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Abstract

We study φa0γ- and φσγ-vertices in the framework of the light cone QCD

sum rules and we estimate the coupling constants gφa0γ and gφσγ utilizing

ωφ-mixing. We compare our results with the previous estimations of these

coupling constants in the literature obtained from phenomenological consid-

erations.
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The studies of φ(1020) meson and in particular its radiative decays have been important

sources of information in hadron physics. The Novosibirsk CMD [1] and SND [2] collabora-

tions have reported measurements of radiative φ → π0π0(η)γ and φ → π+π−γ decays, and

the high luminosity Frascati φ-factory DAΦNE will soon be performing precise measure-

ments of radiative φ decays. These information will help us to increase our understansing

of the complicated dynamics of meson physics in the 1 GeV energy region. In this energy

region, low-mass scalar mesons may also play an important role. The incorporation of the

role of the scalar resonances in processes involving vector mesons provides an opportunity

to increase our insight of the dynamics of the meson physics. Among the processes involving

the vector and scalar mesons, the φa0γ- and φσγ-vertices are interesting and important for

several reasons. The φa0γ-vertex plays a role in the study of the radiative φ → π0ηγ decay

[3], and the knowledge of the φσγ-vertex is needed in the analysis of the decay mechanism of

the φ → π0π0γ decay [4]. Furthermore, the coupling constant gφσγ is needed in the study of

the structure of the φ meson photoproduction amplitude on nucleons in the near threshold

region based on the one-meson exchange and Pomeron-exchange mechanisms [5]. In the

present work, we employ the light cone QCD sum rules method to study the φa0γ- and

φσγ-vertices, and utilizing ωφ-mixing we estimate the gφa0γ and gφσγ coupling constants.

In order to analyze the φa0γ- and φσγ-vertices using light cone QCD sum rules, we begin

with the observation that the φ → π0γ decay width vanishes if the φ meson is a pure ss

state. The measured width Γ(φ → π0γ) = (5.6± 0.5) KeV [6] is significantly different from

zero which is explained as primarily being due to ω − φ mixing. Bramon et al. [7] have

recently studied radiative V Pγ transitions between vector (V) mesons and pseudoscalar (P)

mesons, and using the available experimental information they have determined the mixing

angle for ω − φ as well as other relevant parameters of ω − φ and η − η′ systems. In this

work, we follow their treatment and we write the physical ω and φ meson states as

| ω > = cos θv | ω0 > − sin θv | φ0 >

| φ > = sin θv | ω0 > +cos θv | φ0 > , (1)
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where | ω0 >= 1√
2
| uu + dd > and | φ0 >=| ss > are the non-strange and the strange

basis states. The mixing angle has been determined from the available experimental data

by Bramon et al. as θ = (3.4 ± 0.2)o [7]. We, therefore, choose the interpolating currents

for ω and φ mesons defined in the quark flavour basis as

jωµ = cos θvj
ω0

µ − sin θvj
φ0

µ

jφµ = sin θvj
ω0

µ + cos θvj
φ0

µ , (2)

where jω0

µ = 1

6
(uγµu+ dγµd) and jφ0

µ = −1

3
sγµs [8].

In order to study the φsγ-vertex and to estimate the coupling constant gφsγ with s

denoting a0 or σ meson, we consider the two point correlation function with photon

Tµ(p, q) = i
∫

d4xeip·x < γ(q)|T{jφµ(0)js(x)}|0 > (3)

where jφµ = sin θvj
ω0

µ + cos θvj
φ0

µ and js =
1

2
(uu+ (−1)Idd) are the interpolating currents for

φ and for isoscalar I=0 σ meson, and for isovector I=1 a0 meson. The overlap amplitudes

of these interpolating currents with the meson states are defined as

< 0|jφµ |φ > = λφuµ

< 0|js|s > = λs (4)

where uµ is the polarization vector of φ meson and s denotes σ or a0 meson. The e+e−

leptonic decay width of φ meson neglecting electron mass can be written as Γ(φ → e+e−) =

4πα2

3m3

φ

λ2
φ. We use the experimental value for the branching ratio B(φ → e+e−) = (2.91 ±

0.07)×10−4 of φ meson [6], and this way we determine the overlap amplitude λφ of φ meson

as λφ = (0.079 ± 0.016) GeV2. We have employed the QCD sum rules method in previous

works and we determined the overlap amplitudes λσ and λa0 as λσ = (0.12 ± 0.03) GeV 2

[9] and λa0 = (0.21± 0.005) GeV 2 [10], since they are not available experimentally.

The theoretical part of the sum rule for the coupling constants gφsγ is obtained in terms

of QCD degrees of freedom by calculating the two point correlator in the deep Euclidean

region where p2 and (p+ q)2 are large and negative. In this calculation we use the full light
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quark propagator with both perturbative and nonperturbative contributions, and it is given

as [11]

iS(x, 0) = < 0|T{q(x)q(0)}|0 >

= i
6 x

2π2x4
−

< qq >

12
−

x2

192
m2

0 < qq >

−igs
1

16π2

∫

1

0

du

{

6 x

x2
σµνG

µν(ux)− 4iu
xµ

x2
Gµν(ux)γν

}

+ ... (5)

where terms proportional to light quark mass mu or md are neglected. We note that it is the

jω0

µ part of the φ meson interpolating current, that is jφµ = sin θvj
ω0

µ = (1/6) sin θv(uγµu +

dγµd), that makes a contribution in the calculation of the theoretical part of the sum rule.

After a straightforward computation we obtain

Tµ(p, q) = 4i
∫

d4xeipxA(xσgµτ − xτgµσ) < γ(q) | q(x)στσq(0) | 0 > (6)

where A = i
2π2x4 . In order to evaluate the two point correlation function further, we need

the matrix elements < γ(q)|qσαβq|0 >. These matrix elements are defined in terms of the

photon wave functions [12–14]

< γ(q)|qσαβq|0 > = ieq < qq >
∫

1

0

dueiuqx{(ǫαqβ − ǫβqα)
[

χφ(u) + x2[g1(u)− g2(u)]
]

+ [q · x(ǫαxβ − ǫβxα) + ǫ · x(xαqβ − xβqα)] g2(u)} , (7)

where the parameter χ is the magnetic susceptibility of the quark condensate and eq is the

quark charge, φ(u) stands for the leading twist-2 photon wave function, while g1(u) and

g2(u) are the two-particle photon wave functions of twist-4. In the further analysis the path

ordered gauge factor is omitted since we work in the fixed point gauge [15].

In order to construct the phenomenological part of the two point function in Eq. 3, we

note that the two point function Tµ(p, q) satisfies a dispersion relation, and we saturate

this dispersion relation by inserting a complete set of one hadron states into the correlation

function. This way we construct the phenomenological part of the two point correlation

function as
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Tµ(p, q) =
< sγ|φ >< φ|jφµ |0 >< 0|js|s >

(p2 −m2
φ)(p

′2 −m2
s)

+ ... (8)

where we denote the contributions from the higher states and the continuum starting from

some threshold s0 by dots. The coupling constant gφsγ is defined through the effective

Lagrangian

L =
e

mφ
gφsγ∂

αφβ(∂αAβ − ∂βAα)s (9)

describing the φsγ-vertex [16]. The < sγ|φ > matrix can therefore be written as

< s(p′)γ(q) | φ(p) >= i
e

mφ

gφsγK(q2)(p · q uµ − u · q pµ) (10)

where q = p−p′ and K(q2) is a form factor with K(0)=1. In order to take the contributions

coming from the higher states and the continuum into account, we invoke the quark-hadron

duality prescription and replace the hadron spectral density with the spectral density cal-

culated in QCD. In accordance with the QCD sum rules method strategy, we equate the

two representations of the two point correlation function, theoretical and phenomenological,

and we construct the sum rule for the coupling constant gφsγ. After evaluating the Fourier

transform and then performing the double Borel transformation with respect to the variables

Q2
1 = −p′2 and Q2

2 = −(p′ + q)2, we finally obtain the following sum rule for the coupling

constant gφsγ

gφsγ =
1

6

mφ(eu + (−1)Ied) < uu >

λφλs
em

2
s/M

2

1 em
2

φ
/M2

2

{

−M2χφ(u0)f0(s0/M
2) + 4g1(u0)

}

sin θ (11)

where the function f0(s0/M
2) = 1 − e−s0/M2

is the factor used to subtract the continuum,

s0 being the continuum threshold, and

u0 =
M2

1

M2
1 +M2

2

,M2 =
M2

1M
2
2

M2
1 +M2

2

(12)

with M2
1 and M2

2 are the Borel parameters.

For the numerical evaluation of the sum rules, we use the value < uu >= (−0.014 ±

0.002) GeV 3 [8] for the vacuum condensate, and χ = −4.4 GeV −2 [13,17] for the magnetic
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susceptibility of the quark condensate. The leading twist-2 photon wave function is given

as φ(u) = 6u(1 − u) and the two-particle photon wave function of twist-4 is given by the

expression g1(u) = −(1/8)(1− u)(3− u) [13]. We use for the overlap amplitudes the values

λσ = (0.12 ± 0.03) GeV 2, λa0 = (0.21 ± 0.05) GeV 2, and λφ = (0.079 ± 0.016) GeV 2 as

we have discussed previously, and we use mφ = 1.02 GeV , mσ = 0.5 GeV , and ma0 =

0.98 GeV . In order to analyze the dependence of the coupling constants gφσγ and gφa0γ

on the Borel parameters M2
1 and M2

2 , we study independent variations of M2
1 and M2

2 . We

find that the sum rule for the coupling constant gφσγ is quite stable for M2
1 = 1.2 GeV 2

and for 1.0 GeV 2 < M2
2 < 1.4 GeV 2, and that for the coupling constant gφa0γ for the

values M2
2 = 2.0 GeV 2 and for 1.0 GeV 2 < M2

2 < 1.4 GeV 2. We note that these

limits on M2
2 are within the allowed interval for the vector channel [18]. Moreover, we

study the dependence of the sum rules on the threshold parameter s0. The variation of

the coupling constants gφa0γ and gφσγ as a function of the Borel parameter M2
2 for the

values of s0 = 1.5, 1.6, 1.7 GeV 2 with M2
1 = 2.0 GeV 2 for gφa0γ, and for the values of

s0 = 1.1, 1.2, 1.3 GeV 2 with M2
1 = 1.2 GeV 2 in the case of gφσγ are shown in Fig. 1 and in

Fig. 2, respectively, from which we conclude that the variations are quite stable. The sources

contributing to the uncertainties are those due to variations in the Borel parametersM2
1 , M

2
2 ,

in the threshold parameter s0, and in the estimated values of the vacuum condensate and

the magnetic susceptibility. If we take these uncertainties into account by a conservative

estimate, we obtain the coupling constants gφa0γ and gφσγ as gφa0γ = (0.11 ± 0.03) and

gφσγ = (0.036± 0.008).

In a previous work [4], we studied the radiative φ → π0π0γ decay. We considered ρ-pole

vector meson dominance amplitude as well as scalar σ-pole and f0-pole amplitudes, and by

employing the experimental value for this decay rate and by analyzing the interference effects

between different contributions in the experimental π0π0 invariant mass spectrum for the

decay φ → π0π0γ, we estimated the coupling constant gφσγ as gφσγ = (0.025± 0.009) which

is in reasonable agreement with our present calculation utilizing light cone QCD sum rules

method. On the other hand, Friman and Soyeur [16] in their study of the photoproduction
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of ρ0 mesons on proton targets near threshold showed that photoproduction cross section

is given mainly by σ-exchange. They calculated the ρσγ-vertex assuming vector meson

dominance of the electromagnetic current and then they performed a fit to the experimental

ρ0 photoproduction data. Their result when described using an effective Lagrangian for

the ρσγ-vertex gave the value gρσγ = 2.71 for this coupling constant. In their study of the

structure of the φ meson photoproduction amplitude on nucleons near threshold based on

the one-meson exchange and Pomeron-exchange mechanisms, Titov et al. [5] used this value

of the coupling constant gρσγ to calculate the coupling constants gφσγ and gφa0γ by invoking

unitary symmetry arguments. They assumed that σ, f0, and a0 are members of a unitary

nonet, and they obtained the results gφσγ = 0.047 and | gφa0γ |= 0.16 for these coupling

constants. Our results gφσγ = (0.036 ± 0.008) and gφa0γ = (0.11 ± 0.03) are in agreement

with the values of these coupling constants calculated by Titov et al. and used in their

analysis. However, it should be noted that in our work we do not make any assumption

about the assignment of scalar states into various unitary nonets, which is not without

problems.
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Figure Caption:

Figure 1: The coupling constant gφa0γ as a function of the Borel parameter M2
2 for different

values of the threshold parameters s0 with M2
1=2.0 GeV2.

Figure 2: The coupling constant gφσγ as a function of the Borel parameter M2
2 for different

values of the threshold parameters s0 with M2
1=1.2 GeV2.
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