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I. INTRODUCTION

The exact solutions of the nonrelativistic and relativistic wave equations are only possible

in a few simple potential cases such as the Coulomb, the harmonic oscillator, the pseudo-

harmonic, isotonic potentials and others [1-4]. The most interesting and best known system

inside this small family is the harmonic oscillator whose energy spectrum consists of an

infinite set of equidistant energy levels. Many other oscillators, as for example harmonic

oscillators perturbed by a term containing a fourth or a sixth power in the coordinate, have

been extensively studied. Nevertheless, it is known the existence of another solvable one-

dimensional model which shares several interesting properties with the harmonic oscillator,

the so-called isotonic oscillator whose spectrum coincides with that of the harmonic oscil-

lator [5]. This potential model is considered as one of the most used models for the study

of the dynamics of nonlinear systems. In particular, the energy spectrum of the singular

potential is considerd as an isomorphous to the harmonic oscillator spectrum. Very recently,

Fellows and Smith [6] have used the ideas of the factorization and supersymmetric (SUSY)

approach [7,8] to study the singular superpotentials and they proved that most of these

oscillatory potentials are other partner potentials of the harmonic oscillators and derived

an infinite set of exactly soluble potentials. A discussion of the supersymmetric connection

between harmonic and isotonic oscillators can be traced in Ref. [9].

The isotonic potential takes the form,

UIsot(x) = U0(x) + Ug(x) =
1

2
Mω2x2 +

1

2

g

x2
, x 6= 0, g ≥ 0, (1)

where ω is the angular frequency of oscillator, Mω2 = K in classical mechanics and g =

m(m+ 1). The common feature of this potential is that it consists of a harmonic term plus

an additional rational function (centripetal barrier) which falls off at infinity like a constant

g times 1/x2 with one regular singularity at x = 0 along the whole domain −∞ < x <∞.[1]

It is clear from (1) that Ug(x) exhibits strong singularity when x = 0, so that the wave

functions must vanish at such a point. It is worthy to note that the Hilbert space associated

to the models with Ug(x) is narrowed as compared to the Hilbert space of the hamiltonian

with potential U0(x). In addition, the domain of the hamiltonian associated to harmonic

[1] Centrifugal barrier does not make physical sense in one-dimension. It is often used for such singular terms

in a potential.
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oscillator extends along the whole real axis (−∞,∞) , however, for potential (1) reduces

itself to the half-line (x ≥ 0 or x ≤ 0). The harmonic oscillator U0(x) and the isotonic

oscillator UIsot(x) are plotted in Figure 1 for the sake of comparison. The aim is to show

that both curves coincide for wide range of x > 0 except for values of x in the neighborhood

of the vertical asymptotic line x = 0 where the isotonic oscillator goes to infinity. They

have also identical spectrum, however, shifted by two units. We consider this potential in

the interval (0,∞) as in the case of (1). Authors of Refs. [7-9] have solved the Schrödinger

equation for the potential (1) with ω = M = 1 and g = 2 (m = 1) using SUSY approach

[7,8] on the assumption that the superpotential W (x) obtained from the wave function of

the harmonic oscillator φ1(x) can generate twice the potential (1) (see e.g., [6]). The singular

term in the above potential is often called the centripetal barrier potential. However, the

centripetal barrier potential here makes no physical sense in one dimension since the term

m(m+ 1)/x2 singularities are often related to the radial equation for the three-dimensional

harmonic oscillator.

In this article we set up to present a study of the exact analytic nonrelativistic bound

state energy spectrum and the correspoding wave functions in terms of the associated La-

guerre polynomials Lα
n(z) (or the Kummer confluent hypergeometric function, M(a, b, z) =

1F1 (a; b; z)) by applying the Nikiforov-Uvarov (NU) method [10]. Overmore, we extend

our study to investigate this potential model in the context of the spin and pseudospin

symmetric Dirac equation [11-17]. In the presence of the spin symmetry S ∼ V = UIsot(x)

and pseudospin symmetry S ∼ −V = UIsot(x), we investigate the exact s-wave bound state

energy eigenvalues and corresponding upper and lower spinor wave functions in a systematic

form [12-15]. We also show that the spin (pseudospin) symmetric Dirac solutions can be re-

duced to the S = V = UIsot(x) (S = −V = UIsot(x)) in the presence of exact spin symmetry

∆ = 0 (pseudospin symmetry Σ = 0) limitation [16,17]. Overmore, the solution of the Dirac

equation can be easily reduced to it’s nonrelativistic limit if one applies an appropriate map

of parameters.

The rest of the paper is organized as follows. In section 2, we apply the NU method

to solving the Schrödinger and Dirac equations with an exactly solvable isotonic oscillator

to obtain the eigenvalues and eigenfunctions in a systematical way. We also compare the

non-relativistic solution with the existing one obtained by applying the SUSY approach. In

section 3, we make our summary and conclusions.
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II. BOUND STATE SOLUTIONS

A. Schrödinger case

We start with the one-dimensional single-particle Schrödinger equation [18,19]:

HIsotψn(±x) =
[
− ~

2

2M

d2

d(±x)2 + UIsot(±x)
]
ψn(±x) = Enψn(±x), (2)

The potential in Eq. (1) is invariant with respect to the inversion, i.e., UIsot(−x) → UIsot(x)

as well as the hamiltonian HIsot. Therefore, the Schrödinger equation should have even and

odd solutions. The domain of the harmonic oscillator hamiltonian H extends along the

whole real axis −∞ < x < ∞, however, the partner HIsot exhibits a strong singularity

at the origin. The space breaks up into two disjoint regions (x ≥ 0 or x ≤ 0) without

communication between them since the wave functions vanish at the regular singularity

x = 0 (i.e., ψn(0) = 0) and at the irregular singularities ±∞ (i.e., ψn(±∞) = 0). In this

respect, we should restrict the hamiltonian to the interval (0,∞), this is exactly the same

situation that occurs in isotonic potential. In addition, if we set x→ ix, then (2) becomes

[
− ~

2

2M

d2

dx2
+ UIsot(x)

]
ψn(ix) = −Enψn(ix),

which is the original equation with the irrelevant change in the eigenvalues En → −En. If we

set x → ix in the isotonic wave function, we get perfectly good ψn(ix) which can generate

the superpotential W (x) and other hamiltonians [6].

To solve Eq. (2) by NU method, we perform a straightforward algebra to reduce it into

the following simple form:

ψ′′
n(x) +

[
εn − β2x2 − α

x2

]
ψn(x) = 0, (3)

with

εn =
2MEn

~2
, β =

Mω

~
, α =

Mg

~2
≥ 0. (4)

Let us restrict ourselves to the positive half-line (x ≥ 0) and in terms of new variable s = x2

(0 ≤ s <∞), we obtain

ψ′′
n(s) +

1

(2s)
ψ′

n(s) +
1

(2s)2
[
−β2s2 + εns− α

]
ψn(s) = 0, ψn(0) = 0, (5)
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where we have used ψn(x) = ψn(s). Now, if we compare the above equation with the following

generalized hypergeometric-type equation with a parametrization of real variables s = s(x):

ψ′′
n(s) +

τ̃(s)

σ(s)
ψ′

n(s) +
σ̃(s)

σ2(s)
ψn(s) = 0, (6)

where

ψn(s) = Ω(s)yn(s), (7)

and where σ(s) and σ̃(s) are two polynomials, at most of second-degree, and τ̃ (s) is at most

of first-degree polynomial, then it follows that:

τ̃(s) = 1, σ(s) = 2s, σ̃(s) = −β2s2 + εns− α. (8)

To apply the NU method [10,20], we calculate the function π(s) defined by

π(s) =
σ′(s)− τ̃(s)

2
±
√[

σ′(s)− τ̃(s)

2

]2
− σ̃(s) + kσ(s)

=
1

2

(
1±

√
4β2s2 + 4 (2k − εn) s+ 4α + 1

)
, (9)

and also seek for a physical value of k that makes the discriminant of the expression under

square root, in the last equation, to become zero (i.e., 2k = εn ± β
√
1 + 4α, α ≥ −1/4).

Hence, there is no bound solution in the region α < −1/4. The model becomes unphysi-

cal in the region (−∞,−1/4), since the spectrum is not bounded from below. Upon the

substitution of the value of k into the above equation, we obtain the following suitable

solutions:

π(s) =
1

2

(
1 +

√
1 + 4α

)
− βs, (10)

and

k =
1

2

(
εn − β

√
1 + 4α

)
. (11)

With regard to Eqs. (8) and (10), we can calculate the function τ(s) = τ̃ (s) + 2π(s), taking

into consideration the bound state condition which has to be established when τ ′(z) < 0, as

τ (s) = 2 +
√
1 + 4α− 2βs and τ ′(s) = −2β < 0. (12)

According to the method, in order to find the energy equation from which one calculates

the energy eigenvalues, we need to find the values of the parameters: λ = k + π′(s) and

λ = λn = −nτ ′(s)− 1
2
n (n− 1) σ′′(s), n = 0, 1, 2, · · · , as

λ =
1

2

(
εn − β

√
1 + 4α

)
− β and λn = 2nβ, n = 0, 1, 2, · · · . (13)
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Using the relation λ = λn and the definitions of parameters in Eq. (4), one finds that the

energy eigenvalues of the isotonic oscillator are

En,g = ~ω

(
2n + 1 +

1

2

√
1 +

4Mg

~2

)
, n = 0, 1, 2, · · · , (14)

which is identical to the results of Ref. [21] (see p. 3). Thus, we have exactly solved

the isotonic Hamiltonian (2). In the limit that g → 0, the relation (14) reduces to En =

~ω
(
2n + 3

2

)
, n = 0, 1, 2, · · · which is identical to the s-wave solution of the three-dimensional

Schrödinger equation with harmonic oscillator potential (cf. Eq. (34) when l = 0).

Overmore, using the conventions of Ref. [9] (cf. Eqs. (41) and (43) therein), we may

take g = 2 (i.e., m = 1) for easy of notation, the spectrum of Eq. (1) (in ~ = M = ω = 1

units) reads as

En = 2n+
5

2
, n = 0, 1, 2, · · · . (15)

It is noticed that energy spectrum in the previous equation is half the spectrum of Eq. (41)

in Ref. [9] (see Eq. (43) in [9]). The odd solutions under the inversion x→ −x (the negative

half-line, x ≤ 0) has same energy spectrum as the even ones given in Eq. (14) due to the

invariance of isotonic potential under this inversion. Hence, the energy relation in Eq. (14)

holds for the whole domain −∞ < x <∞.

Thus, all the other eigenenergies are given by

E2n = E0 + 2nω, n = 0, 1, 2, · · · , (16)

and the energy spectrum is equidistant since

E2n+2 = E2n + 2ω. (17)

Nevertheless, the height ∆E = 2ω of the energy steps is twice that of the simple harmonic

oscillator U0. In fact, it seems as if half of of the states (those with an odd number of nodes)

have disappeared.

Let us now turn to the calculations of the normalized wave function. The first part of

the wave function in Eq. (7) is found through the relation [10,20]:

Ω(s) = exp

(∫
π(s)

σ(s)
ds

)
= s

1

4
+ 1

2
ξ exp

(
−1

2
βs

)
, (18)

with

ξ =
1

2

√
1 + 4α ≥ 1

2
, (19)
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and the calculation of the weight function is found through the relation,

ρ(s) =
1

σ(s)
exp

(∫
τ(s)

σ(s)
ds

)
= sξ exp (−βs) , (20)

leading to the calculation of the other part of the wave function; namely, yn(s) which is

a hypergeometric type function whose polynomial solutions are given by the Rodrigues

relation:

yn(s) = Anρ
−1(s)

dn

dsn
[σn(s)ρ(s)] = s−ξ exp (βs)

dn

dsn
(
sn+ξ exp (−βs)

)
= L(ξ)

n (βs), (21)

:where Lα
n(y) is the associated Laguerre polynomials. Therefore, the even solution of the

wave function satisfying Eq. (7) is [22,23]

ψn(x) =

√
2β1+ξn!

Γ (n+ ξ + 1)
x

1

2
+ξ exp

(
−1

2
βx2
)
L(ξ)
n (βx2), Re ξ > 0. (22)

It should be noticed that the change of x→ ix in the eigenvalue equation (2) for the isotonic

oscillator changes eigenvalues En → −En. Then, if ψn(x) is the eigenfunction corresponding

to the eigenvalue En, then the eigenfunction ψn(ix) will be normalizable only if −En is

in the point spectrum of this Hamiltonian. However, the ψn(ix) would not be good wave

functions if their spectrum −En lies not within the Hamiltonian range, then ψn(ix) is not

normalizable eigenfunction. At first, it behaves like exp
(
1
2
βx2
)
at large x but this is not

relevant here as one writes the explicit form of L
(ξ)
n (βx2) for even n. On the other hand, the

odd solutions for which the part of wave function corresponding to −x have opposite signs

and exist as

ψn(−x) = Nn (−x)
1

2
−ξ exp

(
−1

2
βx2
)
L(ξ)
n (βx2). (23)

The two linearly independent solutions (wave functions) given by Eqs. (22) and (23) for the

even and odd solutions, respectively, need to be normalizable in the range (0,∞). However,

the odd solution is not normalizable in the region (0,∞) as one can see in Eq. (23). Indeed,

the operator in (3) is not essentially self-adjoint for −1/4 ≤ α < 3/4 and its most general

square-integrable solution behaves near the singularity as a linear combination of x1/2+ξ and

x1/2−ξ (See Eqs. (22) and (23)).[1] In this respect, we clarify this point by analyzing the

behaviour of the isotonic potential (1) in terms of the parameter α [24,25], three different

regions appear, namely,

[1] We would like to thank one of the referees for drawing our attention to this point.
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• In the range α ∈ (−∞,−1/4) the model becomes unphysical since the spectrum is not

bounded from below (see Figure 1) [24].

• When α ∈ (−1/4, 3/4), the singularity is not strong enough to make the wave functions

(22) and (23) vanish at x = 0. Indeed in this region both linearly independent solutions

(wave functions) are normalizable since ξ = 0 and 1. This is the reason why it

is necessary to select, from the continuous family of self-adjoint extensions by the

differential operator, the self-adjoint extensions which correctly describes the physical

system under consideration [24]. The wave functions pass across the singularity point

x = 0 and the model extends itself again along the entire region, that is; (−∞,∞) .

• Physically, if we consider the range α ∈ (3/4,∞), the singularity acts as an impentrable

barrier, thus dividing the space into two independent regions, that is; x ≤ 0 and

x > 0. The wave functions must vanish at x = 0 which provides an absolute lack

of communication between the two regions of space (i.e., the negative and positive

half-lines) and the wave functions (22) and (23) in this case become normalizable

[24,25].

Alternatively, notice the Laguerre polynomial can be expressed in terms of the Kummer

confluent hypergeometric functions as [23]

Lp
n(z) =

(p+ n)!

p!n! 1F1 (−n; p + 1; z)), (24)

where

1F1 (a; b; z) = 1 +
a

b
z +

a(1 + a)

2b(1 + b)
z2 +

a(1 + a)(2 + a)

6b(1 + b)(2 + b)
z3 +O[z]4. (25)

Using the notations of other authors (~ =M = 1)[21] and putting β = ω and ξ = m+ 1/2,

the even wave function solution in Eq. (22) becomes [23]

ψn(x) = Nnx
1+m exp

(
−1

2
ωx2

)
1F1

(
−n;m+

3

2
;ωx2

)
, n = 0, 2, 4, · · · ,

Nn =
1

Γ
(
m+ 3

2

)

√
2ωm+ 3

2Γ
(
n+m+ 3

2

)

n!
, (26)

which is identical to Eq. (42) in Ref. [9] when we set m = 1 so that the isotonic potential

given by Eq. (41) in [9] is twice the potential (1) in the present work. On the other hand,
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the odd solution for which the part of wave function corresponding to −x can be expressed

as

ψn(−x) = (−1)1+mψn(x), n = 1, 3, 5, · · · . (27)

Hence, if we take m = 0, 2, 4, · · · (even real integer), we find the wave function ψn(−x)
being an odd (antisymmetric) function of x [i.e., ψn(−x) = −ψn(x)]. Overmore, if we take

m = 1, 3, 5, · · · (odd real integer), we find the wave function corresponding to negative values

of x is identical to the wave function corresponding to positive values, i.e., ψn(−x) being

an even function (symmetric) with ψn(−x) = ψn(x). In case if m is a real number but not

integer yielding a complex wave function in the negative half-line which is not normalizable.

On the other hand, the energy levels of the one-dimensional Schrödinger equation for the

harmonic oscillator U0(x) [1]:

En =

(
n +

1

2

)
~ω, n = 0, 1, 2, · · · , (28)

and the well-known wave functions [26]

φn(x) =

[
1

2nn!

√
β

π

]1/2
Hn(βx

2) exp(−1

2
βx2), β =

Mω

~
, (29)

where Hn(y) = (−1)n exp(y2) dn

dyn
exp(−y2) represent Hermite polynomials.

For further discussions on the isotonic potential, we present the energy eigenvalues and

the corresponding wave functions of the lowest three states,

E0 = ω

(
3

2
+m

)
, (30a)

ψ0(x) = N0x
1+m exp

(
−1

2
ωx2

)
, (30b)

E1 =

(
5

2
+m

)
ω, (31a)

ψ1(x) = N1x
1+m exp

(
−1

2
ωx2

)(
1− 2ω

(2m+ 3)
x2
)
, (31b)

and

E2 =

(
7

2
+m

)
ω, (32a)

ψ2(x) = N2x
1+m exp

(
−1

2
ωx2

)(
1− 4ω

(2m+ 3)
x2 +

4ω2

(2m+ 3) (2m+ 5)
x4
)
, (32b)
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respectively and the normalization factors are calculated as

N0 =

√
2ωm+ 3

2

Γ
(
m+ 3

2

) , N2 = (−1)1+m

√
ωm+ 3

2 (2m+ 3)

Γ
(
m+ 3

2

) , N2

√
ωm+ 3

2 (2m+ 5) (2m+ 3)

4Γ
(
m+ 3

2

) . (33)

The isotonic ground state wave function, ψ0(x) in (30b) is compared with the corresponding

harmonic oscillator wave function, φ0(x) in Eq. (29) in Figure 2. Further, the isotonic first

two excited wave functions, ψ1(x) and ψ2(x) in Eqs. (31b) and (32b) are compared with the

corresponding harmonic oscillator wave functions, φ1(x) and φ2(x) in Eq. (29) in Figures 3

and 4, respectively.

On the other hand, the solution of the three-dimensional Schrödinger equation with any

arbitrary quantum number l (i.e., harmonic oscillator combined with centrifugal barrier

potential) provides us

En,l = ~ω

(
2n+ l +

3

2

)
, n, l = 0, 1, 2, · · · (34)

and the corresponding wave functions are given by

ψn,l(r, θ, ϕ) =

√(
β

π

)1/2
2n+2l+3n! (2β)l

(2n+ 2l + 1)!!
rl exp(−1

2
βr2)L(l+1/2)

n

(
βr2
)
Yl,m(θ, ϕ), (35)

where L
(l+1/2)
n (βr2) is the associated Laguerre polynomial, and Yl,m(θ, ϕ) is the angular part

of the wave functions. The order n of the polynomial is a non-negative integer. Thus, the

exact solution of the isotonic oscillator in Eq. (14) in one-dimension is equivalent to the

solution of the harmonic oscillator U0(r) combined with the centrifugal barrier potential

l(l + 1)/r2, r ∈ (0,∞), in three-dimensions given in Eq. (34) when we take ~ = M = 1

and g = m(m+ 1), where g is a real number. That is, En,m = ~ω
(
n1 +

3
2

)
is equivalent to

En,l = ~ω
(
n2 +

3
2

)
, where we have defined n1 = 2n+m and n2 = 2n+ l (m↔ l) for which

the solutions are defined for positive half-line [x ∈ (0,∞) ↔ r ∈ (0,∞)].

B. Dirac Case

We start by writting the two radial coupled Dirac equations for the upper and lower (i.e.,

Fn,κ(r) and Gn,κ(r), respectively) spinor components [26,27]:

(
d

dr
+
κ

r

)
Fn,κ(r) =

(
Mc2 + Enκ −∆

)
Gn,κ(r), (36a)
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(
d

dr
− κ

r

)
Gn,κ(r) =

(
Mc2 − Enκ + Σ

)
Fn,κ(r), (36b)

where ∆ = V − S and Σ = V + S are the difference and sum potentials, respectively and

are expressed in terms of vector (V ) and scalar (S) potentials. In addition, c ≈ 137 is the

velocity of light.

In the presence of spin symmetry ( i.e., ∆ = Cs), one gets a second-order differential

equation satisfying the upper-spinor component [17,28-31]

F ′′
nκ(r)−

(
κ (κ+ 1)

r2
+ A2

s + γΣ

)
Fnκ(r) = 0, (37)

where

A2
s = γ

(
Mc2 − Enκ

)
, γ =

1

~2c2
(
Mc2 + Enκ − Cs

)
> 0, (38)

and κ (κ+ 1) = l (l + 1) , κ = l for κ < 0 and κ = − (l + 1) for κ > 0. The spin symmetry

energy eigenvalues depend on n and κ, i.e., Enκ = E(n, κ (κ+ 1)). For l 6= 0, the states with

j = l ± 1/2 are degenerate. Further, the lower-spinor component can be obtained from Eq.

(36a) as

Gnκ(r) =
1

Mc2 + Enκ − Cs

(
d

dr
+
κ

r

)
Fnκ(r), (39)

where Enκ 6= −Mc2, i.e., only real positive energy states exist when Cs = 0 (exact spin

symmetric case).

On the other hand, under the pseudospin symmetry ( i.e., Σ = Cps), one obtains a

second-order differential equation satisfying the lower-spinor component,

G′′
nκ(r)−

(
κ (κ− 1)

r2
+ A2

ps − γ̃∆

)
Gnκ(r) = 0, (40)

where

A2
ps = γ̃

(
Mc2 + Enκ

)
, γ̃ =

1

~2c2
(
Mc2 − Enκ + Cps

)
, (41)

and the upper-spinor component Fnκ(r) is obtained from Eq. (36b) as

Fnκ(r) =
1

Mc2 −Enκ + Cps

(
d

dr
− κ

r

)
Gnκ(r), (42)

where Enκ 6=Mc2, i.e., only real negative energy states exist when Cps = 0 (exact pseudospin

symmetric case). From the above equations, the energy eigenvalues depend on the quantum

numbers n and κ, and also the pseudo-orbital angular quantum number l̃ according to

κ(κ − 1) = l̃(l̃ + 1), which implies that j = l̃ ± 1/2 are degenerate for l̃ 6= 0. The quantum
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condition for bound states demands the finiteness of the solution at infinity and at the origin

points, i.e., Fnκ(0) = Gnκ(0) = 0 and Fnκ(∞) = Gnκ(∞) = 0.

Let us now study the isotonic potential (1) in the context of spin and pseudospin sym-

metric Dirac equations. It is well-known that Eqs. (37) and (40) can be solved exactly

for any κ with the spin-orbit (pseudospin-orbit) centrifugal (pseudo centrifugal) potential

term. However, we shall study these equations for the s-wave case (κ = ±1) for the sake of

comparison with the nonrelativistic case since m(m+1)/x2 in the isotonic potential has the

same behaviour as κ(κ± 1)/r2 in Eqs. (37) and (40).

1. Spin symmetry limit

This symmetry arises from the near equality in magnitude of an attractive scalar, S, and

repulsive vector, V, relativistic mean field, S ∼ V in which the nucleon move [12]. Therefore,

we simply take the sum potential equal to the isotonic potential model, i.e.,

Σ = UIsot(x) =
1

2
Mω2x2 +

1

2

g

x2
. (43)

In the last equation, the choice of Σ = 2V → UIsot(x) as stated in Ref. [26] allows one to re-

duce it into its non-relativistic limit under appropriate choice of parameter transformations.

Further, we take κ = −1 (l = 0) and in terms of new variable s = x2 (positive half-plane

x ≥ 0), Eq. (37) becomes

F ′′
n,−1(s) +

1

(2s)
F ′
n,−1(s) +

1

(2s)2
[
−ν2s2 −A2

ss− β
]
Fn,−1(s) = 0, (44)

where

β =
1

2
gγ and ν =

√
1

2
Mω2γ. (45)

The quantum condition is obtained from the finiteness of the solution at infinity and at

the origin point. We apply the NU method following the same steps of solution in previous

section to obtain the expressions:

τ̃ (s) = 1, σ(s) = 2s, σ̃(s) = −ν2s2 −A2
ss− β. (46)

It follows that the functions required by the method for π(s), k and τ(s) take the suitable

forms:

π(s) = −νs+ 1

2

(
1 +

√
1 + 4β

)
, (47)

12



k = −1

2

(
A2

s + ν
√
1 + 4β

)
, (48)

and

τ (s) = 2 +
√
1 + 4β − 2νs and τ ′(s) = −2ν < 0, (49)

respectively, with prime denotes the derivative with respect to s. Also, the parameters λ

and λn take the forms:

λ = −1

2

(
A2

s + ν
√

1 + 4β
)
− ν, and λn = 2nν. (50)

Using the condition λ = λn followed by simple algebra, we obtain the following transcen-

dental energy equation,

(
En,−1 −Mc2

)√
Mc2 + En,−1 − Cs = ~cω

√
2M

(
2n+ 1 +

1

2

√
2g

~2c2
(Mc2 + En,−1 − Cs) + 1

)
,

(51)

where n = 0, 1, 2, 3, · · · and En,−1 ≥ Cs −Mc2. One can compute the energy eigenvalues by

choosing suitable parameters in the symmetric potential. Hence, Eq. (51) shows the energy

eigenvalues En dependence on n and Cs as well as on the parameters ω and M.

Therefore, using Eq. (51), we compute some energy levels for several values of n (in

units ~ = c = 1). In the presence spin symmetric limit, Table 1 gives some numerical

results by taking the following parameters values: M = ω = 1.0 fm−1, Cs = 0 fm−1 (exact

symmetric case) and Cs = 2.0 fm−1 (non exact symmetric case). Moreover, the strength

of the centripetal barrier term is set up to some arbitrarily chosen values: g = 0.5, 2 and

6 corresponding to m = 0.3660254, 1 and 2, respectively. For the values g = 2 and 6,

the singularity acts as impenetrable barrier, thus deviding the space into two independent

regions, the negative half-line and the positive half-line.

Dirac equation which in the limit of a non-relativistic and spinless particle transforms

into Schrödinger equation for the isotonic potential (1) is constructed as follows. In the

exact spin symmetry, we set Cs = 0 and apply appropriate transformations given by

(Mc2 + En,−1) /~
2c2 ≃ 2M/~2 and En,−1 − Mc2 ≃ En, we finally obtain the Schrödinger

solution in (14).

Let us now turn to the calculations of the corresponding wave functions for this system.

We obtain the first part φ(s) of the wave function (7) and the weight function ρ(s) as

Ω(s) = s
1

4
1+ 1

2
ζ exp

(
−1

2
νs

)
, (52)
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where

ζ =
1

2

√
1 + 2gγ, g = m(m+ 1), (53)

and

ρ(s) = sζ exp (−νs) . (54)

Hence, the second part yn(s) of the wave function (7) can be obtained from the weight

function as

yn(s) ∼ L(ζ)
n (νs) . (55)

Finally, we find the normalized wave function satisfying Eq. (37) as

Fn,−1(x) =

√
2ν1+ζn!

Γ (n+ ζ + 1)
x

1

2
+ζ exp

(
−1

2
νx2
)
L(ζ)
n

(
νx2
)
. (56)

In addition, the corresponding lower-spinor component wave function Gn,−1(x) is found from

the solution of Eq. (39) as

Gn,−1(x) =
1

(Mc2 + En,−1 − Cs)

√
2ν1+ζn!

Γ (n+ ζ + 1)
x

1

2
+ζ exp

(
−1

2
νx2
)

×
[(−1 + 2ζ

2x
− νx

)
L(ζ)
n

(
νx2
)
+
dL

(ζ)
n (νx2)

dx

]
. (57)

Let us remark that the obtained results of the s-wave (κ = −1) of the spin-symmetric

Dirac equation with isotonic oscillator agree with the results of the three dimensional Dirac

equation with harmonic oscillator potential combined with the centrifugal barrier term

κ (κ+ 1) /r2 if we make the parameter change m↔ κ since the positive half-line x ∈ (0,∞)

in the first is also equivalent to r ∈ (0,∞) in the second. This is apparent because the cen-

tripetal barrier potentialm(m+1)/x2 in the isotonic oscillator is equivalent to the centrifugal

term κ (κ+ 1) /r2 in Eq. (37).

On the other hand, the Klein-Gordon solution for the isotonic potential (in relativistic

~ = c = 1 units) can be obtained from the exact spin-symmetric case, V = S, Cs = 0.

Hence, the energy equation can be obtained from Eq. (51) as

(
E2

n,−1 −M2
)
(En,−1 −M) = 2Mω2

(
2n+ 1 +

1

2

√
1 + 2g (Mc2 + En,−1)

)2

, (58)

and the wave function from Eq. (56) as

Fn,−1(x) =

√
2n! (ǫ)

1

2
(1+λ0)

Γ (n+ λ0 + 1)
x

1

2
+λ0 exp

(
−1

2
ǫx2
)
L(λ0)
n

(
ǫx2
)
,
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ǫ =

√
1

2
Mω2 (M + En,−1), λ0 =

1

2

√
1 + 2g (M + En,−1). (59)

2. Pseudospin symmetry limit

The exact pseudospin symmetry occurs when S ∼ −V or Σ = Cps = constant [12,16] and

the quality of the pseudospin approximation in real nuclei is connected with the competition

between the pseudo-centrifugal barrier and the pseudospin-orbital potential [32]. Therefore,

we take the difference potential in Eq. (40) as the isotonic potential model, i.e.,

∆ = UIsot(x) =
1

2
Mω2x2 +

1

2

g

x2
, (60)

In the pseudospin symmetry, the eigenstates with with j̃ = l̃ ± 1
2
are degenerate for l̃ 6= 0.

For the s-wave case ( κ = 1) and in terms of the variable s = x2, Eq. (40) reduces to a

simple form

G′′
n,1(s) +

1

(2s)
G′

n,1(s) +
1

(2s)2

[
ν̃2s2 −A2

pss+ β̃
]
Gn,1(s) = 0, (61)

where

β̃ =
1

2
gγ̃ and ν̃ =

√
1

2
Mω2γ̃. (62)

To avoid repetition in the solution of Eq. (61), a first inspection for the relationship between

the present set of parameters (A2
ps, β̃, ν̃) and the previous set (A2

s, β, ν) provides that the

energy solution for pseudospin symmetry can be similarly found directly from those of the

previous energy solutions for spin symmetry using the following parameters map [33]:

Fn,−1(s) ↔ Gn,1(s), En,−1 → −En,1, Cs → −Cps, A
2
s → A2

ps

U(s) → −U(s) (ν2 → −ν̃2, β → −β̃ or ω → jω, g → −g), j =
√
−1, (63)

from which trivial calculus gives us the transcendental energy equation:

(
En,1 +Mc2

)√
En,1 −Mc2 − Cps = ~cω

√
2M

(
2n+ 1 + ζ̃

)
, (64)

with

ζ̃ =
1

2

√
1 +

2g

~2c2
(En,1 −Mc2 − Cps). (65)

where n = 0, 1, 2, 3, · · · and En,1 ≥ Mc2+Cps is the main condition for the real bound state

solutions.
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Now the normalized lower-spinor component wavefunctions of the isotonic oscillator are

given by

Fn,1(x) =

√√√√√
2 (iν̃)1+ζ̃ n!

Γ
(
n+ ζ̃ + 1

)x 1

2
+ζ̃ exp

(
−1

2
ν̃x2
)
L(ζ̃)
n

(
iν̃x2

)
. (66)

Therefore, using Eq. (64), we compute some energy levels for several values of n. In the

pseudospin symmetric limit, Table 2 gives some numerical results by taking the following

parameters values: M = ω = 1.0 fm−1, Cs = 0 fm−1 (exact symmetric case) and Cs = −2.0

fm−1, −13.0 fm−1 (non exact symmetric case). In addition, the strength of the centripetal

barrier term is set up to the following arbitrarily chosen values: g = 0.5, 2, and 6.

III. CONCLUSIONS AND OUTLOOK

In this work, qualitative data were obtained on the modifications of spectrum energy

on a nonrelativistic and relativistic particle confined by isotonic oscillator field of specific

strength g. The spin and pseudospin symmetry in relativistic isotonic oscillator are inves-

tigated systemically by solving the Dirac equation with scalar and vector radial potentials

by applying the NU method. In one-dimensional isotonic oscillator, we have obtained the

exact solutions in closed form for the energy spectrum and the wave functions, which are

equivalent to solving the three-dimensional harmonic oscillator problem. The isotonic os-

cillator is an isospectral to harmonic oscillator. Also, the energy steps are twice that of

the simple harmonic oscillator. The resulting solutions of the wave functions are written

in terms of the associated Laguerre polynomials Lα
n(z) (confluent hypergeometric functions

M(a, b, z) = 1F1 (a; b; z)) and the wave function for states n = 0, 1 and 2 are found to have

the same shape as the harmonic oscillator as shown in Figures 2, 3 and 4. The case where

n is even appears to be the most interesting, since all generated wave functions are normal-

izable. However, when n is odd, half of the generated wave functions must be removed as

they are not normalizable.

In the relativistic case, it is found that the solutions when ∆ = 0 → S = V (i.e., exact

symmetric case, Cs = 0) or Σ = 0 → S = −V (i.e., exact pseudosymmetric case, Cps = 0)

are identical to the Klein-Gordon solutions. Besides, they can be readily reduced to the

expected nonrelativistic limit when appropriate mapping transformations of parameters are

made. In the numerical work, the relativistic energy spectrum for the spin and pseudospin
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symmetries are given in Tables 1 and 2, respectively. It is noticed that the parameters g,

M, Cs and Cps should be adjusted to provide us real solutions for the energy eigenvalues

and eigenfunctions.

Finally, let us also mention that the isotonic oscillator possesses a remarkable property.

The change of x → ix in the wave equation resulting in the change of eigenvalues En →
−En. Then, if ψn(x) is the eigenfunction corresponding to the eigenvalue En, then the

eigenfunction ψn(ix) will be normalizable only if −En is in the point spectrum of this

Hamiltonian. So the isotonic oscillator wave function with the change x → ix would be a

good wave function as they are normalizable (−En ∈ 〈n |H|n〉) or would not be good if they

are not normalizable (−En /∈ 〈n |H|n〉). The eigenfunction ψn(ix) can be used to generate

new operators in the supersymmetric quantum mechanics [6,7]. This remains as an open

question that deserves to be studied.
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FIG. 1: Behaviour of the isotonic oscillator potential (continuous line) and the harmonic oscillator

potential (dash line).

FIG. 2: Behaviour of the ground state wave function ψn=0,m=1(x) of the isotonic oscillator (con-

tinuous line) and the corresponding wave function φ0(x) of the harmonic oscillator (dash line).

FIG. 4: Behaviour of the second excited wave function ψn=2,m=1(x) of the isotonic oscillator

(continuous line) and the corresponding wave function φ2(x) of the harmonic oscillator (dash line).

FIG. 3: Behaviour of the first excited wave function ψn=1,m=1(x) of the isotonic oscillator (contin-

uous line) and the corresponding wave function φ1(x) of the harmonic oscillator (dash line).
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TABLE I: The spin symmetric bound state energy eigenvalues (in fm−1), for several values of n

with parameter values M = 1.0 fm−1 and ω = 1.0 fm−1.

Cs = 0 fm−1 a Cs = 2.0 fm−1

n/En g = 0.5 (m ≈ 0.366) g = 2 (m = 1) g = 6 (m = 2) g = 2 (m = 1) g = 6 (m = 2)

0 2.5509860 3.1503636 4.0959121 3.3991120 4.2634174

1 3.7292142 4.2915849 5.1735045 4.6747397 5.4772542

2 4.7223578 5.2667833 6.1147629 5.7095838 6.4867680

3 5.6093599 6.1428129 6.9690531 6.6208542 7.3835758

4 6.4244044 6.9503157 7.7611866 7.4521361 8.2052891

5 7.1861562 7.7065008 8.5058073 8.2256717 8.9719327

6 7.9061955 8.4222280 9.2124501 8.9547327 9.6957461

7 8.5923225 9.1048960 9.8877527 9.6480343 10.3848919

8 9.2501029 9.7598277 10.5365663 10.3116853 11.0451537

9 9.8836823 10.3910117 11.1625702 10.9501754 11.6808166

10 10.4962522 11.0015335 11.7686371 11.5669263 12.2951658

aExact spin symmetric limit.
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TABLE II: The pseudospin symmetric bound state energy eigenvalues (in fm−1), for several values

of n with parameter values M = 1.0 fm−1 and ω = 1.0 fm−1.

Cps = 0 a Cps = −2.0 Cps = −13.0

n/En g = 0.5 g = 2 g = 6 g = 0.5 g = 2 g = 6 g = 2 g = 6

0 1.7353829 1.9975105 2.6220370 0.8996794 1.3991120 2.2634174 0.8228652 1.8370383

1 2.9274128 3.2918405 3.9528022 2.1870188 2.6747397 3.4772541 1.5785297 2.5680523

2 3.9414440 4.3370543 5.0071893 3.2260195 3.7095838 4.4867680 2.2966386 3.2659358

3 4.8433785 5.2545579 5.9290480 4.1395244 4.6208542 5.3835758 2.9834157 3.9357442

4 5.6693464 6.0900511 6.7671403 4.9722337 5.4521361 6.2052891 3.6435022 4.5813401

5 6.4394382 6.8666546 7.5454937 5.7467734 6.2256717 6.9719327 4.2804724 5.2057558

6 7.1660777 7.5980685 8.2781774 6.4765859 6.9547326 7.6957461 4.8971501 5.8114252

7 7.8575782 8.2932428 8.9743213 7.1704749 7.6480344 8.3848919 5.4958138 6.4003383

8 8.5198335 8.9584266 9.6402732 7.8345997 8.3116853 9.0451537 6.0783346 6.9741474

9 9.1572079 9.5981991 10.2806717 8.4734818 8.9501754 9.6808166 6.6462725 7.5342431

10 9.7730448 10.2160418 10.8990360 9.0905633 9.5669262 10.2951658 7.2009446 8.0818094

aExact pseudospin symmetric limit.

22



0 2 4 6 8 10
0

20

40

60

80

100

120

 

 

Harmonic
Isotonic



−10 −5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 
φ

0
(x)

ψ
0
(x)



−10 −5 0 5 10
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

 

 
φ

1
(x)

ψ
1
(x)



−10 −5 0 5 10
−1

−0.5

0

0.5

1

1.5

 

 
φ

2
(x)

ψ
2
(x)


	I Introduction
	II Bound State Solutions
	A Schrödinger case
	B Dirac Case
	1 Spin symmetry limit
	2 Pseudospin symmetry limit


	III Conclusions and Outlook
	 Acknowledgments
	 References

