
ar
X

iv
:h

ep
-t

h/
03

02
16

9v
1 

 2
0 

Fe
b 

20
03

Partial Wave Analysis of the First Order Born

Amplitude of a Dirac particle in an

Aharonov-Bohm Potential

M.S. Shikakhwa

Department of Physics,

University of Jordan, Amman-Jordan

and

N.K. Pak

Department of Physics,

Middle East Technical University,

06531 Ankara-Turkey.

May 31, 2018

Abstract

A partial wave analysis using the basis of the total angular momentum
operator J3 is carried out for the first order Born amplitude of a Dirac
particle in an Aharonov-Bohm (AB) potential. It is demonstrated that the
s-partial wave contributes to the scattering amplitude in contrast to the
case with scalar non-relativistic particles. We suggest that this explains
the fact that the first order Born amplitude of a Dirac particle coincides
with the exact amplitude expanded to the same order, where it does not
for a scalar particle. An interesting algebra involving the Dirac velocity
operator and the angular observables is discovered and its consequences
are exploited.

1 Introduction

The first attempts to calculate the Aharonov-Bohm (AB) scattering[1] ampli-
tude for a scalar particle using perturbation theory [2, 3] revealed a discrep-
ancy between the first order Born amplitude and the exact amplitude when
expanded to the same order.Moreover, the second order Born amplitude turned
out to be divergent. These results were attributed [3] to the fact that the first
order Born amplitude based on the Schrödinger Hamiltonian of a scalar parti-
cle misses the contribution of the l = 0 partial wave, as it is of second order.
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The problem manifested itself also in the field theory models of the AB effect
with scalar particles, namely the Chern-Simons models[4]. It also appeared in
the perturbative calculations in the many-body anyon theories near the bosonic
end[5]. It was noted that introducing a contact interaction into the Hamilto-
nian remedies these problems[4]. Subsequently this interaction was attributed
to a spin-magnetic moment interaction[6]. The first order Born amplitude for
a Dirac particle was calculated in [7] and the second order in [8] where full
agreement with the expansions of the exact amplitude[9] to the corresponding
order was found. Non-relativistic perturbative calculations within the frame-
work of the field theory models of the AB with spin-1/2 particles suffered no
problems[10, 11].

No partial wave analysis of the first order Born amplitude for a Dirac particle
where it would be interesting to investigate the behavior of the l = 0 partial
wave was reported in the literature. The main motivation behind this work is
to carry out such an analysis.

In section 2, we present a comprehensive partial wave analysis of the first
order Born amplitude for non-relativistic scalar and spin 1/2 particles. In section
3, we carry out a partial wave analysis of the Born amplitude of a Dirac particle,
using the cylindrical partial modes of the conserved total angular momentum
operator. An interesting closed algebra involving the Dirac velocity operator
and the angular observables of the theory is discovered, and its consequences
pursued.

2 Partial wave Born amplitude for non-relativistic

scalar and spin-1/2 particles

Before embarking on the treatment of the Dirac particle, we will first carry out
the partial wave analysis for the non-relativistic scalar and spin-1/2 particles in
the AB potential. While the results of this discussion are generally known and
were mentioned in the literature in various contexts[6], there is no published
work that we know of, which contains a systematic and complete treatment.
Thus we present it here for completeness and to set the stage for the discussion
of the relativistic case.

The AB potential in the cylindrical coordinates reads

A =
Φ

2πρ
ǫϕ, (1)

where ρ =
√

x2 + y2, ǫϕ is the unit vector along the ϕ direction and Φ is the
flux through the tube. The Schrödinger equation for a scalar particle in this
potential, written in cylindrical coordinates, is (h̄ = c = 1):

[

∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2
(
∂

∂ϕ
+ iα)2 +

∂2

∂z2
+ k2

]

Ψ(r) =0, (2)

where α = − eΦ
2π . We take 0 < α < 1, as in this work we will be mainly interested

in perturbative calculations.
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As usual, one can separate the z-dependence of the wavefunction and neglect
it all together without any loss of generality. The interaction potential in Eq. (2)
can be identified as

U = − 1

ρ2
(2iα

∂

∂ϕ
) +

α2

ρ2
. (3)

The first order Born scattering amplitude can now be readily constructed,
and reads

f (1)(θ) =

(

i

2(2πik)
1

2

)∫

e−ik′.x

(

2iα

ρ2
∂

∂ϕ

)

eik.xρdρdϕ, (4)

where k and k′ are, respectively, the wave vectors of the incident (from left) and
scattered waves, with |k| = |k′|; and θ is the scattering angle. A calculation of
f (1)(θ) yields [2, 3]:

f (1)(θ) = −α
( π

2ik

)
1

2 cos θ
2

sin θ
2

, θ 6= 0. (5)

The exact amplitude first calculated in [1], and corrected in [13], for 0 < α < 1
reads:

f(θ) = − i√
2πik

(sinπα)
e−iθ/2

sin θ
2

(6)

For small α, one gets,

f(θ) =
( π

2ik

)
1

2

(

−α cot
θ

2
− iα

)

+O
(

α2
)

, θ 6= 0. (7)

f (1)(θ) given in Eq. (5) clearly misses the -iα term of Eq. (7). This discrep-
ancy was attributed to the fact that the first order Born amplitude misses the
contribution of the s-partial wave [3]. This can be seen most transparently by
looking at the partial Born amplitudes separately, to which we will now turn.

The plane waves in Eq. (4) can be expanded in terms of the conserved orbital
angular momentum operator L3 by employing the well-known expansion

eikx cosα =

+∞
∑

l=−∞

ileilαJl (x) , (8)

where Jl (x) are the Bessel functions of order l. After carrying out the angular
integral in Eq. (4), we get:

f (1)(θ) =

(

iα

(2πik)
1

2

)

∑

l

leilθ
∫

dρ

ρ
[Jl (kρ)]

2
(9)

Now, it is obvious that the l = 0 partial wave amplitude, i.e., f
(1)
0 (θ) vanishes.

Integrating over the Bessel functions with the aid of the formula

∫ ∞

0

dr
[Jl (r)]

2

r
= |2l|−1

, l 6= 0, (10)
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we get

f (1)(θ) = −
∑

l

′iαπ

(

1

2πik

)
1

2

sgn(l)eilθ, (11)

where sgn (l) = l
|l| , and the prime denotes that the l = 0 term is excluded from

the summation. Recalling that generally

f (1)(θ) =
∑

l

f
(1)
l (θ)eilθ ,

we get the partial amplitudes as:

f
(1)
l (θ) =

{

−iπα

(2πik)
1

2

sgn(l) , l 6= 0

0 , l = 0.
(12)

To compare the above partial amplitudes with the exact ones expanded in
terms of α, we note that the exact phase shifts reported in [12, 13] read (when
0 < α < 1),

δm =

{ −π
2α , m ≥ 0

π
2α , m < 0

Therefore, the exact partial amplitudes become [12]:

fl (θ) =
(

e−isgn(l)πα − 1
)

(2πik)−
1

2 , l = 0,±1,±2, .... (13)

which, for small α reduce to Eq. (12) when l 6= 0. When l = 0, f0 (θ) reduces

to −iαπ

(2πik)
1

2

for small α, while f
(1)
0 (θ) vanishes!

We turn now to the non-relativistic spin-1/2 particles, where we will see that
the l = 0 partial amplitude is non-vanishing. In addition to this, it will turn
out that, it is this partial amplitude that leads to the modification of the exact
amplitude when the spin is included.

The starting point is the Pauli equation

1

2m
(σ ·Π)

2
Ψ = EΨ, (14)

where Π = (p−eA), and A is the AB potential given in Eq. (1), and σi, i =
1, 2, 3, are the Pauli spin matrices. Suppressing again the z degree of freedom
we get,

[

∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2
(
∂

∂ϕ
+ iα)2 − 2πασ3δ (r) + k2

]

Ψ(r) =0 . (15)

The first order Born amplitude now reads,

f (1)(θ) =

(

i

2(2πik)
1

2

)∫

e−ik′.xχ†(s′)
(

2iα

ρ2
∂

∂ϕ
− 2πασ3δ (r)

)

χ(s)eik.xρdρdϕ,

(16)
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where χ(s) and χ(s
′) are the spinors of the incident and outgoing waves, respec-

tively. Expanding the plane waves, and carrying out the integrals as before, we
get:

f (1)(θ) =
1

(2πik)
1

2

∑

l

eilθχ†(s′) [−iπαsgn (l) (1− δl,0)− iπαδl,0σ3]χ
(s). (17)

Taking χ(s) to be the spin state of a particle polarized along an arbitrary
direction specified by a unit vector n with polar angle β, and considering tran-
sitions to a final state polarized along the same direction, we get the amplitude
as:

f (1)(θ) =
∑

l

(2πik)
− 1

2 eilθ [−iπαsgn (l) (1− δl,0)− iπαδl,0 cosβ] , (18)

f
(1)
l (θ) =







−iπα

(2πik)
1

2

sgn(l) , l 6= 0

− iπα

(2πik)
1

2

cosβ , l = 0 .
(19)

The above results demonstrate that the l = 0 partial amplitude is non-
vanishing, the reason being the spin-magnetic moment interaction term. We
also note that for our choice of the spin orientations, it is only the s-wave
that flips the spin, modifying the unpolarized amplitude only when the incident
particle’s spin has a component perpendicular to the solenoid. This result was
first reported in [9] for the exact amplitude, and verified for the first-order Born
amplitude in [7]. This is quite natural, as the s-wave is the only partial wave that
can feel the solenoid; the other waves being banned by the centrifugal barrier.

3 Partial Wave Born Amplitudes for a Dirac
Particle

The Hamiltonian for a Dirac particle in an electromagnetic potential is:

H = H◦ +Hint, (20)

where
H◦ = α · p+ βm, (21)

and
Hint = eA◦ − eα.A (22)

Here, αi = βγi and β = γ4. The γ’s are the Dirac matrices: {γµ, γν} = 2gµν.
The first-order Born amplitude for the scattering of a Dirac particle in an

electromagnetic field then reads,

S
(1)
fi = −i

∫

d4xψ
(s′)
f (~x) (eγµA

µ)ψ
(s)
i (x). (23)

5



With the AB potential as given in Eq. (1), and with the choice of gauge A0 = 0,
and suppressing the z degree of freedom, and an energy consering δ-function,
we get

S
(1)
fi = iα

∫

dρdϕψ
(s′)
f (~x) (− sinϕγ1 + cosϕγ2)ψ

(s)
i (~x). (24)

where p⊥ is the magnitude of the momentum perpendicular to the solenoid. For

later convenience, we write S
(1)
fi as :

S
(1)
fi = iα

∫

dρdϕψ
(s′)
f (~x)

(

D+ +D−
)

ψ
(s)
i (~x). (25)

where the operators D± are defined by:

D± =

(

γ2 ± iγ1

2

)

e±iϕ. (26)

Prior to carrying out a partial wave analysis of (24), we have to note that
an expansion of the incident and outgoing waves in terms of the L3 eigenstates
will be inconclusive in this case. The reason, physically speaking, is that L3 is
not a constant of the motion in the Dirac theory, not even (as is well-known)

in the free theory. The spinors, u
(s)
i and u

(s)
f are now functions of the angle

ϕ. So, one has to expand the free spinors in terms of the eigenstates of the
conserved total angular momentum operator J3 = L3 +

Σ3

2 . We need first to
find these states. These will be taken to be simultaneous eigenstates of the set

of commuting operators: H◦, J3, S3 = βΣ3 +
ξp3

m and p3 (where ξ =

(

0 I

I 0

)

)

according to:
H◦Ψls = EΨls

J3Ψls =
(

l + 1
2

)

Ψls

p3Ψls = p3Ψls

S3Ψls = ±sΨls

(27)

Here, we are diagonalizing the spin operator S3 along with the Hamiltonian
rather than the more conventional helicity operator. S3 is usually used when
one has a magnetic field along the z-axis[14]. In the non-relativistic limit the
upper components of Ψls are eigenstates of σ3. The eigenvalues of S3 are

s = ±
√

1 +
(p3

m

)2

, (28)

which reduce to s = ±1 when p3 is set to zero. The Ψls that solve the set of
equations (27) read

Ψls =
e−i(Et−p3x3−lϕ)

√
2π

√
2E

√
2s









√
E + sm

√
s+ 1Jl

(

p⊥ρ
)

ieiϕǫ3
√
E − sm

√
s− 1Jl+1

(

p⊥ρ
)

ǫ3
√
E + sm

√
s− 1Jl

(

p⊥ρ
)

ieiϕ
√
E − sm

√
s+ 1Jl+1

(

p⊥ρ
)









, (29)
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where ǫ3 = sgn(s)sgn(p3),p
⊥ is the magnitude of the momentum perpendicular

to the solenoidand, and s assumes the values given in Eq. (28). Setting p3 to
zero one gets Ψls modes as:

Ψls(x) =
ei(lϕ)

√
2π

√
2E

√
2s









√
E + sm

√
s+ 1Jl

(

p⊥ρ
)

ieiϕǫ3
√
E − sm

√
s− 1Jl+1

(

p⊥ρ
)

ǫ3
√
E + sm

√
s− 1Jl

(

p⊥ρ
)

ieiϕ
√
E − sm

√
s+ 1Jl+1

(

p⊥ρ
)









, (30)

where s = ±1 now, and the cylindrical partial modes Ψls(x) are normalized as

∫

ρdρdϕΨ†
l′s′(x)Ψls(x) =

1

p⊥
δ
(

p⊥ − p⊥′
)

δl,l′δs.s′ . (31)

The above partial modes are now the correct expansion basis that are to be
used in the partial wave analysis. The incident and outgoing waves which are
also eigenstates of S3 are(p3 = 0, s = ∓1) :

Ψ
(s)
i (x) = eipi.xui =

eip
⊥ρ cosϕ

√
4π

√
2s









√
E + sm

√
s+ 1

ǫ3
√
E − sm

√
s− 1

ǫ3
√
E + sm

√
s− 1√

E − sm
√
s+ 1









, (32)

Ψ
(s)
f (x) = eipf .xuf =

eip
⊥ρ cos(ϕ−θ)

√
4π

√
2s









√
E + sm

√
s+ 1

ǫ3e
iθ
√
E − sm

√
s− 1

ǫ3
√
E + sm

√
s− 1

eiθ
√
E − sm

√
s+ 1









, (33)

The incident and outgoing waves given in (32) and (33) are normalized as
∫

d2xψ†(s′)(~x)ψ(s)(~x) = Eδ(~p − ~p′), which is the Lorentz-invariant normaliza-
tion.

We can verify the following expansion of Ψi(x) and Ψf(x) in terms of the
cylindrical modes Ψls(x) :

Ψ
(s)
i (x) =

√
Ei

∑

l (i)
l
Ψls(x)

Ψ
(s)
f (x) =

√

Ef

∑

l (i)
l
e−ilθΨls(x) .

(34)

The amplitude S
(1)
fi now takes the form

S
(1)
fi = iαE

∑

l

(i)
l
∑

l′

(−i)l
′

eil
′θM, (35)

where

M =

∫

dρdϕΨl′s′(x)
(

D+ +D−
)

Ψls(x), (36)

and E = Ei = Ef .
Now, the operators D±, being linear combinations of the γ matrices will

flip the spinors Ψls. On the other hand, since [J3, D
±] = [S3, D

±] = 0, then
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D±Ψls should still be eigenstates of J3 and S3. It turns out that D
± operators

together with the angular observables of the theory obey an interesting algebra
which leads to a fulfillment of the the above requirements. Let us first note
that D±Ψls are eigenstates of L3 and Σ3

2 as can be verified directly, though Ψls

obviously is not
Σ3

2 D
±Ψls = ∓ 1

2D
±Ψls

L3D
±Ψls =

(

l + 1
l

)

D±Ψls .
(37)

It follows from Eq. (37)that
(

L3 +
Σ3

2

)

D±Ψls =

( (

− 1
2

)

+ (l + 1)
(

+ 1
2

)

+ (l)

)

D±Ψls =

(

l +
1

2

)

D±Ψls (38)

as should be. Therefore, the operators D± acting on the Ψls modes, project
them into eigenstates of L3 and

Σ3

2 such that the sum of the eigenvalues is always
equal to the J3 eigenvalue; l+ 1

2 . To get a further insight into the mechanism in
action, we first note that the Ψls modes can be written as linear combinations
of the eigenstates of the L3 and Σ3

2 operators. Explicitly:

Ψls=+1 =
1√
4πE

















√
E +mJl

(

p⊥ρ
)

ei(lϕ)

0
0
0









+









0
0
0

i
√
E −mJl+1

(

p⊥ρ
)

ei(l+1)ϕ

















,

(39)
or in a more compact notation

|j3, s = 1〉 =
∣

∣

∣

∣

j3, s = 1; l,+
1

2

〉

+

∣

∣

∣

∣

j3, s = 1; l + 1,−1

2

〉

, (40)

where, the quantum numbers (l, l+1) and (12 ,− 1
2 ) above refer to the eigenvalues

of L3 and Σ3

2 , respectively, and the total orbital angular momentum’s quantum
number is always j3=l+

1
2 . Similarly, for s = −1, we have

|j3, s = −1; 〉 =
∣

∣

∣

∣

j3, s = −1; l + 1,−1

2

〉

+

∣

∣

∣

∣

j3, s = −1; l,+
1

2

〉

. (41)

One can verify the following algebra

[L3, D
±] = ±D±

[

Σ3

2 , D
±
]

= ∓D±

[D+, D−] = 2
(

Σ3

2

)

.

(42)

Note also that
(

D+
)2

=
(

D−
)2

= 0. (43)

This algebra means that the operators D± are some sort of raising and low-
ering operators in the angular momentum space of the theory. Indeed, denoting
the simultaneous eigenstate of L3 and Σ3

2 as |l3, σ3〉, one has:

L3D
± |l3, σ3〉 = (l3 ± 1)D± |l3, σ3〉

Σ3

2 D
± |l3, σ3〉 = (σ3 ∓ 1)D± |l3, σ3〉 .

(44)
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Therefore, D± |l3, σ3〉 = c± |(l3 ± 1) , (σ3 ∓ 1)〉. The complex numbers c± are
readily verified to be pure phases which we set to 1. Moreover, note that Eq. (43)
implies

D+

∣

∣

∣

∣

l3, σ3 = −1

2

〉

= D−

∣

∣

∣

∣

l3, σ3 = +
1

2

〉

= 0. (45)

Thus, we have
D± |l3, σ3〉 = |l3 ± 1, σ3 ∓ 1〉 . (46)

Going back to our Ψls functions given in Eqs. (40) and (41), we see now that

(

D+

D−

)

|j3, s = 1〉 =
( ∣

∣j3, s = 1; l+ 1,− 1
2

〉

∣

∣j3, s = 1; l,+ 1
2

〉

)

, (47)

and
(

D+

D−

)

|j3, s = −1〉 =
( ∣

∣j3, s = −1; l + 1,− 1
2

〉

∣

∣j3, s = −1; l,+ 1
2

〉

)

. (48)

This means that the operators D± acting on |j3, s = ±1〉 projects out eigen-
states of L3 and Σ3

2 such that l3 + σ3 = l + 1
2 only, i.e. J3 eigenstates.

This mechanism of conserving the J3 quantum number can be only observed
upon employing the partial wave expansion of the Dirac spinors.

Going back to our amplitude; upon substituting the explicit forms of the
partial modes of Eq. (30), in Eq. (36), and carrying out the ϕ integral we finally
get,

M =(π)

√
E2 − s2m2

2E
(2s) δl,l′δs,s′

∫

Jl+1

(

p⊥ρ
)

Jl
(

p⊥ρ
)

dρ. (49)

The above expression clearly conserves J3 and S3 quantum numbers as it
should do. Moreover, the l = 0 partial wave contributes to the amplitude on
equal footing with the other partial waves.

The Bessel function integral in Eq. (49) is tabulated for positive values of
ℓ (formula 6.512-3 in [15]). For negative values of ℓ, we make use of the well-
known relation valid for integral ℓ, J−ℓ(x) = (−1)ℓJℓ(x), so that we convert
the integral over Besssel functions of negative order to an integral over Bessel
functions of positive order, getting an overall minus sign. So, we get finally for
the first order amplitude,

S
(1)
fi =

∑

ℓ

1

2
iαsgn(ℓ)eiℓθ (50)

The partial amplitudes are therefore,

S
(1)
ℓ =

1

2
iαsgn(ℓ), ℓ = 0,∓1,∓2, . . . (51)

Note the appearance of sgn(ℓ) which resulted from the Bessel function integral in
Eq. (49). This is same as in the non-relativistic amplitude. To compare our final
expression in Eq. (51) with the non-relativistic partial scattering amplitudes,
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f
(1)
ℓ (θ), we note that the S-matrix and the scattering amplitude are related in
two dimensions via [12]:

(S − 1)(k, θ) =

(

ik

2π

)1/2

f(k, θ). (52)

Expanding S(k, θ) and f(k, θ) in powers of the coupling constant, and im-
posing the equality for each partial wave, we get

f
(1)
ℓ (k, θ) =

√

2π

ik
S
(1)
ℓ (k, θ) (53)

Substituting S
(1)
ℓ given in Eq. (51), in Eq. (53), we get the partial scattering

amplitudes:

f
(1)
ℓ (θ) = (2πik)−1/2iαπsgn(ℓ), 1 = 0,∓1,∓2, . . . (54)

Eq. (54) compares (up to an overall minus sign) with Eq. (19). The dis-

crepancy for the partial amplitudes f
(1)
0 (θ) is a result of the difference in the

spin orientations of the incident and outgoing particles in the two cases.

4 Conclusions

We have demonstrated through an explicit partial wave analysis, that the in-
clusion of spin into the Hamiltonian of a non-relativistic particle in an AB field
leads to a non-vanishing l = 0 first order partial Born amplitude. Moreover,
this particular amplitude is the one responsible for the modification of the total
amplitude reported in [9] as a result of the inclusion of spin. A partial wave
analysis of the first order Born amplitude for a Dirac particle shows that all
the partial amplitudes, including the l = 0 are non-vanishing and contribute
equally to the total amplitude. An interesting algebra involving the Dirac ve-
locity operator and the angular observables of the Dirac theory was discovered,
and shown to lead to a mechanism for the conservation of the total angular mo-
mentum quantum number upon transitions from the initial to the final states
at the level of each partial wave.
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