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Abstract

Utilizing an appropriate ansatz to the wave function, we reproduce the exact

bound-state solutions of the radial Schrödinger equation to various exactly

solvable sextic anharmonic oscillator and confining perturbed Coulomb mod-

els in D-dimensions. We show that the perturbed Coulomb problem with

eigenvalue E can be transformed to a sextic anharmonic oscillator problem

with eigenvalue Ê. We also check the explicit relevance of these two related

problems in higher-space dimensions. It is shown that exact solutions of these

potentials exist when their coupling parameters with k = D + 2ℓ appearing

in the wave equation satisfy certain constraints.
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I. INTRODUCTION

The solution of the fundamental dynamical equations is an interesting phenomenon be-

cause of its importance in quantum-field theory, molecular physics, solid-state and statistical

physics. To obtain the exact ℓ-state solutions of the Schrödinger equation (SE) to various

quantum mechanical problems are possible only for few potentials and hence approximation

methods are used to obtain their solutions. According to the Schrödinger formulation of

quantum mechanics, a total wave function provides implicitly all relevant information about

the behaviour of a physical system. Hence if it is exactly solvable for a given potential,

the wave function can describe such a system completely. Until now, many efforts have

been made to solve the stationary SE with a sextic anharmonic oscillator and perturbed

Coulomb potentials in one to three dimensions through the Hill determinant matrix method

[1-4]. The study of the SE with these potentials provides us with insight into the physical

problem under consideration. Further, the study of SE with some of these potentials in the

arbitrary dimensions D is presented [3].

The purpose of this paper is to carry out the analytical solutions of the D-dimensional

radial SE with exactly-solvable Coulomb plus linear plus harmonic (CLH) V1(r) = −a/r +

br+ cr2 and sextic anharmonic oscillator (AHO) V2(r) = µr2+λr4+ ηr6 potentials through

an appropriate ansatz to the wave function. In cases of exactly solvable models, the wave

function can be expressed as a finite power series polynomial multiplied by an appropriate

reference function (usually, the asymptotic form) to reproduce the exact solutions. The

analytical solution of the Schrödinger equation for the energy levels with a class of confining

potentials of type V1 have been studied by Datta and Mukherjee [5] by using Kato-Rellich

perturbation theory for linear operations. It is well known that this confinement potential

has been used for calculation of qq bound-state masses [6]. Killingbeck [7] has calculated

the energy eigenvalues of the confinement potential by using hypervirial relations. Exact

solutions [8] of potentials of type V1 and V2 are obtained by a number of authors in three-

dimensional space when the coupling parameters satisfy certain relations. Chaudhuri and
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Mondal [3] studied the D-dimensional sextic AHO and CLH problems within the frame-

work of supersymmetric quantum mechanics (SUSYQM) and Hill determinant method [4,9-

11]. Chaudhuri and Mondal have shown that SUSYQM yields exact solutions for a single

state only for the quasi-exactly-solvable potentials of type V1 and V2 in D-dimensions with

some constraints on the coupling constants [3]. They have also obtained numerical results

throughout the Hill determinant method. The ideas of supersymmetric quantum mechanics

have been used for the study of atomic systems [11], the evaluation of the eigenvalues of

a bistable potential [12], the improvement of the large-N expansion [13], the analysis of all

known shape invariant potentials [10,14], and the development of a more accurate WKB

approximation [14]. Tymczak et al [4] devised a highly accurate quantization procedures

for the inner product representation both in configuration and momentum space for vari-

ous AHO potentials in one and two dimensions. Additionally, Dobrovolska and Tutik [15]

studied the bound-state problem within the framework of the SE through the logarithmic

perturbation theory. Recently, they also extended the formalism to the bound-state problem

for spherical oscillator of type V2 with its subsequent application to the doubly anharmonic

oscillator [16]. Furthermore, a simple formalism [17] based on a suitable choice of the wave

function ansatz has been proposed for reproducing exact bound-state energy eigenvalues and

eigenfunctions for exactly solvable model within the framework of the SE. Very recently, this

simple approach has also been applied [18] with remarkable success, to various molecular

quantum mechanical problems in D-dimensions [19,20].

The object of this paper is to extend the above simple approach to reproduce bound-

state exact solutions for potentials of type V1 and V2 in D-dimensions with some constraints

on the coupling constants. For a certain choice of parameters the method provides exactly-

solvable potentials for the D-dimensional sextic AHO and CLH problems. We then compare

our results with the exact ones obtained from the transformation of LHO into sextic AHO

problem.

This paper is organized as follows. In Section II, we solve analytically the D-dimensional

radial Schrödinger equation for the sextic AHO and CLH problems by a suitable choice of a
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wave function ansatz to each exactly-solvable problem. On the other hand, the exact energy

eigenvalues of sextic AHO are obtained by transforming radial wave SE inD-dimensions with

angular momentum ℓ to another problem in (2D − 4)-dimensions with angular momentum

2ℓ+ 1. The results and conclusion will be given in Section III.

II. THE D-DIMENSIONAL RADIAL SCHRÖDINGER EQUATION

In the D-dimensional Hilbert space, the reduced radial wave Schrödinger equation (with

h̄ = m = 1 units) for a spherically symmetric potential V (r) takes the form [21]

[
d2

dr2
+

(D − 1)

r

d

dr
− ℓ(ℓ+D − 2)

r2
+ 2 (E − V (r))

]
ψ(r) = 0, (1)

where the interaction potential is chosen to be of type V1 or V2 and E stands for its eigen-

values. Further, equation (1) can be simply transformed to the form [21]

{
d2

dr2
− [(k − 1) (k − 3)]

4r2
+ 2 (E − V (r))

}
R(r) = 0, (2)

where R(r), the reduced radial wave function, is defined by

R(r) = r(D−1)/2ψ(r), (3)

and

k = D + 2ℓ, (4)

which is a parameter depends on a linear combination of the spatial dimensions D and the

angular momentum quantum number ℓ [21].

We substitute r = γρ2/2 and ψ = χ(ρ)/ρ to transform Eq.(1) into another Schrödinger-

type equation in (D′ = 2D − 4)-dimensional space with angular momentum L = 2ℓ+ 1,

[
d2

dρ2
+

(D′ − 1)

ρ

d

dρ
− L(L+D′ − 2)

ρ2
+ 2

(
Ê − V̂ (ρ)

)]
χ(ρ) = 0, (5)

where
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Ê = γ2ρ2E, V̂ (ρ) = γ2ρ2V (γρ2/2), γ = 1/(−E)1/2. (6)

It is seen that through this transformation, the D-dimensional radial wave Schrödinger

equation (1) with angular momentum ℓ can be transformed to a (D′ = 2D− 4)-dimensional

problem with new angular momentum L = 2ℓ+ 1. In particular, under this transformation,

CLH problem of type V1 with eigenvalue E can be transformed to a sextic AHO problem of

type V2 with eigenvalue Ê as

V̂ (ρ) = µρ2 + λρ4 + ηρ6, (7)

with coupling constants given by

µ = 1, λ =
b

2(−E)3/2 , η =
c

4(−E)2 , (8)

and eigenvalue

Ê =
2a

(−E)1/2 . (9)

A. Confining perturbed Coulomb problem

We attempt to solve the wave equation (2) of reduced radial wave R(r) in the D-

dimensions for a spherically symmetric potential of confining CLH form [3,22]:

V (r) = −a
r
+ br + cr2, c > 0. (10)

In particular, for c = 0 and b > 0, such a potential reduces to the well known quarkonium

Cornell potential (cf. Refs. [21] and references therein). Apart from its releavance in heavy

quarkonium spectroscopy (cf [21] and references therein), this class of potentials with c = 0

has important applications in atomic physics. For exactly solvable problems such as CLH,

the representation of the radial portion of wave function ansatz, containing an appropriate

reference function (usually, asymptotic form), is

R(r) = exp [p (α, β, r)]
∑

n=0

anr
2n+(k−1)/2, (11)
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provided that the power of the reference function has the following selection:

p (α, β, r) =
1

2
αr2 + βr, (12)

should fall faster than the asymptotic form of the wave function. Upon substituting Eq.

(11) into Eq. (2) and equating the coefficients of r2n+(k−1)/2 to zero, we readily arrive at the

following relation

Anan +Bn+1an+1 + Cn+2an+2 = 0 (13)

where

An = 2E + β2 + α (4n + k) , (14)

Bn = 2a+ β (4n+ k − 1) , (15)

Cn = 4n2 + 2n(k − 2), (16)

and the value of the parameters for p (α, β, r) can be evaluated as

α = ±
√
2c, β = ± b√

2c
. (17)

To obtain a well-behaved solution at the origin and infinity, it is more convenient to take

α = −
√
2c and β = − b√

2c
which ensure that wave function ansatz representation in (11),

be finite for all r and convergent at ∞. Further, for a given p, if ap 6= 0, but ap+1 = ap+2 =

ap+3 = · · · = 0, we then obtain Ap = 0 from Eq. (14), i.e.,

ED
p = − b2

4c
+

√
c

2
(4p+ 2ℓ+D) , p = 0, 1, 2, · · · . (18)

Carrying through a parallel analysis to Refs [17,18], An, Bn and Cn must satisfy the deter-

minant relation for a nontrivial solution

Det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

B0 C1 · · · · · · · · · 0

A0 B1 C2 · · · · · · 0

...
...

...
. . .

...
...

0 0 0 0 Ap−1 Bp

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0. (19)
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To utilize this method showing the simplicity of this approach, we pursue determinant

analysis to present the exact solution for p = 0, 1 as follows.

Case (1): when p = 0, we get from Eq. (18), the exact bound-state solution of the CLH

problem in D-dimensions. So that the eigenvalue (ground state) is given by [17,18]

ED
0 = − b2

4c
+

√
c

2
(2ℓ+D) . (20)

Further, it is shown from Eq. (19) that B0 = 0, which leads to the following constraint on

the coupling parameters as

b(k − 1) = 2a
√
2c. (21)

which consequently, from Eqs. (20) and (21), the perturbed Coulomb potential admits an

exact ground eigen energy:

Ek
0 =

1

2

[
b(k − 1)2

2a
+
b(k − 1)

2a
− 4a2

(k − 1)2

]
, (22)

which is consistent with Refs [3,22]. Further, the corresponding wave function (unormal-

ized):

ψ
(k)
0 (r) = a0r

ℓ exp

[
− 2ar

(k − 1)
− b(k − 1)r2

4a

]
. (23)

Case (2): When p = 1, the exact energy spectrum becomes

Ek
1 =

1

2

[
b(k + 1)2

2a
+
b(k + 1)

2a
− 4a2

(k + 1)2

]
, (24)

and the corresponding wave function (unnormalized) can be readily found as:

ψ
(k)
1 (r) = (a0 + a1r) r

ℓ exp

[
− 2ar

(k + 1)
− b(k + 1)r2

4a

]
, (25)

where a0 and a1 are normalization constants. The relation between them can be determined

through the relation B0a0 + C1a1 = 0 to be

a1 =

[
b√
2c

− 2a

(k − 1)

]
a0. (26)
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Furthermore, we have the following recurrence relation from Eq. (19), that is, B0B1 = A0C1,

which consequently provides the following constraint on the coupling constants of potential:

4a2 − b2

2c
(k − 1)(k + 1)− 4ab√

2c
k =

2b

a
k(k − 1). (27)

Following this approach, we can further generate a class of exact solutions through setting

p = 0, 1, 2, · · · , etc. Generally speaking, if ap 6= 0, ap+1 = ap+2 = · · · = 0, from which we can

obtain the energy spectra (cf. determinant (19)). For the generalization, one needs to use

the shape invariance property and the relation between supersymmetric partners [22,23] to

find the general solution of energy eigenvalues as

Ek
n =

1

2

[
b(2n+ k − 1)2

2a
+
b(2n + k − 1)

2a
− 4a2

(2n+ k − 1)2

]
, (28)

with the corresponding wave functions

ψ(p)(r) = (a0 + a1r + · · ·+ apr
p) rℓ exp

[
− 2ar

(2n+ k − 1)
− b(2n+ k − 1)r2

4a

]
, (29)

where ai (i = 0, 1, 2, · · · , p) are normalization constants.

Finally, considering the following exactly solvable potentials. In particular: (i) Harmonic

oscillator: when a = b = 0 and c = 1
2
ω2 are inserted to Eq. (10), giving α = −ω and β = 0.

Thus, we can readily obtain the energy eigenvalues through using Eqs. (14)-(16) as [16,18,24]

Enℓ =
ω

2
(4n+D + 2ℓ) , n, ℓ = 0, 1, 2, · · · , (30)

and the corresponding radial wave function becomes

ψ(n)(r) =
(
a0 + a1r

2 + · · ·+ anr
2n
)
rℓ exp

[
−ω
2
r2

]
. (31)

where ai with i = 0, 1, 2, · · · , n are normalization constants.

(ii) Coulomb problem: when b = c = 0, and a = Z, implies that α = 0 and β =

− 2Z
(2n+D+2ℓ−1)

, from which we readily obtain the exact eigenvalues as [25]

Enℓ = − 2Z2

(2n+D + 2ℓ− 1)2
, n, ℓ = 0, 1, 2, · · · , (32)

and radial wave function becomes

ψ(n)(r) =
(
a0 + a1r

2 + · · ·+ anr
2n
)
rℓ exp

[
− 2Z

(2n+D + 2ℓ− 1)
r

]
, (33)

where ai with i = 0, 1, 2, · · · , n are normalization constants
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B. The sextic anharmonic oscillator problem

This version of sextic AHO potential

V (r) = µr2 + λr4 + ηr6, η > 0, (34)

has been studied in the D dimensions through Hill determinant method [3]. We want to

solve the radial SE, Eq. (2), with Eq. (34) by selecting the following representation of

ansatz to the radial portion of wave function

R(r) = exp [p (α, β, r)]
∑

n=0

anr
2n+(k−1)/2, (35)

provided that the power of the reference function has the following selection:

p (α, β, r) =
1

2
αr2 +

1

4
βr4. (36)

Implementing the present method on the representation (35), and taking the coefficients of

r2n+(k+1)/2 to zero, we obtain the relation

Anan +Bn+1an+1 + Cn+2an+2 = 0, (37)

where

An = α2 + β (4n+ k + 2)− 2µ, (38)

Bn = 2E + α (4n+ k) , (39)

Cn = 2n(2n+ k − 2), (40)

and the value of the parameters for p (α, β, r) can be evaluated as

β = ±
√
2η, α = ± λ√

2η
. (41)

To obtain a well-behaved solution at the origin and infinity, we must set β = −
√
2η and

α = − λ√
2η

which ensures that wave function ansatz, Eq. (35), be finite for all r. Further,
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for a given p, if ap 6= 0, but ap+1 = ap+2 = ap+3 = · · · = 0, we then obtain Ap = 0 from

Eq. (38), which leads to the following constraint on the coupling parameters of sextic AHO

problem as

2µ+
√
2η(4n+ k + 2)− λ2

2η
= 0. (42)

Case (1): when p = 0, it is shown from Eq. (19) that B0 = 0, which leads to the following

energy eigenvalue (ground state):

Ek
0 =

λk

2
√
2η
, (43)

and the corresponding wave function (unormalized):

ψ0(r) = a0r
ℓ exp

[
−λr

2 + ηr4√
2η

]
, (44)

Case (2): when p = 1, it is shown from Eq. (19) that B0B1 = A0C1, which leads to the

constraints on the coupling parameters of the potential as

Ek
1 =

λ

2
√
2η

(k + 2) +

√
λ2

4η
(k + 2)− k

2

[√
2η(k + 2) + 2µ

]
. (45)

In particular, an important version of the above sextic AHO is the harmonic oscillator

problem

V (r) = µr2, µ > 0. (46)

Selecting the following representation of the wave function ansatz::

R(r) = exp [p (α, r)]
∑

n=0

anr
2n+(k−1)/2, (47)

with

p (α, r) =
1

2
αr2, (48)

and itirating the previous steps, one gets:

An = α2 − 2µ, (49)
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Bn = 2E + α (4n+ k) , (50)

Cn = 2n(2n+ k − 2), (51)

which leads to choosing α = −
√
2µ.

Case (1): when p = 0, it is shown from Eq. (19) that B0 = 0, which leads to the following

energy eigenvalue (ground state):

Ek
0 =

√
2µk

2
, (52)

and the corresponding wave function (unormalized):

ψ
(k)
0 (r) = a0r

ℓ exp

[
−
√
2µ

2
r2

]
, (53)

Case (2): when p = 1, it is shown from Eq. (19) that B0B1 = A0C1, which leads to the

restriction on k and the parameters of the potential as

Ek
1 =

√
2µ

2
(k + 2) +

√
2µ. (54)

Generally speaking, the energy eigenvalues are

Ek
n =

√
2µ

2
(4n+ k), (55)

and the corresponding wave function can be read

ψn(r) =
(
a0 + a1r + · · ·+ apr

2n
)
rℓ exp

[
−
√
2µ

2
r2

]
, (56)

where ai (i = 0, 1, 2, · · · , n) are normalization constants.

III. CONCLUDING REMARKS

We applied the wavefunction ansatz method to the confining CLH and sextic AHO

interactions. Table 1 shows the calculated energies of the CLH type potential together with

those obtained by the SUSYQM and Hill determinant method for high values of parameters
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in three- and four-dimensions. We know from (8) and (9) that the CLH problem with exactly

solvable potentials V
(1),(2),(3)
1 (r) in four-dimensions can be transformed to the sexrtic AHO

problem (7) in four-dimensions with the exact eigenvalues given through (9).

We compute the energy eigenvalues of the following conjugate AHO potentials:

V̂
(4)
1 (r) = r2 +

[
1/2(7.625)3/2

]
r4 + [1/4(32)(7.625)2] r6, V̂

(5)
1 (r) = r2 +

[
1/2(7.375)3/2

]
r4

+ [1/4(32)(7.375)2] r6 and V̂
(6)
1 (r) = r2 +

[
1/2(7.125)3/2

]
r4 + [1/4(32)(7.125)2] r6 in two-

dimensions by the present simple method and compute our results in Table 2 with the

exact values given by (9). A class of AHO may be constructed from (43) that ad-

mits exact solutions. We also compute the energy eigenvalues of the following conju-

gate AHO potentials: V̂
(4)
1 (r) = r2 +

[
1/2(7.5)3/2

]
r4 + [1/4(32)(7.5)2] r6, V̂

(5)
1 (r) = r2 +

[
1/2(7.25)3/2

]
r4 + [1/4(32)(7.25)2] r6 and V̂

(6)
1 (r) = r2+

[
1/2(7.0)3/2

]
r4 + [1/4(32)(7.0)2] r6

in four-dimensions by the method and compute our results in Table 3 with the exact values

given by (9). These eigenvalues are checked by other methods.

This method yields exact solutions for a single state only for a potential of type V2 and

many states of type V2 with some constraints on the coupling parameters. Our method

is applicable to many general CLH or AHO and produces excellent results for the low-

lying states. It gives the exact solutions of the Couloımb and the harmonic oscillator in

D-dimensions. The CLH and sextic AHO in D-dimensions are related through Eq.(9) and

are verified in Table 2 by this method.

A class of conjugate AHO having exact eigenvalues may be constructed from the trans-

formation of CLH potential. It is found that the eigenvalues of central potential V (r) are

identical for D = 2,ℓ = 2, D = 4, ℓ = 1 and D = 6, ℓ = 0 states. This is because k = D+ 2ℓ

remains unaltered for these states.
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[22] O. Özer and B. Gönül, Mod. Phys. Lett. A 18 (2003) 2581.

[23] F. Cooper, A. Khare and U. Sukhatme, Phys. Rep. 251 (1995) 267.
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TABLES

TABLE I. The lowest energy eigenvalues of the CLH potential for ℓ = 0, 1, 2 in three- and

four-dimensions.

aa b c ℓ D Present method SUSYQM [3]

4 1 1
32 0 3 −7.625 −7.625

8 1 1
32 1 3 −7.375 −7.375

12 1 1
32 2 3 −7.125 −7.125

6 1 1
32 0 4 −7.500 −7.500

10 1 1
32 1 4 −7.250 −7.250

14 1 1
32 2 4 −7.000 −7.000

aThe parameter values here are taken from [3].

TABLE II. The eigenvalues of the conjugate sextic anharmonic oscillators in two-dimen-

sions.are compared with the exact values.

Conjugate sextic AHOa ℓ Present work Exact Value, Eq.(9)

V̂
(4)
1 (r) 1 2.8971438733606 2.8971438733606

V̂
(5)
1 (r) 3 5.8916775545493 5.8916775545493

V̂
(6)
1 (r) 5 8.9912237911843 8.9912237911846

aThe parameter values in constructing the sextic AHO are taken from Table 1.

TABLE III. The eigenvalues of the conjugate sextic anharmonic oscillators in four-dimen-

sions.are compared with the other works and the exact values.

Conjugate sextic AHOa ℓ Present work Hill Determinant [3] Exact Value, Eq.(9)

V̂
(4)
1 (r) 1 4.3817804600412 4.381780461 4.381780459

V̂
(5)
1 (r) 3 7.427813527082 7.427813527 7.427813526

V̂
(6)
1 (r) 5 10.583005244257 10.583005244 10.583005240

aThe parameter values in constructing the sextic AHO are taken from Table 1.
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