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We intend to realize the step-up and step-down operators of the

potential V (x) = V1e2β x + V2eβ x . It is found that these operators satisfy

the commutation relations for the SU(2) group. We find the eigenfunc-

tions and the eigenvalues of the potential by using the Laplace transform

approach to study the Lie algebra satisfied the ladder operators of the

potential under consideration. Our results are similar to the ones ob-

tained for the Morse potential (β →−β).

1 INTRODUCTION

Searching the exact solutions of the non-relativistic and relativistic wave equa-

tions, i.e., Schrödinger equation (SE), Klein-Gordon equation and Dirac equa-

tion, has became an important part from the beginning of quantum mechan-

ics [1] and also in the view of the atomic and nuclear physics [2–10].

In this manner, the factorization method by which the creation and anni-

hilation operators of some potentials under consideration could be obtained is

a powerful tool to get the exact solutions of some solvable potentials [11,12].

This approach has been received much attention in order to search the exact

solutions in the non-relativistic domain [13]. Bessis and co-workers have ex-

tended the Schrödinger-Infeld-Hull factorization method [11, 14] to the case,

known as perturbed ladder operator method, where the perturbed eigenval-

ues and eigenfunctions are written in terms of the unperturbed physical sys-

tem [15]. Dong and co-workers have also used the factorization method with a

different point from the "old" one, namely, the ladder operators under consid-

eration can be constructed in terms of the physical variable (i.e., without using

an auxiliary nonphysical variable) to obtain the dynamical group for different

types of potentials [16–23].

In this work, our aim is twofold. Firstly, we compute the eigenvalues and

the corresponding eigenfunctions of the exponential-type potential, named as

the Type-III potential [24], by using the Laplace transform approach (LTA)

which is a economic method to obtain the exact solutions of the SE by reducing

it into a first-order differential equation [25–27]. Secondly, we intend to search

the raising and lowering operators of this potential and give briefly the Lie al-

gebra of the commutators which falls into the SU(2) group. It is seen that our

results are similar to the ones obtained for the Morse potential (β →−β) [17].
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2 ENERGY SPECTRUM

The one dimensional, time-independent Schrödinger equation is written for a

particle subjected to the potential under consideration

d2φn(x)

d x2
+
¦

M Enℓ −MV1e2β x
−MV2eβ x
©

φn(x) = 0 , (1)

where M = 2m/ħh2, m is the mass and E is the energy of the particle.

Changing the variable to z = eβ x in Eq. (1) gives the following equation

defined in an interval z ∈ [0,∞]

d2φn(z)

dz2
+

1

z

dφn(z)

dz
+

¨

−a2
1 −

a2
2

z
−
ǫ2

z2

«

φn(z) = 0 , (2)

where

a2
1 =

MV1

β2
; a2

2 =
MV2

β2
; −ǫ2 =

M Enℓ

β2
. (3)

In order to get an equation having a suitable form for applying the Laplace

transform approach, we define a wave function φn(z) = zκϕn(z) which gives

z
d2ϕn(z)

dz2
− (2ǫ+ 1)

dϕn(z)

dz
+
¦

−a2
2 − a2

1z
©

ϕn(z) = 0 , (4)

where we set κ= −ǫ to obtain a finite wave function when z→∞.

By using the Laplace transform defined as [28]

L
�

ϕ(z)
	

= f (t) =

∫ ∞

0

dze−t yϕ(z) , (5)

Eq. (4) reads

�

t2
− a2

1

� d f (t)

d t
+
�

(ǫ+ 1) t + a2
2

�

f (t) = 0 , (6)

which is a first-order ordinary differential equation and its solution is simply

given

f (t) ∼
�

t + a1

�−(2ǫ+1)

�

t − a1

t + a1

�−
a2
2

2a1
−

2ǫ+1

2

, (7)

In order to obtain a single-valued wave functions, it should be

−
a2

2

2a1

−
2ǫ+ 1

2
= n (n= 0,1,2, . . .) (8)

page 2 of 8



Using this condition and expanding Eq. (7) into series, we obtain

f (t) ∼

n
∑

k=0

(−1)kn!

(n− k)!k!
(2a1)

k(t + a1)
−(2ǫ+1)−k , (9)

To obtain the solution of Eq. (4) we use the inverse Laplace transformation [28]

and get

ϕn(z) ∼ z2ǫe−a1z
n
∑

k=0

(−1)kn!

(n− k)!k!

Γ(2ǫ+ 1)

Γ(2ǫ+ 1+ k)
(2a1z)k , (10)

which gives

φn(z) = Nnzǫe−a1z
n
∑

k=0

(−1)kn!

(n− k)!k!

Γ(2ǫ+ 1)

Γ(2ǫ+ 1+ k)
(2a1z)k . (11)

By using the following definition of the hypergeometric functions [29]

1F1(−n,σ,ξ) =

n
∑

m=0

(−1)mn!

(n−m)!m!

Γ(σ)

Γ(σ+m)
ξm , (12)

and writing the hypergeometric functions in terms of Laguerre polynomials as

L
p
n(ξ) =

Γ(n+p+1)

n!Γ(p+1) 1F1(−n, p+ 1,ξ) [29], we obtain the eigenfunctions as

φn(z) = Nnzǫe−a1z
n!Γ(2ǫ+ 1)

Γ(n+ p+ 1)
L2ǫ

n (2a1z) . (13)

Using the normalization condition given as
∫∞

−∞

�

�φ(x)
�

�

2
d x = 1 the normalized

eigenfunctions are written

φn(z) = const.

È

(2ǫ)2n!

Γ(n+ 2ǫ+ 1)
zǫe−a1z L2ǫ

n (2a1z) , (14)

where used [29]
∫ ∞

0

tα−1e−δt Lλm(δt)Lβn (δt) =
δ−αΓ(α)Γ(n−α+ β + 1)Γ(m+λ+ 1)

m!n!Γ(1−α+ β)Γ(1+λ)

× 3F2(−m,α,α− β ;−n+α− β ,λ+ 1; 1) .(15)

It is worth to say that ’const.’ in Eq. (14) includes some factors related with

hypergeometric function
�

3F2(a, b, c; r, s; 1)
�−1/2

and the parameter a1 coming

from Eq. (15).

The requirement given in Eq. (8) and using the parameters in Eq. (3), we

find the energy eigenvalues of the exponential-type potential as

Enℓ = −
β2

4M



2n+ 1+
M

β

V2
p

V1





2

. (16)
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which gives the energy spectra of the Morse potential for β → −β . We give

numerical energy eigenvalues of the potential obtained from Eq. (16) for two

diatomic molecules, namely, for H2 and LiH molecule. For completeness, we

also summarize the eigenvalues for the Morse potential (EM ) by setting β →

−β in the same equation. The parameter values of the molecules used here

are as follows: D = 4.7446 eV, r0 = 0.7416, m = 0.50391 amu, α = β r0 =

1.440558, E0 = ħh
2/(mr2

0 ) = 1.508343932× 10−2 eV for H2 and D = 2.515287

eV, r0 = 1.5956, m = 0.8801221 amu, α = 1.7998368, E0 = 1.865528199×

10−3 eV for LiH molecule [30]. It is seen that being the potential parameter

β positive causes to decrease the energy eigenvalues while they increase in the

case of the Morse potential.

3 STEP-UP AND STEP-DOWN OPERATORS

In this section, we tend to create briefly the ladder operators of the potential

satisfying the following eigenvalue equation

L̂±φn(z) = ℓ±φn(z) , (17)

where L̂+ is the step-up operator with eigenvalue ℓ+ and L̂− is the step-up

operator with eigenvalue ℓ− and having the form [16–23]

L̂± = f±(z)
d

dz
+ g±(z) . (18)

In order to get the step-down operator, we look for the acting of the differ-

ential operator d/dz on the eigenfunctions

d

dz
φn(z) =

ǫ

z
φn(z)− a1φn(z) + Nnzǫe−a1z

d

dz
L2ǫ

n (2a1z) , (19)

where if we take into account the constrain 2ǫ = −2n − 1 + A and use the

property of the Laguerre polynomials [31]

x
d

d x
Lαn (x) = nLαn (x)− (n+α)L

α
n−1(x) , (20)

we obtain
�

−z
d

dz
− a1z + n+ ǫ

�

φn(z) = (n+ 2ǫ)
Nn

Nn−1

φn−1(z) , (21)

which gives the step-down operator

L̂− =

r

ǫ+ 1

ǫ

�

−z
d

dz
− a1z + n+ ǫ

�

, (22)

with

ℓ− = (−n+ A− 1)
p

n(n+ 2ǫ+ 1) . (23)

page 4 of 8



where A = −a2
2/a1. The last equation shows that the step-down operator de-

stroys the ground state. Using the following recursion relation of the Laguerre

polynomials [31]

x
d

d x
Lαn (x) = (n+ 1)Lαn+1(x)− (n+α+ 1− x)Lαn(x) , (24)

and inserting into Eq. (19) gives
�

z
d

dz
− z + a1z + n+ ǫ+ 1

�

φn(z) = (n+ 1)
Nn

Nn+1

φn+1(z) , (25)

From the last equation we obtain the step-up operator as

L̂+ =

r

ǫ− 1

ǫ

�

z
d

dz
− z + a1z + n+ ǫ+ 1

�

, (26)

with

ℓ+ =

r

n+ 1

−n+ A+ 1
. (27)

The step-up operator in Eq. (26) annihilates the last bounded state since for a

such state is ǫ = 1.

Finally we study the Lie algebra associated to the operators L̂± to construct

the commutator of them with the help of Eqs. (22) and (26):

[ L̂+, L̂−]φn(z) = ℓ0φ(z) (28)

where the eigenvalue

ℓ0 = 2n+ 2− A , (29)

which makes it possible to construct the operator

L̂0 = 2n̂+ 2− A . (30)

These three operators satisfy the following Lie algebra

[ L̂+, L̂−] = L̂0 ; [ L̂−, L̂0] = L̂− ; [ L̂0, L̂+] = L̂+ . (31)

which correspond to the SU(2) group of the potential that means the potential

under consideration has the same group of the Morse potential [17].

4 CONCLUSION

We have obtained the ladder operators of the Type-III potential and commu-

tation relations which correspond to the SU(2) group which is also corre-

spond to the ones of the Morse potential. To achieve this aim, we have solved

the Schrödinger equation for the potential under consideration by using the

Laplace transform approach to find the eigenfunctions and eigenvalues. We

have also obtained the energy values of the Morse potential by setting β →−β

and summarized our numerical results obtained for two diatomic molecules in

Table 1.
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Table 1: Energy eigenvalues of the exponential-type and Morse potentials for

different values of n in eV (V1 = D, V2 = 2D).

H2 LiH

n Enℓ < 0 EM < 0 Ref. [30] Enℓ < 0 EM < 0 Ref. [30]

0 5.02101 4.47601 4.47601 2.60322 2.42886 2.42886

2 6.20491 3.47992 3.47991 2.97007 2.09828 2.09827

4 7.51402 2.60903 2.60902 3.36109 1.79186 1.79186

10 12.1926 0.74759 0.74759 4.67918 1.01766 1.01765
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