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I. INTRODUCTION

Solution of the Schrödinger equation for an external potential for the bound and scatter-

ing states [1] is a fundamental problem. In the low-momentum limit k → 0 (E → 0), the

transmission and reflection coefficients for a physical potential are well behaved at infinity

in one dimension going to 0 and 1, respectively, unless the external potential supports a

bound state for this limit [2]. In that case, the zero energy resonance (half-bound state)

described by the not square integrable wave function is finite at infinity [1, 3]. So transmis-

sion coefficient goes to 1 (unity) while reflection coefficient goes to 0. This phenomenon is

called as transmission resonance [4]. On the other hand, a condition for the existence of the

transmission resonance in view of asymmetric potentials has been recently investigated in

Refs. [5, 6] for the non-relativistic particles. The transmission resonance concept has been

recently generalized to the relativistic case [7, 8, 9, 10]. Dombey and Kennedy [8] showed

that in the low-momentum limit k → 0, Dirac particles scattered by an external potential

have half-bound states at E = ±m in contrast to non-relativistic particles where half-bound

state occurs only at zero energy. Thus, we should speak of zero momentum resonances

in the relativistic case rather than zero energy resonances [8]. Afterwards, the scattering

and bound state solutions of the Dirac equation for the Woods-Saxon potential have been

obtained in the low-momentum limit. Conditions for a zero momentum resonance (trans-

mission resonance: T = 1) and supercriticality (as the particle bound state at E = −m)

have been derived in Ref. [9]. After these pioneering studies, the transmission resonance and

supercriticality for the relativistic/non-relativistic particles in an external potentials have

been extensively discussed [3, 11, 12, 13, 14, 15, 16, 17, 18]. In one of these studies [13],

the authors showed that the transmission coefficient obtained for the Klein-Gordon particle

displays a behavior similar to that of the one obtained for the Dirac particle [8].

Recently, solving the non-relativistic/relativistic wave equations with external potential

and obtaining the bound states have been widely studied in view of the position-dependent

mass formalism. It has extensive applications in condensed matter physics and material sci-

ence such as electronic properties of the semi-conductors [19], quantum dots [20], and quan-

tum liquids [21]. Besides, the scattering problem in the position-dependent mass framework

has been recently received much attentions [22, 23, 24, 25, 26] . The effective mass Dirac

equation for the Coulomb field has been investigated in Ref. [22]. Dutra et al. have obtained
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exact solution of the Dirac equation for the inversely linear potential in the presence of the

position-dependent mass [24].

In the present work, we investigate the transmission resonances for the Klein-Gordon

particle scattered by the asymmetric Hulthén potential within the position-dependent mass

formalism. The Hulthén potential [27] is one of the most significant short-range potential

in physics and has been used in atomic physics, condensed matter, nuclear and particle

physics, and chemical physics [28, 29, 30, 31]. The generalized Hulthén potential is a po-

tential containing several potential forms such as usual Hulthén potential, Woods-Saxon

potential, Cusp potential and Coulomb potential. Recently, Sogut [32] have obtained the

exact solution of the one-dimensional Duffin-Kemmer-Petiau equation for the asymmetric

Hulthén potential and investigated the bound and scattering states of vector bosons.

The asymmetric Hulthén potential is given in the following form [32]

VAHP = V0

[

Θ(−x)

e−ax − q
+

Θ(x)

ebx − q̃

]

, (1)

where V0 is the strength of the potential, a, b, q (< 1) and q̃ (< 1) are the positive parameters

related to the shape of potential. Θ(x) is the Heaviside step function. It is worth talking

about that the asymmetric Hulthén potential transforms to the usual Hulthén potential for

a = b and q = q̃ and the asymmetric Cusp potential for q = q̃ = 0. The form of the

asymmetric Hulthén potential is shown in Fig. 1.

We take mass distribution as

m(x) = m0 +m1 f(x) , (2)

where m0 and m1 are positive parameters and the function is given as f(x) = Θ(−x)
e−ax−q

+ Θ(x)
ebx−q̃

.

This form of the mass function makes it possible to solve the problem analytically.

The paper is organized as follows: In the next section, we find the exact solution of the

Klein-Gordon equation in terms of hypergeometric functions. In section 3, transmission

and reflection coefficients are obtained by using asymptotic behavior of the hypergeometric

functions. In section 4, we investigate the bound states. Section 5 is devoted to discussions.

Finally, we summarize the results in the last section.
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II. EFFECTIVE MASS KLEIN-GORDON EQUATION FOR THE ASYMMETRIC

HULTHÉN POTENTIAL

In (1+1) dimensions, the time-independent Klein-Gordon equation with scalar S(x) and

vector V (x) potentials in the presence of the effective mass can be written as [24]

d2Ψ(x)

dx2
+
{

[E − V (x)]2 − [m(x) + S(x)]2
}

Ψ(x) = 0 (3)

where E is the energy of the relativistic particle. Here, we take h̄ = c = 1 for the sim-

plicity. We investigate the scattering and bound state solutions of the Eq. (3) by using the

mass distribution given in Eq. (2) together with the following scalar S(x) and vector V (x)

potentials

S(x) = S0 f(x) , (4)

V (x) = V0 f(x) , (5)

where S0 and V0 are positive parameters.

In order to find the scattering of a Klein-Gordon particle from the asymmetric Hultén

potential in the presence of the effective mass, we first seek the solution of the Klein-Gordon

eqution for x < 0. In that case, Eq. (3) becomes

d2ΨL(x)

dx2
+

{

[

E −
V0

e−ax − q

]2

−

[

m0 +
m1 + S0

e−ax − q

]2
}

ΨL(x) = 0. (6)

Changing the variable e−ax = q/y, Eq. (6) takes the following form

y(1− y)2
(

y
d2ΨL(y)

dy2
+

dΨL(y)

dy

)

+

{[

(

E +
V0

q

)2

−

(

m0 −
m1 + S0

q

)2
]

×
y2

a2
− 2

(

E2 −m2
0 +

EV0

q
+

m0(m1 + S0)

q

)

y

a2
+

(E2 −m2
0)

a2

}

ΨL(y) = 0. (7)

By setting ΨL(y) = yµ(1 − y)νH(y) and substituting it into the above equation, one gets

the hypergeometric equation [33]

y(1− y)
d2H(y)

dy2
+ [2µ+ 1− (2µ+ 2ν + 1)y]

dH(y)

dy
− (µ+ ν − γ)(µ+ ν + γ)H(y) = 0 (8)
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where

µ =
ik

a
with k =

√

E2 −m2
0 (9)

ν =
1

2
+

1

2

√

1−
4

a2q2
[V 2

0 − (m1 + S0)2] (10)

γ =
1

a

√

(

m0 −
m1 + S0

q

)2

−

(

E +
V0

q

)2

. (11)

It is worth noting that |E| > m ensures that k is real and V0 is real and positive for the

scattering states [9, 10]. One can write the solution of the Eq. (8) in terms of hypergeometric

functions [33]

H(y) = A1 F (µ+ ν − γ, µ+ ν + γ, 1 + 2µ, y)

+ A2y
−2µ F (−µ+ ν − γ,−µ+ ν + γ, 1− 2µ, y) . (12)

Thus, the left solution is obtained as follows

ΨL(y) = A1y
µ(1− y)ν F (µ+ ν − γ, µ+ ν + γ, 1 + 2µ, y)

+ A2y
−µ(1− y)ν F (−µ+ ν − γ,−µ+ ν + γ, 1− 2µ, y). (13)

Let us investigate the scattering solution for x > 0. In that case, Eq. (3) becomes

d2ΨR(x)

dx2
+

{

[

E −
V0

ebx − q̃

]2

−

[

m0 +
m1 + S0

ebx − q̃

]2
}

ΨR(x) = 0. (14)

Changing the variable ebx = q̃/z and setting ΨR(z) = zδ(1− z)−αG(z), Eq. (14) yields

z(1 − z)
d2G(z)

dz2
+ [2δ + 1− (2δ − 2α+ 1)z]

dG(z)

dz
− (δ − α− β)(δ − α + β)G(z) = 0 (15)

where

δ =
ik

b
(16)

α = −
1

2
+

1

2

√

1−
4

b2q̃2
[V 2

0 − (m1 + S0)2] (17)

β =
1

b

√

(

m0 −
m1 + S0

q̃

)2

−

(

E +
V0

q̃

)2

. (18)

Eq. (15) is the hypergeometric equation and its general solution is given as [33]

G(z) = A3 F (δ − α− β, δ − α + β, 1 + 2δ, z)

+ A4z
−2δ F (−δ − α− β,−δ − α + β, 1− 2δ, z). (19)
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Finally, the right solution can be written as

ΨR(z) = A3z
δ(1− z)−α F (δ − α− β, δ − α + β, 1 + 2δ, z)

+ A4z
−δ(1− z)−α F (−δ − α− β,−δ − α + β, 1− 2δ, z). (20)

III. TRANSMISSION AND REFLECTION COEFFICIENTS

In order to obtain the transmission and reflection coefficients, we have to investigate the

asymptotic behavior of the left and right solutions. As x → −∞, then y → 0, (1− y)ν → 1

and y±µ → q±µe±aµx which leads to

ΨL(x → −∞) ∼ A1q
µeikx + A2q

−µe−ikx (21)

where following property of the hypergeometric functions is used: 2F1(a, b; c; 0) = 1 [33].

Asymptotic behavior of the left solution can be written in terms of incident Ψinc and reflected

Ψref waves in the limit x → −∞. Then, it is seen from Eq. (21) that Ψinc and Ψref behave

like a plane wave travelling to the right and left, respectively.

On the other hand, as x → ∞, then z → 0, (1 − z)−α → 1 and z±δ → q̃±δe∓bδx which

leads to

ΨR(x → ∞) ∼ A3q
δe−bδx + A4q

−δebδx. (22)

To obtain the transmitted wave traveling from left to right, we set A3 = 0. So, we get

ΨR(x → ∞) ∼ A4q
−δeikx. (23)

Thus, from now on, the following right solution is used:

ΨR(z) = A4z
−δ(1− z)−α F (−δ − α− β,−δ − α+ β, 1− 2δ, z). (24)

Then, the transmission and reflection coefficients can be expressed as [11]

T =

∣

∣

∣

∣

Ψtrans

Ψinc

∣

∣

∣

∣

2

=

∣

∣

∣

∣

A4

A1

∣

∣

∣

∣

2

(25)

R =

∣

∣

∣

∣

Ψref

Ψinc

∣

∣

∣

∣

2

=

∣

∣

∣

∣

A2

A1

∣

∣

∣

∣

2

. (26)

Let’s use the following continuity conditions on the wave functions and their first derivatives

at x = 0 to obtain explicit expressions for R and T

ΨR(x = 0) = ΨL(x = 0) (27)

d

dx
ΨR(x = 0) =

d

dx
ΨL(x = 0). (28)
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Using Eqs. (27) and (28) with Eqs. (13) and (20), one can obtain

A4C1F1 = A1C2F2 + A2C3F3, (29)

A4C1b(C4F4 − C5F1) = A1C2a(C6F2 + C7F5)− A2C3a(C8F3 − C9F6) (30)

where we have used the following property: d
dx

F (a, b; c; x) = ab
c
F (a + 1, b + 1; c + 1; x)

[33]. Here, some new coefficients and definitions are used to shorten the Eqs. (29) and (30)

and they are listed in Table 1. Consequently, transmission and reflection coefficients are,

respectively, calculated as follows

T =

∣

∣

∣

∣

A4

A1

∣

∣

∣

∣

2

=

∣

∣

∣

∣

aC2[F2(C8F3 − C9F6) + F3(C6F2 + C7F5)]

C1[aF1(C8F3 − C9F6) + bF3(C4F4 − C5F1)]

∣

∣

∣

∣

2

(31)

R =

∣

∣

∣

∣

A2

A1

∣

∣

∣

∣

2

=

∣

∣

∣

∣

C2[aF1(C6F2 + C7F5)− bF2(C4F4 − C5F1)]

C3[aF1(C8F3 − C9F6) + bF3(C4F4 − C5F1)]

∣

∣

∣

∣

2

. (32)

It is significant to discuss the condition for existence of the transmission resonances in the

scattering states. The transmission resonance condition can be derived by setting R = 0

(or T = 1) which means that there is no reflected wave. Then, considering Eq. (32), the

condition for the transmission resonances is obtained as

aF1 [C6F2 + C7F5]− bF2 [C4F4 − C5F1] = 0. (33)

IV. BOUND STATES

In this section, we investigate the bound state solution of the effective mass Klein-Gordon

equation for the asymmetric Hulthén potential. The scalar (4) and vector (5) asymmetric

Hulthén potentials give a bound state |E| < m as they become attractive (V0 → −V0 and

S0 → −S0) [34]. Then, in the bound state case, Eq. (3) yields the following second-order

differential equations for x < 0 and x > 0, respectively

d2ΦL(x)

dx2
+

{

[

E +
V0

e−ax − q

]2

−

[

m0 +
m1 − S0

e−ax − q

]2
}

ΦL(x) = 0 (34)

d2ΦR(x)

dx2
+

{

[

E +
V0

ebx − q̃

]2

−

[

m0 +
m1 − S0

ebx − q̃

]2
}

ΦR(x) = 0. (35)

Following the same procedure as above, we obtain the solutions of the Klein-Gordon equation

for both x < 0 and x > 0 in terms of hypergeometric functions as follow

ΦL(y) = B1y
µ̃(1− y)ν̃ F (µ̃+ ν̃ − γ̃, µ̃+ ν̃ + γ̃, 1 + 2µ̃, y)

+ B2y
−µ̃(1− y)ν̃ F (−µ̃+ ν̃ − γ̃,−µ̃+ ν̃ + γ̃, 1− 2µ̃, y) (36)
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ΦR(z) = B3z
δ̃(1− z)−α̃ F (δ̃ − α̃− β̃, δ̃ − α̃+ β̃, 1 + 2δ̃, z)

+ B4z
−δ̃(1− z)−α̃ F (−δ̃ − α̃− β̃,−δ̃ − α̃ + β̃, 1− 2δ̃, z) (37)

where

µ̃ =
1

a

√

m2
0 −E2, δ̃ =

1

b

√

m2
0 − E2 (38)

ν̃ =
1

2

(

1 +

√

1−
4

a2q2
[V 2

0 − (m1 − S0)2]

)

, α̃ =
1

2

(

−1 +

√

1−
4

b2q̃2
[V 2

0 − (m1 − S0)2]

)

(39)

γ̃ =
1

a

√

(

m0 −
m1 − S0

q

)2

−

(

E −
V0

q

)2

, β̃ =
1

b

√

(

m0 −
m1 − S0

q̃

)2

−

(

E −
V0

q̃

)2

.(40)

In order to obtain the bound state solutions requiring the vanishing of the wave functions (36)

and (37) at ±∞, the following regular solutions are chosen for ΦL(y) and ΦR(z), respectively

ΦL(y) = B1y
µ̃(1− y)ν̃ F (µ̃+ ν̃ − γ̃, µ̃+ ν̃ + γ̃, 1 + 2µ̃, y) (41)

ΦR(z) = B3z
δ̃(1− z)−α̃ F (δ̃ − α̃− β̃, δ̃ − α̃ + β̃, 1 + 2δ̃, z). (42)

Imposing the continuity conditions on ΦL(y) and ΦR(z) at x = 0, we obtain

B1C̃1F̃1 −B3C̃2F̃2 = 0 (43)

B1aC̃3(C̃4F̃1 + C̃5F̃3)− B3bC̃6(C̃7F̃2 + C̃8F̃4) = 0. (44)

Here, we use some abbreviations given in Table 2. From the last two equations, one can

calculate the energy eigenvalue equation as follows

aC̃2C̃3F̃2(C̃4F̃1 + C̃5F̃3)− bC̃1C̃6F̃1(C̃7F̃2 + C̃8F̃4) = 0. (45)

The energy eigenvalues of the bound states can be obtained in terms of potential strength

V0 by solving the Eq. (45) numerically. The dependence of the energy eigenvalues on V0 is

given in Fig. 2. From Fig. 2, one can observe that bound state energy of the Klein-Gordon

particle decreases with increasing potential strength V0. Finally, this energy takes the value

of negative mass of the particle which means that the bound state joins the negative-energy

continuum [35, 14]. This result agrees with previous ones [11, 14]. On the other hand, the

potential is called critical when a discrete energy level crosses the value E = −m and joins

the negative energy continuum.
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V. DISCUSSIONS

A. Low-momentum limit

In the low-momentum limit (E → −m) which leads to µ = δ = 0, transmission resonance

condition (33) becomes

a F (−α− β,−α + β, 1, q̃)×
[

q(ν2 − γ2) F (ν − γ + 1, ν + γ + 1, 2, q)−
qν

1− q
F (ν − γ, ν + γ, 1, q)

]

−

b F (ν − γ, ν + γ, 1, q)×
[

q̃(β2 − α2) F (1− α− β, 1− α + β, 2, q̃)−
q̃α

1− q̃
F (−α− β,−α + β, 1, q̃)

]

= 0. (46)

On the other hand, bound state energy equation (45) turns into the following form in the

low-momentum limit (µ̃ = δ̃ = 0):

a F (−α̃− β̃,−α̃ + β̃, 1, q̃)×
[

q(ν̃2 − γ̃2) F (ν̃ − γ̃ + 1, ν̃ + γ̃ + 1, 2, q)−
qν̃

1− q
F (ν̃ − γ̃, ν̃ + γ̃, 1, q)

]

−

b F (ν̃ − γ̃, ν̃ + γ̃, 1, q)×
[

q̃(β̃2 − α̃2) F (1− α̃− β̃, 1− α̃ + β̃, 2, q̃)−
q̃α̃

1− q̃
F (−α̃− β̃,−α̃ + β̃, 1, q̃)

]

= 0. (47)

Comparing Eq. (46) with Eq. (47) and considering Eqs. (10), (11), (17) and (18), it is

not difficult to see that transmission resonance condition is reduced to the bound-energy

condition after the transformations V0 → −V0 and S0 → −S0 in the low-momentum

limit which means that the asymmetric Hulthén potential supports a zero-momentum

(half-bound) state in the presence of the effective mass and also constant mass as well.

Eq. (47) can be used to calculate the value of the critical potential (E = −m). This value

is found to be Vc = 1.89014 for a = 1, b = 0.8, q = 0.5, q̃ = 0.4, m = 1, m1 = 0, S = 0 and

Vc = 2.0512 for a = 1, b = 0.8, q = 0.5, q̃ = 0.4, m = 1, m1 = 0.2, S = 0. From this point

of view, we can say that the value of the critical potential increases in the presence of the

effective mass compared to the constant mass case.
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B. Unitary condition

Fig. 3 shows the existence of the unitary condition for the asymmetric Hulthén potential

within the effective mass formalism. From Fig. 3, we can see that unitary condition (T+R =

1) is valid for both position dependent (right plot) and constant (left plot) mass cases.

C. Transmission resonances

Figs. 4-9 display the transmission coefficients for the asymmetric Hulthén potential. All

of the figures show that transmission resonances for the asymmetric Hulthén potential exist

for both of the effective mass and constant mass cases. Fig. 4 presents the behavior of the

transmission coefficient versus the scalar particles energy. In Fig. 4, solid line represents

the constant mass case for the usual Hulthén potential displayed in Fig. 3 in Ref. [18]. We

can readily see from Fig. 4 that the width of the transmission resonances is sensitive to

the effective mass parameter m1. The peaks of the resonances become narrower when m1

increases. Besides, in the case of the effective mass, the first resonance peak (T = 1) appears

at lower energy compared to the constant mass case.

Fig. 5 displays the transmission coefficients as a function of potential strength V0. In

Ref. [13], it is shown that transmission resonances for the Klein-Gordon particles in the

presence of the Woods-Saxon potential vanishes for E −m < V0 < E +m and they appear

for V0 > E +m. However, from Fig. 5, we can see that transmission resonances appear all

range of the asymmetric Hulthén potential which means that there is no V0 values making

the asymmetric Hulthén potential entirely impenetrable. The reason is that there is no

way to reduce the asymmetric Hulthén potential to square well. Thus, asymmetric Hulthén

potential for the Klein-Gordon particle is completely penetrable as in the vector particle

case [32]. The result given in Fig. 5 with solid line (m1 = 0 constant mass) also agrees

with the one presented in Fig. 4 in Ref. [18]. Effects of the position-dependent mass on the

transmission coefficients are represented with the other three lines. From these three lines, it

is easy to conclude that transmission resonances also appear in all range of the asymmetric

Hulthén potential in the presence of the effective mass and resonance peaks become narrower

and shorter with increasing the m1.
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D. Effect of the potential parameters on the transmission resonances

From the Figs. 6-8, it is clear that intensities of the transmission resonances as well as

the width of the resonance peaks depend on the shape of the external potential. From the

Fig. 6, one can observe that the dependence of the transmission coefficient on the energy of

the Klein-Gordon particle is the same for both a > b and b > a. The reason can be found

by considering the Fig. 1. Based on the left plot of the Fig. 1, one can readily notice that

the height and the width of the potential barrier remains the same whether a > b or b > a.

However, comparing the Fig. 6 with the Fig. 4, we can conclude that the intensity of the

resonance peaks increases with decreasing a (or b) for q = q̃. On the other hand, the first

transmission resonance peak appears at smaller values of the Klein-Gordon particles energy

in the presence of the position-dependent mass.

Relationship between potential parameters q and q̃ that define the shape of the poten-

tial (1) and transmission coefficient is given in the Fig. 7. From the Fig. 7, we can see that

existence of the transmission resonances depends on q and q̃. However, it should be noticed

that the form of the transmission resonances remain the same in both q > q̃ and q < q̃.

This can be explained by considering the change in the hight and the width of asymmetric

Hulthén potential as shown in middle plot of the Fig. 1. From this plot, we can conclude

that magnitudes of the hight and the width of the asymmetric Hulthén potential remains

the same for q > q̃ and q < q̃. However, by considering the Figs. 7 and 8, it is seen that the

number of the transmission resonances increases with increasing the q and q̃.

We also investigate the energy dependence of the transmission resonances for both a >

b > q > q̃ and a < b < q < q̃. The results are given in the Fig. 8. From the left plot of the

Fig. 8, it is concluded that the intensities and widths of the resonance peaks decrease as

the potential parameters a and b are bigger than the q and q̃. The reason can be found by

considering the right plot of the Fig. 1. This plot gives that the hight and the width of the

asymmetric Hulthén potential (1) decrease when a > b > q > q̃. On the other hand, the Fig.

8 shows that if the a and b are smaller than the q and q̃, then the number of transmission

resonance peaks increases. Based on the Figs. 5-8, we can conclude that existence of the

transmission resonances as well as the intensity and width of the resonance peaks depend

on shape of the asymmetric Hulthén potential. Besides, we can also see from the Figs.

5-8 that the Klein-Gordon equation within the position-dependent mass formalism exhibits
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transmission resonance in the presence of the asymmetric Hulthén potential.

E. Effect of the unequal scalar and vector potentials on the transmission reso-

nances

The Fig. 9 displays the effect of the unequal scalar and vector potentials on the trans-

mission resonances. From the Fig. 9, one can observe that transmission resonance peaks

disappear when S0 6= 0 and it does not matter whether V0 = S0 or V0 < S0.

VI. CONCLUSIONS

In the present study, exact solution of the one-dimensional effective mass Klein-Gordon

equation for the asymmetric Hulthén potential has been found in terms of hypergeometric

functions. Considering the asymptotic behavior of the hypergeometric functions and using

the continuity of the wave functions, we have obtained the scattering and bound states of the

Klein-Gordon particle. Then, the condition for the existence of the transmission resonances

(T = 1, R = 0) is derived for the position-dependent mass and constant mass, as a special

case. From the Figs. 4-8, it has been observed that the intensity and width of transmission

resonance peaks depend on the shape and the strength V0 of the external potential. Based

on the Figs. 3-8, we have concluded that asymmetric and symmetric Hulthén potentials

are entirely penetrable for all values of potential strength V0 since asymmetric and symmet-

ric Hulthén potentials cannot be reduced to square well. In the low-momentum limit, it

has been shown that asymmetric Hulthén potential supports zero-momentum (half-bound)

states. On the other hand, our results show that the Klein-Gordon equation exhibits the

transmission resonances in the presence of the position-dependent mass and form of the res-

onances depends on the effective mass parameter m1 as well as the shape and the strength

of the external potential. Furthermore, asymmetric Hulthén potential has a general form

and reduces to the well-known potential such as usual Hulthén and Cusp potentials. Thus,

our results contain the scattering and bound state solutions of the scalar particles for the

Cusp and usual Hulthén potentials. Finally, it should be mentioned that these results can be

useful for understanding the behavior of elementary particles and nuclei in view of effective

mass.
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TABLE I: Table for coefficients and definitions used to calculate the T and R.

C1 q̃−δ(1− q̃)−α C6 µ− νq
1−q

C2 qµ(1− q)ν C7 q
(µ+ν−γ)(µ+ν+γ)

1+2µ

C3 q−µ(1− q)ν C8 µ+ νq
1−q

C4 q̃
(δ+α+β)(β−δ−α)

1−2δ C9 q
(ν−µ−γ)(ν−µ+γ)

1−2µ

C5
αq̃
1−q̃

− δ

F1 F (−δ − α− β,−δ − α+ β; 1− 2δ; q̃) F4 F (1− δ − α− β, 1 − δ − α+ β; 2− 2δ; q̃)

F2 F (µ + ν − γ, µ + ν + γ; 1 + 2µ; q) F5 F (µ + ν − γ + 1, µ + ν + γ + 1; 2 + 2µ; q)

F3 F (−µ+ ν − γ,−µ + ν + γ; 1 − 2µ; q) F6 F (1− µ+ ν − γ, 1− µ+ ν + γ; 2− 2µ; q)

TABLE II: Table for coefficients and definitions used to calculate the bound-state energy.

C̃1 qµ̃(1− q)ν̃ C̃5
(µ̃+ν̃−γ̃)(µ̃+ν̃+γ̃)

1+2µ̃

C̃2 q̃δ̃(1− q̃)−α̃ C̃6 −q̃δ̃+1(1− q̃)−α̃

C̃3 qµ̃+1(1− q)ν̃ C̃7
α̃

1−q̃
+ δ̃

q̃

C̃4
µ̃
q
− ν̃

1−q
C̃8

(δ̃−α̃−β̃)(β̃+δ̃−α̃)

1+2δ̃

F̃1 F (µ̃ + ν̃ − γ̃, µ̃+ ν̃ + γ̃; 1 + 2µ̃; q) F̃3 F (µ̃+ ν̃ − γ̃ + 1, µ̃ + ν̃ + γ̃ + 1; 2 + 2µ̃; q)

F̃2 F (δ̃ − α̃− β̃, δ̃ − α̃+ β̃; 1 + 2δ̃; q̃) F̃4 F (1 + δ̃ − α̃− β̃, 1 + δ̃ − α̃+ β̃; 2 + 2δ̃; q̃)
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FIG. 1: The form of the asymmetric Hulthén potential with V0 = 1.
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FIG. 2: Energy of the lowest bound-state vs potential strength in the presence of the

position-independent(solid line)/dependent (dashed line) mass cases.
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FIG. 3: T (solid line) and R (dashed line) coefficients for a = 0.8, q = 0.5, b = 0.9, q̃ = 0.6,

m0 = 1, S0 = 0 and V0 = 4 where m1 = 0.0 and m1 = 0.5 for the left and right plots,

respectively.
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FIG. 4: Transmission coefficients for constant mass (solid line) and position-dependent

mass (dashed line) with q = 0.9, q̃ = 0.9, m0 = 1, m1 = 0.5, S0 = 0 and V0 = 4. We also

take a = 1.1 and b = 0.6 for the left plot and a = 0.6 and b = 1.1 for the right plot.
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FIG. 5: Transmission coefficient vs energy for a = 1, b = 1, q = 0.9, q̃ = 0.9, m0 = 1,

S0 = 0, V0 = 4.
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FIG. 6: Transmission coefficient vs potential strength for a = 1, b = 1, q = 0.9, q̃ = 0.9,

m0 = 1, S0 = 0, E = 2m0.
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FIG. 7: Transmission coefficients for constant mass (solid line) and position-dependent

mass (dashed line) with a = 1, b = 1, m0 = 1, m1 = 0.5, S0 = 0 and V0 = 4. We also take

q = 0.6 and q̃ = 0.5 for the left plot and q = 0.5 and q̃ = 0.6 for the right plot.
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FIG. 8: Transmission coefficients for constant mass (solid line) and position-dependent

mass (dashed line) with a = 0.7, b = 0.6, q = 0.5, q̃ = 0.4, m0 = 1, m1 = 0.5, S0 = 0 and

V0 = 4 for the left plot and a = 0.4, b = 0.5, q = 0.6, q̃ = 0.7, m0 = 1, m1 = 0.5, S0 = 0

and V0 = 4 for the right plot.
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FIG. 9: Transmission coefficients in the constant mass (solid line) case and

position-dependent mass (dashed line) case with a = b = q = q̃ = 0.5, m0 = 1, m1 = 0.5 for

S0 = V0 = 0.5 (the left plot) and for S0 = 0.4, V0 = 0.6 (the right plot).
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