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Approximate analytical solutions of the Dirac equation are obtained

for the Hellmann potential, Wei Hua potential and Varshni potential

with any κ-value for the cases having the Dirac equation pseudospin and

spin symmetries. Closed forms of the energy eigenvalue equations and

the spinor wave functions are obtained by using the Nikiforov-Uvarov

method and some tables are given to see the dependence of the energy

eigenvalues on different quantum number pairs (n,κ).

1 INTRODUCTION

The pseudospin and spin symmetric solutions of the Dirac equation have been

great interest in literature for last decades [1–3]. The Dirac equation with vec-

tor, V (r), and scalar, S(r), potentials has pseudospin (spin) symmetry when

the difference (the sum) of the potentials V (r)−S(r) [V (r)+S(r)] is constant,

which means d

dr
[V (r)− S(r)] = 0 (or d

dr
[V (r) + S(r)] = 0). It is pointed out

that these symmetries can explain degeneracies in single-particle energy lev-

els in nuclei or in some heavy meson-spectra within the contexts of relativistic

mean-field theories [1–3]. In the relativistic domain, these symmetries were

used in the context of deformation and superdeformation in nuclei, magnetic

moment interpretation and identical bands [4]. In the non-relativistic domain,

performing a helicity unitary transformation to a single-particle Hamiltonian

maps the normal state onto the pseudo-state [5]. Moreover, the Dirac Hamil-

tonian has not only a spin symmetry but also a U(3) symmetry for the case

V (r) = S(r) while not only a pseudospin symmetry but also a pseudo-U(3)

symmetry with vector and scalar harmonic oscillator potentials [6,7]. Because

of these investigations, the solutions of the Dirac equation having spin and

pseudospin symmetry have received great attention for different type of po-

tentials such as Morse, Eckart, the modified Pöschl-Teller, the Manning-Rosen

potentials and the symmetrical well potential [8–15].

Throughout the paper we use the following approximation instead of the

spin-orbit coupling term to obtain the analytical solutions of the Hellmann po-

tential, Wei Hua and Varshni potentials [16–23]

1

r2
≈ β2

1

(1− e−β r)2
, (1)
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where β is a parameter related with the above potentials.

The potentials studied in the present work and also other some exponential-

type potentials such as a ring-shaped Hùlthen, the Yukawa and Tietz-Hua po-

tentials have been analyzed in details by using different methods [24–30]. We

intend to use the Nikiforov-Uvarov method (NU) to analyze the bound states

of the Dirac equation for the cases of pseudospin and spin symmetries. This

method is a powerful tool to solve a second-order differential equation and has

been used to find the bound states of different potentials in literature [31,32].

The organization of this work is as follows. In Section 2, we briefly give

the Dirac equation with attractive scalar and repulsive vector potentials for the

cases where the Dirac equation has pseudospin and spin symmetries, respec-

tively. In Section 3, we present the NU method and the parameters required

within the method. In Section 4, we find an analytical energy eigenvalue equa-

tions for the bound states and the two-component spinor wave functions of

the above potentials by using an approximation instead of the spin-orbit cou-

pling term. In Section 5, we give our results and discussions. The last section

includes our conclusions.

2 DIRAC EQUATION

The free particle Dirac equation is given by (ħh= c = 1)
�

iγµ∂µ −M
�

Ψ(~r, t) = 0 , (2)

Taking the total wave function as Ψ(~r, t) = e−iE tψ(~r) for time-independent po-

tentials, where E is the relativistic energy, M is particle mass, the Dirac equation

with spherical symmetric vector and scalar potentials is written as
�

~α.~P + β(M + S(r))
�

ψ(~r) =
�

E − V (r)
�

ψ(~r) , (3)

Here α and β are usual 4× 4 matrices. For spherical nuclei, the angular mo-

mentum ~J and the operator K̂ = −β
�

σ̂. L̂+1
�

with eigenvalues κ= ±( j+1/2)

commute with the Dirac Hamiltonian, where L̂ is the orbital angular momen-

tum. By using the radial eigenfunctions for upper and lower components of the

Dirac eigenfunction F(r) and G(r), respectively, the wave function is written

as [31]

ψ(~r) =
1

r

�

F (r)Y (1)(θ ,φ)

iG (r)Y (2)(θ ,φ)

�

, (4)

where Y (1)(θ ,φ) and Y (2)(θ ,φ) are the pseudospin and spin spherical har-

monics, respectively. They correspond to angular and spin parts of the wave

function given by

Y (1),(2)(θ ,φ) =
∑

mℓms

< ℓmℓ
1

2
ms|ℓ

1

2
jm> Yℓmℓ(θ ,φ)χ 1

2
ms

,

j = |κ| −
1

2
, ℓ= κ (κ > 0) ; ℓ = −(κ+ 1) (κ < 0) , (5)
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Here, Yℓmℓ(θ ,φ) denotes the spherical harmonics and mℓ and ms are related

magnetic quantum numbers.

Substituting Eq. (4) into Eq. (3) gives us the following coupled differential

equations
�

d

dr
+
κ

r

�

F(r) = [E +M − Γ(r)]G(r) , (6a)

�

d

dr
−
κ

r

�

G(r) = [M − E +Λ(r)]F(r) . (6b)

where Γ(r) = V (r)− S(r) and Λ(r) = V (r) + S(r). Using the expression G(r)

in Eq. (6a) and inserting it into Eq. (6b), we get a second order differential

equation
�

d2

dr2
−
κ(κ+ 1)

r2
+ ǫ(1)(r)

�

F(r) = −

�

dΓ(r)/dr

[E +M − Γ(r)]

�

F(r) , (7)

where ǫ(1)(r) = [E +M − Γ(r)][E −M −Λ(r)]. By similar steps, we write the

following second order differential equation for G(r) as
�

d2

dr2
−
κ(κ− 1)

r2
+ ǫ(2)(r)

�

G(r) =

�

dΛ(r)/dr

[M − E +Λ(r)]

�

G(r) , (8)

where ǫ(2)(r) = [E −M −Λ(r)][E +M − Γ(r)]. If the Dirac equation has spin

symmetry which means that Γ(r) = A1 (dΓ(r)/dr = 0) is a constant, Eq. (7)

has the following form
¨

d2

dr2
−
κ(κ+ 1)

r2
+
�

E +M − A1

�

[E −M −Λ(r)]

«

F(r) = 0 , (9)

and if the Dirac equation has pseudospin symmetry which means that Λ(r) =

A2 (dΛ(r)/dr = 0) is a constant, Eq. (8) becomes
¨

d2

dr2
−
κ(κ− 1)

r2
+
�

E −M − A2

�

[E +M − Γ(r)]

«

G(r) = 0 . (10)

3 NIKIFOROV UVAROV METHOD

The Nikiforov-Uvarov method could be used to solve a second-order differen-

tial equation of the hypergeometric-type which can be transformed by using

appropriate coordinate transformation into the following form

σ2(z)
d2Ψ(z)

dz2
+σ(z)τ̃(z)

dΨ(z)

dz
+ σ̃(z)Ψ(z) = 0 , (11)

where σ(z) , and σ̃(z) are polynomials, at most, second degree, and τ̃(z) is a

first-degree polynomial. By taking the solution as

Ψ(z) =ψ(z)ϕ(z) , (12)
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gives Eq. (11) as a hypergeometric type equation [32]

d2ϕ(z)

dz2
+
τ(z)

σ(z)

dϕ(z)

dz
+

λ

σ(z)
ϕ(z) = 0 , (13)

where ψ(z) is defined by using the equation [32]

1

ψ(z)

dψ(z)

dz
=
π(z)

σ(z)
, (14)

and the other part of the solution in Eq. (12) is given by

ϕn(z) =
an

ρ(z)

dn

dzn
[σn(z)ρ(z)] , (15)

where an is a normalization constant, and ρ(z) is the weight function, and

satisfies the following equation [32]

dσ(z)

dz
+
σ(z)

ρ(z)

dρ(z)

dz
= τ(z) . (16)

The function π(z) and the parameter λ in the above equation are defined

as

π(z) =
1

2
[

d

dz
σ(z)− τ̃(z)]±

�

1

4

�

d

dz
σ(z)− τ̃(z)

�2

− σ̃(z) + kσ(z)

�1/2

,(17)

λ = k+
d

dz
π(z) . (18)

In the NU method, the square root in Eq. (17) must be the square of a

polynomial, so the parameter k can be determined. Thus, a new eigenvalue

equation becomes

λ= λn = −n
d

dz
τ(z)−

1

2
(n2 − n)

d2

dz2
σ(z) . (19)

and the derivative of the function τ(z) = τ̃(z) + 2π(z) should be negative.

4 BOUND STATE SOLUTIONS

4.1 HELLMANN POTENTIAL

The Hellmann potential having the form

V (r) = −
a

r
+

b

r
e−β r , (20)

has been used to explain the electron-ion [33] or electron-core interaction [34],

alkali hydride molecules and to study of inner-shell ionisation problem [35].
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We present the plot of the above potential in Fig. (1) to see the variation with

position coordinate.

1. Spin Symmetric Solutions

Inserting Eq. (20) into Eq. (9) and using the approximation given in Eq.

(1) instead of the spin-orbit coupling term, we obtain

¨

d2

dr2
−
β2κ(κ+ 1)

(1− e−β r)2
+

β

1− e−β r

�

a− be−β r
�

+ εSS
H

«

F(r) = 0 , (21)

where H stands for the Hellmann potential and εSS
H = (E + M − A1)(E − M).

Defining a new variable z = e−β r and using the following abbreviations

a2
1 = κ(κ+ 1)−

1

β2

�

aβ + εSS
H

�

, (22a)

a2
2 =

1

β2

�

β(a+ b) + 2εSS
H

�

, (22b)

a2
3 = −

1

β2

�

bβ + εSS
H

�

, (22c)

we write Eq. (21) as

d2F(z)

dz2
+

1− z

z(1− z)

dF(z)

dz
+

1

z2(1− z)2

�

−a2
1 − a2

2z − a2
3z2
�

F(z) = 0 , (23)

Comparing the last equation with Eq. (11), we have

τ̃(z) = 1− z , σ(z) = z(1− z) , σ̃(z) = −a2
1z2 − a2

2z − a2
3 , (24)

The function π(z) is obtained from Eq. (17) as

π(z) = −
1

2
z ∓

r

(
1

4
+ a2

3
− k)z2 + (a2

2
+ k)z + a2

1
, (25)

The constant k is determined by imposing a condition such that the discrimi-

nant under the square root should be zero. The roots of k are k1,2 = −a2
2 −

2a2
1 ∓ a1(1+ 2κ). Substituting the value of k1 = −a2

2 − 2a2
1 + a1(1+ 2κ) into

Eq. (25), we get for π(z)

π(z)(k→ k1) =

¨

−(a1− κ)z + a1

−(1+ κ− a1)z − a1 ,
(26)

Now we calculate the polynomial τ(z) from π(z) such that its derivative with

respect to z must be negative. Thus we obtain τ(z) for the second choice in last

equation as

τ(z) = (2a1− 1)z − (1+ 2κ+ 2a1) , (27)
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The constant λ in Eq. (18) becomes

λ= −a2
2 − 2a2

1 + a1(1+ 2κ)− a1 + κ , (28)

and Eq. (19) gives us

λn = n(n− 2a1) . (29)

Substituting the values of the parameters given by Eq. (22), and setting λ= λn,

one can find the energy eigenvalues for the Hellmann potential as

E =
1

2

�

A1 ∓
Æ

A2
1
− 4(MA1−M2 − N)

�

, (30)

where N is a parameter written in terms of the quantum numbers n and κ as

N = −
β2

4(n+κ)2

�

1

β
(a− b)− (n2− κ2)− κ(κ+ 1)

�2

− aβ + β2κ(κ+ 1) .(31)

Now we find the upper component of the Dirac wave function. We first compute

the weight function from Eq. (16) with the help of Eq. (27)

ρ(z) = z−2(1+κ+a1) (1− z)(1+2κ) , (32)

and we obtain from Eq. (15)

ϕn(z) ∼ z−2(1+κ+a1) (1− z)(1+2κ)
dn

dzn

�

zn−κ−a1−2 (1− z)n−2κ−1
�

, (33)

The polynomial solutions can be written in terms of the Jacobi polynomials

[38]

ϕn(z) ∼ P(−2(1+κ+a1),−(1+2κ) )
n (1− 2z) . (34)

The other part of the wave function is obtained from the Eq. (15) as

ψ(z) = z−a1(1− z)1−κ , (35)

Thus we write the upper component for the Hellmann potential in Eq. (4) as

F(z) ∼ z−a1(1− z)1−κP(−2(1+κ+a1),−(1+2κ) )
n (1− 2z) , (36)

By using Eq. (6a) and the identity for derivative of the Jacobi polynomials

given as d

d x
P
(p,q)(x)
n = 1

2
(n+ p+ q+ 1)P

(p+1,q+1)

n−1 (x) [38], we obtain the other

component for the Hellmann potential as

G(z) ∼
z−a1 (1−z)1−κ

E+M−A
[β( 1

a1
− κ

lnz
)P
(−2(1+κ+a1),−(1+2κ) )
n (1− 2z)

−1

4
(n− 2a1)P

(−(1+2κ+2a1),−(2+2κ) )
n (1− 2z)] . (37)
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2. Pseudospin Symmetric Solutions

Inserting Eq. (20) into Eq. (10) and using the approximation given in Eq.

(1), we obtain

¨

d2

dr2
−
β2κ(κ− 1)

(1− e−β r )2
+

β

1− e−β r

�

a− be−β r
�

+ εPSS
H

«

F(r) = 0 , (38)

where εPSS
H = (E−M −A2)(E+M). Using the same variable and the following

abbreviations

a2
1 = κ(κ− 1)−

1

β2

�

aβ + εPSS
H

�

, (39a)

a2
2 =

1

β2

�

β(a+ b) + 2εPSS
H

�

, (39b)

a2
3 = −

1

β2

�

bβ + εPSS
H

�

, (39c)

we obtain

d2G(z)

dz2
+

1− z

z(1− z)

dG(z)

dz
+

1

z2(1− z)2

�

−a2
1 − a2

2z − a2
3z2
�

G(z) = 0 , (40)

Following the same steps in previous section, we write the energy eigenvalues

for the Hellmann potential for the case of pseudospin symmetry

E =
1

2

�

A2 ∓
Æ

A2
2
+ 4(MA2+M2 + N)

�

, (41)

where N is given as

N = −
β2

4(n+κ)2

�

−
1

β
(a− b) + n2+ κ2 + κ(κ− 3)

�2

− aβ + β2κ(κ− 1) .(42)

and the lower component is written as

G(z) ∼ z−a1(1− z)1−κP(−2(1+κ+a1),−(1+2κ) )
n (1− 2z) . (43)

Using Eq. (6b) gives us the other component as

F(z) ∼
z−a1 (1−z)1−κ

M−E+A
[β( 1

a1
− κ

lnz
)P
(−2(1+κ+a1),−(1+2κ) )
n (1− 2z)

−1

4
(n− 2a1)P

(−(1+2κ+2a1),−(2+2κ) )
n (1− 2z)] . (44)

4.2 WEI HUA POTENTIAL

The Wei Hua potential is written

V (r) = D

�

1− e−β r

1− ae−β r

�2

, (45)
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which is proposed for bond-stretching vibration of diatomic molecules [36].

We give the plot of the Wei Hua potential in Fig. (2).

1. Spin Symmetric Solutions

Inserting last equation and Eq. (1) into Eq. (9), we obtain

(

d2

dr2
−
β2κ(κ+ 1)

(1− e−β r)2
− D

�

1− e−β r

1− ae−β r

�2

+ εSS
W H

)

F(r) = 0 , (46)

where W H stands for the Wei Hua potential and εSS
W H = (E +M − A1)(E −M).

Defining a new variable z = ae−β r , using the abbreviations

a2
1 = κ(κ+ 1)−

1

β2

�

εSS
W H − D
�

, (47a)

a2
2 = −

1

β2

�

2D

a
− 2εSS

W H

�

, (47b)

a2
3 = −

1

β2

�

εSS
W H −

D

a2

�

, (47c)

and following the same procedure in the above section for the Hellmann po-

tential, we write the energy eigenvalues of the Wei Hua potential for the case

of spin symmetry

E =
1

2

�

A1 ∓
Æ

A2
1
− 4(MA1−M2 − N)

�

, (48)

where N is a parameter written in terms of the quantum numbers n and κ as

N = −
β2

4(n+ κ)2

�

n2+ κ2 + κ(κ+ 1)−
2D

β2
(
1

a
− 1)

�2

+ D+ β2κ(κ+ 1) . (49)

and the lower component for the Wei Hua potential

F(z) ∼ z−a1(1− z)1−κP(−2(1+κ+a1),−(1+2κ) )
n (1− 2z) . (50)

By using Eq. (6a) we obtain the other component as

G(z) ∼
z−a1 (1−z)1−κ

E+M−A
[β( 1

a1
− κ

lnz
)P
(−2(1+κ+a1),−(1+2κ) )
n (1− 2z)

−1

4
(n− 2a1)P

(−(1+2κ+2a1),−(2+2κ) )
n (1− 2z)] . (51)

2. Pseudospin Symmetric Solutions

Inserting Eqs. (45) and (1) into Eq. (10), we obtain

(

d2

dr2
−
β2κ(κ− 1)

(1− e−β r)2
− D

�

1− e−β r

1− ae−β r

�2

+ εPSS
W H

)

F(r) = 0 , (52)
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εPSS
W H = (E − M − A2)(E + M). Using the same variable z for the Hellmann

potential and defining the abbreviations

a2
1 = κ(κ− 1)−

1

β2

�

εPSS
W H − D
�

, (53a)

a2
2 = −

1

β2

�

2D

a
− 2εPSS

W H

�

, (53b)

a2
3 = −

1

β2

�

εPSS
W H −

D

a2

�

, (53c)

and following the same procedure in the above section for the Hellmann po-

tential, we write the energy eigenvalues of the Wei Hua potential for the case

of pseudospin symmetry

E =
1

2

�

A2 ∓
Æ

A2
2 + 4(MA2+M2 + N)

�

, (54)

where N is a parameter written in terms of the quantum numbers n and κ as

N = −
β2

4(n+ κ)2

�

n2− κ2 + κ(κ− 1)−
2D

β2
(
1

a
− 1)

�2

+ D+ β2κ(κ− 1) . (55)

and the upper component for the Wei Hua potential

G(z) ∼ z−a1(1− z)1−κP(−2(1+κ+a1),−(1+2κ) )
n (1− 2z) . (56)

The other component can be obtained from Eq. (6b) as

F(z) ∼
z−a1 (1−z)1−κ

M−E+A
[β( 1

a1
− κ

lnz
)P
(−2(1+κ+a1),−(1+2κ) )
n (1− 2z)

−1

4
(n− 2a1)P

(−(1+2κ+2a1),−(2+2κ) )
n (1− 2z)] . (57)

4.3 VARSHNI POTENTIAL

Varshni, for the first time, proposed the following potential function

V (r) = a

�

1−
b

r
e−β r

�

, (58)

to study the diatomic molecules [37]. It is clearly seen that the potential is very

similar to the Hellmann potential which could be seen in Fig. (3). All figures

show that the form of the potentials presented in this work are very similar.

Now we tend to study the spin and pseudospin symmetric solutions of the

Dirac equation for the above potential.

1. Spin Symmetric Solutions

Inserting Eqs. (58) and Eq. (1) into Eq. (9), we obtain

¨

d2

dr2
−

β

1− e−β r

�

βκ(κ+ 1)

1− e−β r
− abe−β r

�

+ εSS
V

«

F(r) = 0 , (59)
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where V stands for the Varshni potential and εSS
V = (E +M − A1)(E −M)− a.

Defining a new variable z = e−β r , using the abbreviations

a2
1 = κ(κ+ 1)−

εSS
V

β2
, (60a)

a2
2 = −

1

β2

�

abβ − 2εSS
V

�

, (60b)

a2
3 = −

1

β2

�

εSS
V − abβ
�

, (60c)

and following the same procedure in the above sections, we write the energy

eigenvalues of the Varshni potential for the case of spin symmetry

E =
1

2

�

A1 ∓
Æ

A2
1 − 4(MA1−M2 − N)

�

, (61)

where

N = −
β2

4(n+ κ)2

�

−
ab

β
+ n2+ κ2 + κ(κ+ 1)

�2

+ β2κ(κ+ 1) + a . (62)

and the lower component for the Varshni potential

F(z) ∼ z−a1(1− z)1−κP(−2(1+κ+a1),−(1+2κ) )
n (1− 2z) . (63)

By using Eq. (6a) we obtain the other component as

G(z) ∼
z−a1 (1−z)1−κ

E+M−A
[β( 1

a1
− κ

lnz
)P
(−2(1+κ+a1),−(1+2κ) )
n (1− 2z)

−1

4
(n− 2a1)P

(−(1+2κ+2a1),−(2+2κ) )
n (1− 2z)] . (64)

2. Pseudospin Symmetric Solutions

Inserting Eqs. (58) and (1) into Eq. (10), we obtain

¨

d2

dr2
−

β

1− e−β r

�

βκ(κ− 1)

1− e−β r
− abe−β r

�

+ εPSS
V

«

F(r) = 0 , (65)

εPSS
V = (E − M − A2)(E + M). Using the same variable z for the Hellmann

potential and defining the abbreviations

a2
1 = κ(κ− 1)−

εPSS
V

β2
, (66a)

a2
2 = −

1

β2

�

abβ − 2εPSS
V

�

, (66b)

a2
3 = −

1

β2

�

εPSS
V − abβ
�

, (66c)
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and following the same procedure in the above sections, we write the energy

eigenvalues of the Varshni potential for the case of pseudospin symmetry

E =
1

2

�

A2 ∓
Æ

A2
2
+ 4(MA2+M2 + N)

�

, (67)

where

N = −
β2

4(n+ κ)2

�

n2 + κ2 +κ(κ− 3)−
ab

β

�2

− β2κ(κ− 1)+ a . (68)

and the upper component for the Varshni potential

G(z) ∼ z−a1(1− z)1−κP(−2(1+κ+a1),−(1+2κ) )
n (1− 2z) . (69)

Using Eq. (6b) gives the other component as

F(z) ∼
z−a1 (1−z)1−κ

M−E+A
[β( 1

a1
− κ

lnz
)P
(−2(1+κ+a1),−(1+2κ) )
n (1− 2z)

−1

4
(n− 2a1)P

(−(1+2κ+2a1),−(2+2κ) )
n (1− 2z)] . (70)

5 RESULTS AND DISCUSSIONS

We have listed some numerical values for energy eigenvalues in Tables I-VI for

the cases of spin and pseudospin symmetries, separately. We have used the

same parameter values in both of spin and pseusospin symmetric cases for the

Hellmann potential, this is valid also for the Varshni potential. But the values

of the parameters for Wei Hua potential are different for the cases of spin and

pseudospin symmetries. It could be seen that the dependence of the bound

states for the Wei Hua potential are more sensitive. It also should be stressed

that the spin (and pseudospin) doublets, i.e., (0,−2) and (0,1) states or (1,−2)

and (1,1) states, etc. could be seen up to fourth decimal in energy eigenvalues.

6 CONCLUSION

We have studied the approximate bound state solutions of the Dirac equation

for the Hellmann potential, Wei Hua potential and Varshni potential, which

have an exponential form depending on the spatially coordinate r, for the cases

where the Dirac equation has pseudospin and spin symmetry, respectively. The

variation of the above potentials according to coordinate r are given in Figs

I-III. We have obtained the energy eigenvalue equations and the related two-

component spinor wave functions with the help of Nikiforov-Uvarov method

and summarized the numerical results for the bound states in Tables I-VI. It is

also seen that the Nikiforov-Uvarov method is a suitable method to study the

bound state solutions of the above potentials.
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Table 1: The energy eigenvalues of the Hellmann potential for the case of spin

symmetry for a = 0.25, b = 0.20,β = 0.02,A1 = M = 10.

ℓ n κ E > 0 n κ E > 0

1 0 -2 9.9995294 0 1 9.9995575

2 -3 9.9997604 2 9.9997394

3 -4 9.9999536 3 9.9999700

4 -5 10.0002770 4 10.0002900

1 1 -2 9.9994575 1 1 9.9995700

2 -3 9.9996894 2 9.9997300

3 -4 9.9999464 3 9.9999700

4 -5 10.0002740 4 10.0002900

Table 2: The energy eigenvalues of the Hellmann potential for the case of

pseudospin symmetry for a = 0.25, b = 0.20,β = 0.02,A2 = M = 10.

ℓ n κ E > 0 n κ E > 0

1 0 -2 9.9998031 0 1 9.9997925

2 -3 9.9997710 2 9.9998598

3 -4 9.9997412 3 9.9998977

4 -5 9.9997125 4 9.9992950

1 1 -2 9.9993925 1 1 9.9998281

2 -3 9.9994514 2 9.9998599

3 -4 9.9994310 3 9.9999016

4 -5 9.9993933 4 9.9999477
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Table 3: The energy eigenvalues of the Wei Hua potential for the case of spin

symmetry for a = 0.10, D = 0.0001,β = 0.01,A1 = 2, M = 0.001.

ℓ n κ E > 0 n κ E > 0

1 0 -2 1.9986997 0 1 1.9963313

2 -3 1.9993378 2 1.9991501

3 -4 1.9995723 3 1.9996379

4 -5 1.9996860 4 1.9997974

1 1 -2 1.9976352 1 1 1.9985369

2 -3 1.9993378 2 1.9996379

3 -4 1.9994823 3 1.9996379

4 -5 1.9994378 4 1.9998700

Table 4: The energy eigenvalues of the Wei Hua potential for the case of

pseudospin symmetry for a = 0.25, D = 0.01,β = 0.10,A2 = 10, M = 1.

ℓ n κ E > 0 n κ E > 0

1 0 -2 1.0049979 0 1 0.9956234

2 -3 1.0056224 2 1.0024995

3 -4 1.0057785 3 1.0039570

4 -5 1.0058222 4 1.0045295

1 1 -2 1.0006250 1 1 1.0000000

2 -3 0.9974994 2 1.0024763

3 -4 0.9952527 3 1.0045295

4 -5 0.9932780 4 1.0064216

Table 5: The energy eigenvalues of the Varshni potential for the case of spin

symmetry for a = b = 0.15,β = 0.001,A1 = M = 5.

ℓ n κ E > 0 n κ E > 0

1 0 -2 4.9999970 0 1 4.9999814

2 -3 5.0000009 2 4.9999992

3 -4 5.0000023 3 5.0000024

4 -5 5.0000030 4 5.0000034

1 1 -2 4.9999884 1 1 4.9999961

2 -3 5.0000070 2 5.0000050

3 -4 5.0000022 3 5.0000024

4 -5 5.0000023 4 5.0000036
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Table 6: The energy eigenvalues of the Varshni potential for the case of pseu-

dospin symmetry for a = b = 0.15,β = 0.001,A2 = M = 5.

ℓ n κ E > 0 n κ E > 0

1 0 -2 5.0000001 0 1 4.9999908

2 -3 5.0000008 2 4.9999984

3 -4 5.0000009 3 5.0000001

4 -5 5.0000008 4 5.0000008

1 1 -2 4.9999995 1 1 4.9999979

2 -3 5.0000007 2 4.9999994

3 -4 5.0000004 3 5.0000002

4 -5 5.0000000 4 5.0000008
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Figure 1: The Hellman potential.
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Figure 2: The Wei Hua potential.
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Figure 3: The Varshni potential.
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