic expression (56) are displayed in Table VII. They are com-

pared with the ones calculated using the relativistic, nonrelativistic [1,35,38,39]. The ra-

dial wave function at the origin has also been calculated in Table VIII and compared to

the other works available in literature [1,4]. These approximations have been calculated

without permitting any additive constant, that is, V0 = 0 and they also appear to be fairly

good.
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1For the best fit to the quarkonium spectra, the QCD coupling constant αs(µ
2) must be dependent

on the quark flavour [11,19,35]. Motyka and Zalewiski [11] found
αs(m2

b
)

αs(m2
c)

≃ 11/18 whereas Kiselev

et al. [38] have found ∆MΥ(1S) =
αs(Υ)
αs(ψ)

∆Mψ(1S) with αs(Υ)/αs(ψ) ≃ 3/4.
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APPENDIX A: SLNET PARAMETERS FOR THE SCHRÖDINGER EQUATION:

Here, we list the analytic expressions of α(1), α(2), εi and δj for the Schrödinger equation:

α(1) =
(1− a)(3− a)

16µ
+
[
(1 + 2nr) ε̄2 + 3 (1 + 2nr + 2n2

r) ε̄4
]

− ω−1
[
ε̄21 + 6 (1 + 2nr) ε̄1 ε̄3 + (11 + 30nr + 30n2

r) ε̄
2
3

]
, (A1)

α(2) =
[
(1 + 2nr) δ̄2 + 3 (1 + 2nr + 2n2

r) δ̄4 + 5 (3 + 8nr + 6n2
r + 4n3

r) δ̄6

− ω−1 (1 + 2nr) ε̄
2
2 + 12 (1 + 2nr + 2n2

r) ε̄2 ε̄4 + 2 ε̄1 δ̄1

+ 2 (21 + 59nr + 51n2
r + 34n3

r) ε̄
2
4 + 6 (1 + 2nr) ε̄1 δ̄3

+ 30 (1 + 2nr + 2n2
r) ε̄1 δ̄5 + 2 (11 + 30nr + 30n2

r) ε̄3 δ̄3

+ 10 (13 + 40nr + 42n2
r + 28n3

r) ε̄3 δ̄5 + 6 (1 + 2nr) ε̄3 δ̄1
]

+ ω−2
[
4 ε̄21 ε̄2 + 36 (1 + 2nr) ε̄1 ε̄2 ε̄3 + 8 (11 + 30nr + 30n2

r) ε̄2 ε̄
2
3

+ 24 (1 + 2nr) ε̄
2
1 ε̄4 + 8 (31 + 78nr + 78n2

r) ε̄1 ε̄3 ε̄4

+ 12 (57 + 189nr + 225n2
r + 150n3

r) ε̄
2
3 ε̄4

]

− ω−3
[
8 ε̄31 ε̄3 + 108 (1 + 2nr) ε̄

2
1 ε̄

2
3 + 48 (11 + 30nr + 30n2

r) ε̄1 ε̄
3
3

+ 30 (31 + 109nr + 141n2
r + 94n3

r) ε̄
4
3

]
, (A2)

where

ε̄i =
εi

(4µω)i/2
, i = 1, 2, 3, 4. (A3)

and

δ̄j =
δj

(4µω)j/2
, j = 1, 2, 3, 4, 5, 6. (A4)

ε1 =
(2− a)

4µ
, ε2 = − 3

8µ
(2− a), (A5)

ε3 = − 1

4µ
+
r50V

′′′(r0)

6Q
; ε4 =

5

16µ
+
r60 V

′′′′(r0)

24Q
(A6)
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δ1 = −(1 − a)(3− a)

8µ
; δ2 =

3 (1− a)(3− a)

16µ
, (A7)

δ3 =
(2− a)

2µ
; δ4 = −5 (2− a)

8µ
, (A8)

δ5 = − 3

8µ
+
r70 V

′′′′′(r0)

120Q
; δ6 =

7

16µ
+
r80 V

′′′′′′(r0)

720Q
. (A9)

APPENDIX B: THE SPIN-CORRECTION TERMS:

For parastates (S = 0) case we have:

J = L (B1)

For triplet (S = 1) case we have the following:

J =





L− 1, S · L = −(L+ 1)

L, S · L = −1

L+ 1, S · L = L

(B2)

The independent operators S1 · S2,:(S1 ± S2) · L and T :

〈S1 · S2〉 =





−3/4, for spin singlets S = 0,

+1/4, for spin triplets S = 1.
(B3)

〈S · L〉 =





0, for spin singlets S = 0,

1
2
[J(J + 1)− L(L+ 1)− 2] , for spin triplets S = 1.

(B4)

(S1 · r̂S2 · r̂)uJ(r)YJ,0,J(r̂) = −1

4
uJ(r)YJ,0,J(r̂), (B5)

(S1 · S2)Y
m
J,S,L(r̂) =

1

2
[S(S + 1)− S1(S1 + 1)− S2(S2 + 1)]Y m

J,S,L(r̂), (B6)

(S1 + S2) · LY m
J,S,L(r̂)=

1

2
[J(J + 1)− L(L+ 1)− S(S + 1)]Y m

J,S,L(r̂), (B7)
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(S1 − S2) · LY m
J,S,L(r̂)=

√
1

10
[2L+ 3)(2L− 1)]δJ,L

(
δS,0Y

m
J,1,L(r̂) + δS,1Y

m
J,0,L(r̂)

)
, (B8)

TY m
J,1,L(r̂)=

1

4
δJ,LY

m
J,1,L(r̂)−

1

4(2L− 1)
δJ,L−1Y

m
J,1,L(r̂) +

1

4(2L+ 3)
δJ,L+1Y

m
J,1,L(r̂)

−
√
(L+ 1)(L+ 2)

2(2L+ 3)
δJ,L+1Y

m
J,1,L+2(r̂)−

√
L(L− 1)

2(2L− 1)
δJ,L−1Y

m
J,1,L−2(r̂). (B9)
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TABLES

TABLE I. Fitted parameters of the class of static central potentials.

Parameters Cornella Song-Lina Turina Cornellb

mc 1.840 GeV 1.820 GeV 1.790 GeV 1.3205 GeV

mb 5.232 GeV 5.199 GeV 5.171 GeV 4.7485 GeV

A 0.520 0.923 GeV 1/2 0.620 GeV 1/4 0.472

κ 0.1756 GeV 2 0.511 GeV 3/2 0.304 GeV 7/4 0.191 GeV 2

V0 -0.8578 GeV -0.798 GeV -0.823 GeV 0 GeV

aThese parameter fits [14] are used to produce masses in Tables II–IV.

bThese parameter fits [4] are used to produce masses in Tables V-VI.
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TABLE II. Heavy−meson mass spectra (in MeV ) for the Cornell potential.

State ǫ = 1 ǫ = 1/2 ǫ = 0 ǫ = 1 ǫ = 1/2 ǫ = 0 ǫ = 1 ǫ = 1/2 ǫ = 0 [1] [4]

cc bb cb

11S0 3068.0 3047.0 3025.6 9424.5 9419.4 9414.2 6314.6 6305.3 6295.9 6264 6286

21S0 3658.5 3647.3 3635.9 10023.7 10021.4 10019.1 6888.0 6883.3 6878.5 6856 6882

31S0 4075.7 4067.6 4059.5 10370.2 10368.6 10367.0 7271.2 7267.8 7264.5 7244

41S0 4426.2 4419.6 4413.1 10642.4 10641.2 10640.0 7587.2 7584.6 7581.9

11P1 3487.8 3477.4 3467.0 9918.1 9916.0 9913.9 6742.9 6738.5 6734.2 6730 6737

21P1 3921.8 3914.0 3906.2 10266.9 10265.4 10263.9 7137.8 7134.7 7131.5 7135

11D2 3766.0 3758.6 3751.1 10162.7 10161.3 10159.9 7003.1 7000.1 6997.0 7009 7028

21D2 4142.4 4136.2 4130.0 10448.0 10446.9 10445.7 7340.2 7337.7 7335.2

13P1 3480.5 3464.4 3448.1 9910.1 9906.9 9903.7 6736.1 6726.8 6717.8 6736 6760

23P1 3920.6 3908.8 3896.9 10264.1 10261.9 10259.6 7136.4 7129.6 7122.8 7142

13D2 3768.3 3757.1 3745.9 10161.8 10159.7 10157.5 7004.2 6997.8 6991.4 7012 7028

23D2 4144.7 4135.4 4126.1 10447.5 10445.8 10444.1 7341.4 7336.2 7330.9

13S1 3068.0 3074.9 3081.8 9424.5 9426.3 9428.0 6314.6 6317.7 6320.7 6337 6341

23S1 3658.5 3662.2 3665.9 10023.7 10024.5 10025.3 6888.0 6889.5 6891.1 6899 6914

33S1 4075.7 4078.4 4081.1 10370.2 10370.7 10371.2 7271.2 7272.3 7273.4 7280

43S1 4426.2 4428.3 4430.8 10642.4 10642.9 10643.3 7587.2 7588.1 7589.0

13P2 3496.0 3522.7 3544.7 9928.7 9933.3 9937.9 6757.4 6765.8 6777.4 6747 6772

23P2 3926.3 3943.7 3962.8 10271.2 10274.6 10277.9 7141.2 7150.3 7159.3 7153

13D3 3765.4 3796.4 3827.0 10166.3 10172.2 10178.1 7003.1 7019.4 7035.7 7005 7032

23D3 4141.7 4168.8 4192.3 10450.3 10455.2 10460.0 7339.4 7353.0 7366.5

13P0 3419.1 3365.0 3307.1 9874.7 9864.9 9855.0 6700.1 6673.6 6646.4 6700 6701

23P0 3899.8 3866.3 3832.1 10252.2 10246.0 10239.7 7124.0 7106.5 7088.8 7108

13D1 3761.7 3716.4 3669.9 10154.9 10146.5 10138.1 7000.3 6976.4 6952.1 7012 7019

23D1 4141.3 4104.3 4066.7 10443.1 10436.3 10429.6 7339.6 7320.1 7300.4
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TABLE III. Heavy−meson mass spectra (in MeV ) for the Song-Lin potential.

State ǫ = 1 ǫ = 1/2 ǫ = 0 ǫ = 1 ǫ = 1/2 ǫ = 0 ǫ = 1 ǫ = 1/2 ǫ = 0 [35] [38]

cc bb cb

11S0 3020.8 2991.4 2960.1 9417.7 9410.3 9402.7 6279.1 6266.4 6253.3 6270 6253

21S0 3634.3 3624.8 3615.0 10010.5 10008.0 10005.5 6870.4 6866.1 6861.6 6835 6867

31S0 3983.6 3978.2 3972.7 10334.1 10332.7 10331.3 7206.7 7204.2 7201.7 7193

41S0 4242.6 4238.9 4235.3 10567.8 10566.8 10565.9 7454.3 7452.6 7451.0

11P1 3488.5 3480.6 3472.5 9879.3 9877.2 9875.1 6730.2 6726.6 6722.9 6734 6717

21P1 3873.9 3869.1 3864.2 10239.2 10237.9 10236.7 7103.0 7100.7 7098.5 7126 7113

11D2 3761.6 3757.2 3752.9 10141.7 10140.6 10139.5 6996.6 6994.6 6992.6 7077 7001

21D2 4061.1 4058.0 4054.8 10413.1 10412.3 10411.5 7283.7 7282.3 7280.8

13P1 3483.3 3466.7 3449.6 9875.1 9870.8 9866.5 6725.7 6715.1 6704.2 6749 6729

23P1 3872.4 3862.5 3852.5 10237.4 10234.9 10232.4 7101.6 7095.2 7088.8 7145 7124

13D2 3762.2 3753.4 3744.6 10141.0 10138.8 10136.5 6996.8 6991.2 6985.6 7079 7016

23D2 4061.8 4055.5 4049.1 10412.7 10411.1 10409.5 7284.0 7280.0 7276.0

13S1 3081.8 3089.3 3096.7 9447.8 9450.0 9452.2 6313.8 6317.5 6321.1 6332 6317

23S1 3646.0 3649.0 3652.0 10015.8 10016.7 10017.5 6877.0 6878.5 6879.9 6881 6902

33S1 3988.1 3989.9 3991.6 10336.1 10336.6 10337.0 7209.2 7210.0 7210.8 7235

43S1 4245.0 4246.2 4247.4 10568.8 10569.1 10569.4 7455.6 7456.2 7456.7

13P2 3509.1 3533.0 3553.3 9892.1 9898.0 9898.5 6746.0 6758.0 6767.7 6762 6743

23P2 3885.5 3900.1 3912.1 10245.3 10248.9 10252.4 7110.0 7118.0 7125.9 7156 7134

13D3 3771.0 3794.3 3816.3 10147.9 10153.9 10159.9 7002.3 7016.1 7027.0 7081 7007

23D3 4067.6 4084.8 4100.6 10417.2 10421.4 10425.7 7287.3 7297.3 7308.4

13P0 3422.7 3360.6 3288.7 9849.6 9836.2 9822.4 6693.1 6661.1 6627.0 6699 6683

23P0 3847.6 3816.4 3783.1 10226.1 10218.6 10211.1 7087.6 7070.1 7052.0 7091 7088

13D1 3746.1 3708.2 3667.9 10132.5 10123.2 10113.8 6988.0 6966.2 6943.5 7072 7008

23D1 4051.6 4025.0 3997.2 10407.3 10400.8 10394.2 7278.6 7263.2 7247.3
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TABLE IV. Heavy−meson mass spectra (in MeV ) for the Turin potential.

State ǫ = 1 ǫ = 1/2 ǫ = 0 ǫ = 1 ǫ = 1/2 ǫ = 0 ǫ = 1 ǫ = 1/2 ǫ = 0 [1] [4]

cc bb cb

11S0 3041.9 3014.6 2986.1 9418.0 9411.3 9404.6 6290.5 6278.7 6266.7 6264 6286

21S0 3653.5 3642.0 3630.3 10005.1 10002.5 10000.0 6877.3 6872.3 6867.3 6856 6882

31S0 4046.8 4039.3 4031.7 10343.3 10341.7 10340.1 7244.9 7241.8 7238.6 7244

41S0 4360.3 4354.7 4349.1 10601.6 10600.4 10599.3 7534.5 7532.2 7529.8

11P1 3489.4 3479.2 3468.8 9881.0 9878.7 9876.4 6729.2 6724.8 6720.4 6730 6737

21P1 3910.7 3903.7 3896.6 10241.2 10239.7 10238.2 7122.6 7119.6 7116.7 7135

11D2 3771.9 3765.4 3758.9 10136.7 10135.3 10134.0 6997.7 6995.0 6992.2 7009 7028

21D2 4120.7 4115.6 4110.5 10421.9 10420.8 10419.8 7319.2 7317.1 7315.0

13P1 3484.5 3466.2 3447.6 9875.5 9871.5 9867.5 6724.6 6713.6 6702.4 6736 6760

23P1 3910.1 3898.0 3885.6 10239.1 10236.6 10234.0 7121.7 7114.4 7107.1 7142

13D2 3774.1 3762.9 3751.6 10136.1 10133.7 10131.3 6999.0 6992.3 6985.5 7012 7028

23D2 4122.7 4114.0 4105.2 10421.5 10419.7 10417.9 7320.4 7315.3 7310.0

13S1 3075.4 3083.3 3091.1 9441.3 9443.3 9445.4 6311.8 6315.4 6319.0 6337 6341

23S1 3659.0 3662.8 3666.5 10008.0 10008.8 10009.7 6880.5 6882.1 6883.8 6899 6914

33S1 4048.9 4051.3 4053.8 10344.3 10344.8 10345.3 7246.1 7247.2 7248.2 7280

43S1 4361.4 4363.3 4365.1 10602.0 10602.4 10602.8 7535.1 7535.9 7536.7

13P2 3502.7 3529.7 3553.5 9891.9 9897.5 9903.1 6740.0 6753.8 6767.3 6747 6772

23P2 3917.7 3936.8 3952.7 10246.2 10249.9 10253.7 7127.1 7136.6 7146.0 7153

13D3 3773.9 3804.8 3834.2 10141.1 10147.6 10154.1 6999.2 7016.0 7032.0 7005 7032

23D3 4122.8 4145.7 4168.4 10424.7 10429.7 10434.7 7319.7 7332.8 7345.8

13P0 3426.8 3362.9 3291.7 9847.9 9835.7 9823.3 6692.8 6661.0 6627.6 6700 6701

23P0 3888.3 3852.1 3814.3 10227.9 10220.5 10213.1 7109.3 7089.9 7070.1 7108

13D1 3764.8 3718.1 3669.3 10129.0 10119.4 10109.6 6994.1 6968.6 6942.4 7012 7019

23D1 4117.3 4081.6 4044.9 10416.9 10409.7 10402.4 7317.7 7298.3 7278.4
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TABLE V. cc and bb mass spectra (in MeV ) using the Cornell potential.

State Mesona [35] ǫ = 1 ǫ = 1/2 ǫ = 0 Meson [35] ǫ = 1 ǫ = 1/2 ǫ = 0

11S0 ηc 2979 3068.5 3031.4 2993.3 ηb 9400 9447.4 9441.3 9435.3

21S0 η′c 3588 3704.7 3683.8 3662.6 η′b 9993 10021.5 10018.6 10015.7

31S0 η′′c 3991 4177.2 4161.8 4146.3 η′′b 10328 10378.4 10376.4 10374.4

41S0 4580.6 4568.1 4555.6 10665.8 10664.2 10662.6

11P1 hc 3526 3497.6 3478.1 3458.4 hb 9901 9899.7 9897.1 9894.5

21P1 h′c 3945 3993.2 3978.4 3963.5 h′b 10261 10263.3 10261.4 10259.5

11D2 3811 3806.7 3792.6 3778.4 10158 10147.2 10145.4 10143.6

21D2 4242.9 4231.0 4219.2 10451.0 10449.5 10448.1

13P1 χc1 3510 3496.0 3465.7 3434.9 χb1 9892 9893.2 9889.2 9885.2

23P1 χ′
c1 3929 3996.7 3974.2 3951.4 χ′

b1 10255 10261.0 10258.2 10255.3

13D2 3813 3814.3 3793.0 3771.5 10158 10146.7 10144.0 10141.2

23D2 4249.6 4231.9 4214.0 10450.8 10448.6 10446.4

13S1 J/ψ 3096 3068.5 3080.6 3092.7 Υ 9460 9447.4 9449.4 9451.4

23S1 ψ′ 3686 3704.7 3711.6 3718.5 Υ′ 10023 10021.5 10022.4 10023.4

33S1 ψ′′ 4088 4177.2 4182.3 4187.4 Υ′′ 10355 10378.4 10379.0 10379.7

43S1 ψ′′′ 4580.6 4584.8 4588.9 Υ′′′ 10665.8 10666.3 10666.8

13P2 χc2 3556 3505.2 3547.6 3589.1 χb2 9913 9908.9 9914.7 9920.5

23P2 χ′
c2 3972 3994.0 4027.1 4059.8 χ′

b2 10268 10267.1 10271.4 10275.7

13D3 3815 3796.9 3855.8 3913.4 10162 10150.0 10157.6 10165.2

23D3 4233.3 4283.1 4331.9 10452.8 10459.0 10465.2

13P0 χc0 3424 3430.9 3327.5 3209.5 χb0 9863 9862.9 9851.0 9839

23P0 χ′
c0 3854 3975.7 3911.7 3845.3 χ′

b0 10234 10249.9 10242.0 10234.1

13D1 3798 3815.4 3728.7 3638.2 10153 10140.7 10130.0 10119.2

23D1 4252.9 4181.8 4108.7 10447.0 10438.3 10429.5

aSame parameter fits of Ref. [4] in Table I with V0 = 0.
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TABLE VI. Bc meson mass spectrum (in MeV ) for the Cornell potential.

Statea ǫ = 1 ǫ = 1/2 ǫ = 0 [35] [38] [1] [4] [40]

11S0 6338.7 6325.7 6312.6 6270 6253 6264 6286 ≥ 6219.6

21S0 6930.5 6923.5 6916.5 6835 6867 6856 6882

31S0 7352.2 7347.1 7342.0 7193 7244

41S0 7707.2 7703.2 7699.1

11P1 6756.0 6749.5 6743.0 6734 6717 6730 6737 ≥ 6701.2

21P1 7195.2 7190.3 7185.5 7126 7113 7135

11D2 7036.3 7031.7 7027.1 7077 7001 7009 7028

21D2 7418.1 7414.3 7410.4

13P1 6753.6 6737.4 6720.9 6749 6729 6736 6760 ≥ 6701.2

23P1 7196.9 7184.9 7172.8 7145 7124 7142

13D2 7040.9 7029.5 7018.1 7079 7016 7012 7028

23D2 7422.2 7412.8 7403.4

13S1 6338.7 6342.9 6347.2 6332 6317 6337 6341 ≥ 6278.6

23S1 6930.5 6932.8 6935.1 6881 6902 6899 6914

33S1 7352.2 7353.8 7355.5 7235 7280

43S1 7707.2 7708.6 7710.0

13P2 6761.2 6780.6 6799.8 6762 6743 6747 6772 ≥ 6734.7

23P2 7195.5 7211.0 7226.3 7156 7134 7153

13D3 7029.7 7057.3 7085.5 7081 7007 7005 7032

23D3 7411.8 7435.6 7458.6

13P0 6724.1 6680.2 6634.5 6699 6683 6700 6701 ≥ 6638.6

23P0 7187.5 7157.5 7127.0 7091 7088 7108

13D1 7043.6 7002.3 6960.1 7072 7008 7012 7019

23D1 7425.9 7391.9 7357.4

aSame parameter fits of Ref. [4] in Table I with V0 = 0.
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TABLE VII. Pseudoscalar and vector decay constants (fP = fBc , fV = fB∗

c
) of the Bc meson

(in MeV ) using the Cornell potential.

Constantsa SLNETb SLNETc SLNETd Rel[35] [35] [1] [38] [4] [39]

fBc 511.4 503.2 495.2 433 562 479-687 460±60 517 420±13

fB∗

c
490.0 492.6 495.2 503 562 479-687 460±60 517 -

aFor parameter fits we cite Ref. [4].

bHere (ǫ = 0).

cHere (ǫ = 1/2).

dHere (ǫ = 1).

TABLE VIII. The radial wave function at the origin (in GeV 3) calculated in our model and

by the other authors using the Cornell potential.

Levela SLNETb SLNETc SLNETd Martin [1] [4] [1]e

|RBc(0)|2 1.729 1.677 1.628 1.716 1.638 1.81 1.508-3.102

∣∣RB∗

c
(0)
∣∣2 1.596 1.612 1.628 - - - -

aFor parameter fits we cite Ref. [4].

bHere (ǫ = 0).

cHere (ǫ = 1/2).

dHere (ǫ = 1).

eFor the 1S level.
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