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Abstract

The covariant path integral quantization of the theory of the scalar and spinor

particles interacting through the Abelian and non-Abelian pure Chern-Simons gauge

fields is carried out and is shown to be mathematically ill defined due to the absence

of the transverse components of these gauge fields. This is remedied by the introduc-

tion of the Maxwell or the Maxwell-type (in th non-abelian case) term which makes

the theory superrenormalizable and guarantees its gauge-invariant regularization and

renormalization . The generating functionals are constructed and shown to be for-

mally the same as those of QED (or QCD) in 2+1 dimensions with the substitution of

the Chern-Simons propagator for the photon (gluon) propagator. By constructin the

propagator in the general case; the existence of two limits; pure Chern-Simons and

QED (QCD) after renormalization is demonstrated.

By carrying out carefully the path integral quantization of the non-Abelian Chern-

Simons theories using the De Witt-Fadeev-Popov and the Batalin-Fradkin -Vilkovisky
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methods it is demonstrated that there is no need to quantize the dimensionless charge

of the theory. The main reason is that the action in the exponent of the path integral

is BRST-invariant which acquires a zero winding number and guarantees the BRST

renormalizability of the model.

The S-matrix operator is constructed, and starting from this S-matrix operator novel

topological unitarity identities are derived that demand the vanishing of the gauge-

invariant sum of the imaginary parts of the Feynman diagrams with a given number

of intermediate on-shell topological photon lines in each order of perturbation theory.

These identities are illustrated by an explicit example.
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1 Introduction

The past fifteen years witnessed an increasing interest in the theories of matter coupled

Chern-Simons (CS)gauge field theories in 2+1 dimensions. From one point of view, the

Euclidean version of such theories can be viewed as giving the high temperature bahaviour

of 3+1 dimensional models [1]. On the other hand, in the pioneering works [2,3] it has

been shown that the introduction of the ( P and T odd ) CS term into the Lagrangian of

2+1 dimensional QED and QCD, leads to a very peculiar property : the gauge field splits

into two parts; a massive part (that acquires a mass in a gauge-invariant manner), and

a massless part which does not contribute to the free classical Hamiltonian, but leads to

an additional interaction among the particles. This interaction appears also in pure CS

theories [4].

In the work [3], it was argued that in the non-Abelian version of CS theories, the dimen-

sionless combination of the charge and the stochastic parameter should be quantized. It

was also shown that the mass term provides an infrared cut-off in special covariant gauges

that renders the theory superrenormalizable.

Many works were devoted to the consideration of the one-loop radiative corrections to

the charge and the stochastic parameter in both the Abelian [5] and the non-Abelian [6]

theories, and a theorem [7] was set which states that under very general conditions, there

are no further radiative corrections beyond the finite one-loop for these parameters.

An additional thrust into the interest in CS theories was provided by the interesting

results in the non-relativistic domain; essentially the idea of Wilczeck that non-relativistic

charged particles coupled to pure CS field can be considered as a phenomenological ap-

proach for the description of the ”bound states ” of two particles called anyons [8]. This

idea found wide acceptance, and many attempts to apply it in many interesting condensed

matter phenomena, such as the fractional quantum Hall effect, and high temperature su-

perconductivity were made ( see the reviews [9] and the references therein ). CS theories

also found applications in the field-theoretic formulation of the Aharonov-Bohm effect

[10,11].

One of the issues that received considerable interest during the past period was the canon-
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ical quantization of the CS models [2,3,12]. However, some interesting points like the

canonical quantization in a Lorentz covariant gauge still need further investigation. Path

integral quantization was also considered first -up to our knowledge- in the works [11,13]

where the generating functional was also constructed.

Another issue that did not receive much attention is the following: The free transverse

topological photons of the pure CS theory are absent, while the gauge field propagator

is present, and gives significant contribution to the interaction among the particles. This

issue was addressed in the work [14], and the so called topological unitarity identities were

derived. Moreover, the issue of the quantization of the charge in non-abelian CS theories

was not discussed thoroughly beyond the discussion in the works [2,3]. We address this

point in the present work.

This paper is a further development of the series of works [11,13,14]. The main goals are,

to carry out the path integral quantization and construct the generating functional for a

wide class of models involving both the Abelian and the non-Abelian CS fields (part II),

to construct the S-matrix operator, and to develop the Feynman rules and formulate a

Wick-type theorems for the CS field (part III), and to illustrate in details the topological

unitarity identities in general, and through a specific example ( part IV). Part V is devoted

to concluding remarks.

2 Path Integral Quantization and the Generating Functional

The aim of this part is to develop the path integral quantization, and to construct the

generating functional of the theory of scalar and spinor fields interacting through the

Abelian and non-Abelian CS field in 2+1 dimensions. This can be done through two

different approaches : The De Witt-Fadeev-Popov (DFP)[15] approach, or the Batalin-

Fradkin-Vilkovisky (BFV) approach [16]. The latter was developed to quantize gauge

theories with both classes of constraints and with arbitrary constraint algebra. In our case

both approaches lead to the same result . This is a consequence of the fact that the first

class constraints, both in the Abelian and non-Abelian cases, form a closed algebra, and

that the structure functions in the algebra of the first class constraints are just constants,
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as will be demonstrated later. Therefore, we shall carry out the path integral quantization

through the simpler DFP approach, and will prove the equivalence of both approaches by

invoking the latter in the quantization of the theory of spinors interacting through the

non-abelian CS gauge field. This proof is very helpful in understanding the connection

between the usual canonical quantization and the BFV quantization schemes, and in the

demonstration of the appearence of the BRST operators of the theory.

2.1 De Witt-Fadeev-Popov method

Scalar particles:

We begin with the theory of charged scalar particles interacting through the CS gauge

field with the action of this gauge field given slolely by the abelian CS term (pure CS

field). Following the DFP method, we get for the generating functional in the covariant

α-gauge the expression [11,13] :

Z[Jµ, j, j
∗] = Z−1

0

∫

DAµ(x)dϕ
∗(x)Dϕ(x) exp{iSCS + iSg + iSm

+ i

∫

d3x(Jµ(x)A
µ(x) + j∗(x)ϕ(x) + j(x)ϕ∗(x))} (1)

where

Z0 = Z(0, 0, 0, ) (2)

SCS =
µ

2

∫

d3xεµνλA
µ(x)∂νAλ(x) (3)

Sg =
−1

2α

∫

(∂µA
µ)2d3x (4)

Sm =

∫

d3x
(

ϕ∗(x)(DµD
µ −m2)ϕ(x) − λ(ϕ∗(x)ϕ(x))2

)

(5)

Here, Jµ(x), j(x) and j∗(x) are external sources, e and m are respectively the charge

and the mass of the scalar field, and Dµ = (∂µ − ieAµ). The metric is taken as gµν =

diag(1,−1,−1) . The Greens functions of the theory are defined as usual by varying the

above generating functional, eq.(1) with respect to the sources. For example, the free

propagator of the CS field is defined as:

Dµν(x− x′) = (−i)2
δ2

δJµ(x)Jν(x′)
Z[Jµ, j, j

∗] |Jµ=j=j∗=e=0 (6)
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However, the functional (1) has an essential defect in that the path integral over the gauge

field is not mathematically well-defined . This is because in pure CS theory, there are no

transverse components of the gauge field. The natural way to overcome this difficulty is to

introduce into the total action in the exponent of the path integral (1) the Maxwell term

SM =
−1

4γ

∫

d3xFµν(x)F
µν(x) (7)

Such a term is the only gauge-invariant bilinear term in Aµ that guarantees gauge-invariant

regularization and renormalization of the theory. This term, not only leads to the conver-

gence of the path integral over Aµ, but also plays the role of a regularization factor since

the resulting theory becomes superrenormalizable [2,3].

It is necessary here to make some important remarks on the dimensions of the parameters

and the fields of the theory. We have some arbitrariness in the choice of the dimen-

sions of the statistical parameter µ, the charge e and the factor γ in eqs.(3),(5) and

(7). However, if we require the 2+1 dimensional matter-coupled CS theory to have some

relation with the real world, and so that it arises after compactification on the ∼ 1
γ

layer of QED in 3+1 dimensions [17]with the parity violating term µ
4

∫

Fµν F̃
µνd4x where

F̃µν = 1
2ε
µνλσFλσ then the charge e and the parameter µ are to be chosen dimensionless,

whereas [Aµ] = x−1 , [ϕ] = x
−1
2 and [γ] = x−1. In the following, we will adopt this

convention of the dimensions 1. So, after introducing the Maxwell term the generating

functional takes the form

Z[Jµ, j, j
∗] = Z−1

0

∫

DAµ(x)Dϕ
∗(x)Dϕ(x) exp{i(SCS + SM + Sg + Sm)

+ i

∫

d3x(Jµ(x)A
µ(x) + j∗(x)ϕ(x) + j(x)ϕ∗(x))} (8)

This can be formally written in the alternative form

Z[Jµ, j
∗, j] = Z−1

0

∫

Dϕ∗(x)Dϕ(x) exp(ie2
∫

d3x
δ2

δJµ(x)δJµ(x)
)

×

∫

DAµ(x) exp{i(SCS + SM + Sg + S̃m)

+i

∫

d3x(Jµ(x)A
µ(x) + j∗(x)ϕ(x) + ϕ∗(x)j(x))} (9)

1If one makes the change of variables Aµ → A′
µ =

Aµ√
γ
, e → e′ = e

√
γ , µ → µ′ = µ

γ
then one gets the

conventions used in the works [2,3]
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where S̃m does not contain the term e2AµA
µ in eq.(5),i.e

S̃m = −

∫

d3x(ieAµ(x)(ϕ
∗(x)∂µϕ(x)− ϕ(x)∂µϕ

∗(x)) + λ(ϕ∗(x)ϕ(x))2) (10)

After integrating over Aµ in eq.(9) we get :

Z[Jµ, j, j
∗] = Z−1

0

∫

Dϕ∗(x)Dϕ(x) exp{ie2
∫

d3xϕ∗(x)ϕ(x)
δ2

δJν (x)δJν(x)
}

exp{
i

2

∫

d3xd3yIµ(x)D
µν(x− y)Iν(y)− λ

∫

d3x(ϕ∗(x)ϕ(x))2

+i

∫

d3x(j∗(x)ϕ(x) + j(x)ϕ∗(x))} (11)

where

Iµ(x) = Jµ(x) + ie

∫

d3x(ϕ∗(x)∂µϕ(x)− ϕ(x)∂µϕ
∗(x)) (12)

and Dµν(x− y) is the CS gauge field’s Greens function defined by the equation:

∫

d3x′
δ2(SCS + Sg + SM )

δAµ(x)δAλ(x′)
Dλν(x′ − y) = gνµδ

3(x− y) (13)

or,

[
1

γ
(✷xgµλ − ∂µ∂λ) +

1

α
∂µ∂λ + µεµλρ∂

ρ
x]D

λν(x− y) = δ3(x− y)gνµ (14)

The solution of eq.(14) is [2,3]:

Dλν(x) =
1

(2π)3

∫

d3peipx



−γ
(gλν −

pνpλ)
p2

(p2 − γ2µ2 + iǫ)
+

iελνρp
ρ

µ(p2 − γ2µ2 + iǫ)

−
iελνρp

ρ

µ(p2 + iǫ)
−

αpλpν
(p2 + iǫ)2

]

(15)

We note that the above Greens function (or propagator) consists of two parts: The first

two terms describe the propagation of a real massive photon with mass equal to γµ; the

third term describes the propagation of a topological massless photon, and the last term

is pure gauge term. The appearence of massive photons in a gauge-invariant manner is a

well-known peculiar property of CS theory, and is independent of coupling to matter fields

[2,3]. To show that the topological term in eq.(15) does not contribute to the tensor Fµν
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of the gauge field, we construct the general solution of the classical equations of motion

of the field Aµ (eq.(14)). This is given as :

Aµ(x) = 4π

∫

ImDµν(p)e
ν
δ a

δ(p)eikxd3p

=
1

2π

∫

d3peipx
[

−γ((eδµ(p)−
pµpν
p2

e
ν
δ (p)) +

i

γµ
εµνρp

ρ
e
ν
δ (p))δ(p

2 − µ2γ2)

−
i

µ
εµνρe

ν
δ (p)p

ρδ(p2)− (
pµpν

p2 − µ2γ2
)eνδ (p)δ(p

2)

+
α

2
pµ

(

∂

∂pν
δ(p2)

)

e
ν
δ (p) ] a

δ(p) (16)

Here, ImDµν(p) is the imaginary part of the propagator Dµν in eq.(15) in the momentum

space representation; eνδ (p), δ = 0, 1, 2, are three mutually orthogonal polarization vectors

which satisfy pµe
µ
δ (p) = 0. This choice corresponds to the gauge ∂µA

µ = 0. In the

general case, the free solution Aµ(x) in eq.(16) represents the sum of two independent

parts : The terms proportional to δ(p2−µ2γ2) correspond to a real massive photon which

contributes to the free Hamiltonian; the fourth and fifth terms are the topological parts

of the gauge field which do not contribute to the classical free Hamiltonian, but give non-

trivial contribution to the propagator (see eq.(15)) , and the last term is merely a gauge

term that can be removed by a gauge transformation. It is easy to see that the topological

part of Aµ does not contribute to Fµν :

Fµν = ∂µAν − ∂νAµ

=
1

2πµ

∫

d3peipxδ(p2)aδ(p)(pµενλρ − pνεµλρ)e
λ
δ p

ρ (17)

multiplying both sides by εσµν we get

εσµνFµν =
1

µπ

∫

d3peipxδ(p2)aδ(p)(eσδ (p)p
2 − pµe

µ
δ p

σ) = 0 (18)

since

pµe
µ
α = 0 (19)

As for the the massive part of the solution (16), excluding the second term in this equation

in view of (19) above, then we have for the massive part

Aµ(x) =
−1

2π

∫

d3peipxγ

(

e
δ
µ(p)−

i

µγ
εµνρp

ρ
e
ν
δ

)

aδ(p)δ(p
2 − µ2γ2) (20)
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and this gives a non-vanishing contribution to Fµν . We shall return later to the question of

quantization of this Aµ in connection with the construction of the S-matrix of the theory

(see part III).

Returning to the general expression for the Greens function of the gauge field , we stress

that formally it is possible to consider two limiting procedures in eq.(15). First, if γ → ∞

we obtain:

lim
γ→∞

Dλν = DCS
λν =

−1

(2π)3

∫

d3peipx
(

iενλρp
ρ

µ(p2 + iǫ)
+

αpλpν
(p2 + iǫ)2

)

(21)

which is just the propagator of the pure CS theory. In the limit µ → 0, we get the usual

Feynman propagator in 2+1 dimensional QED for massless photons:

lim
µ→0

Dλν(x) = DM
λν(x) =

−γ

(2π)3

∫

d3peipx

(

gλν − ( pλpν
p2+iǫ)(1−

α
γ
)
)

(p2 + iǫ)
(22)

In both cases, we have from eq.(16) Aµ as

lim
γ→∞

Aµ(x) =
−1

2π

∫

d3peipx
[(

i

µ
εµνρp

ρ −
α

2
pµ

∂

∂pν

)

δ(p2)

]

e
ν
δ (p)a

δ(p)

= ACSµ (23)

and

lim
µ→0

Aµ(x) =
−γ

2π

∫

d3peipx
[(

gµν +
(1− α

γ
)

2
pµ

∂

∂pν

)

δ(p2)

]

e
ν
δ (p)a

δ(p) (24)

The limits are to be taken after renormalization, recalling that in our theory one has only

the finite one-loop correction to µ (or γ) [5-7].

Spinor CS theory:

Let us consider now the theory of spinor particles interacting through the CS gauge

field. The DFP method gives the following expression for the generating functional in this

case [14]:

Z[Jµ, η, η̄] = Z−1
0

∫

DAµ(x)Dψ̄(x)Dψ(x) exp{iSCS + iSM + iSg + iSψ

+i

∫

d3x(Jµ(x)A
µ(x) + η̄(x)ψ(x) + ψ̄(x)η(x))} (25)

9



where Z0 = Z(0, 0, 0) ; SCS, Sg and SM are defined by eqs.(3),(4) and (7) respectively,

and

Sψ =

∫

d3xψ̄(x)(iD/ −m)ψ(x) (26)

where,

D/ = Dµγ
µ , Dµ = (∂µ − ieAµ) (27)

and the Dirac matrices are defined as

γ0 = σ3 , γi = iσi , i = 1, 2 (28)

where σ’s are the Pauli spin matrices. The γ-matrices satisfy

{γµ, γν} = 2gµν , γµγν = gµν − iεµνλγ
λ (29)

ψ(x) and ψ̄(x) = ψ(x)†γ0 are the two-component Grassmann spinors, η and η̄ are Grass-

mann sources. Integrating over Aµ(x) in eq.(25) we get :

Z[Jµ, η̄, η] = Z−1
0

∫

Dψ̄(x)Dψ(x) exp{
i

2

∫

d3xd3yĨµ(x)D
µν(x− y)Ĩν(y)

+i

∫

d3x(η̄(x)ψ(x) + ψ̄(x)η(x))} (30)

where

Ĩµ(x) = Jµ(x) + eψ̄(x)γµψ(x) (31)

and Dµν(x − y) is the bare CS field propagator which is the same as in the scalar case,

eq.(15). Here also, as in the scalar case, one can consider the limits (after renormalization)

γ → ∞ and µ → 0 to get the propagators of pure CS field and 2+1 dimensional QED

respectively.

Non-Abelian CS theory:

The path integral quantization of theories with the non-Abelian CS gauge field is a

bit more complicated than the Abelian one, so we consider it in some detail. We start with
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the theory of the gauge field without coupling to matter , i.e CS gluodynamics, defined

by the Lagrangian

L = LM + LCS (32)

LM is the usual Yang-Mills Lagrangian in 2+1 dimensions,

LM =
−1

2γ
tr (Fµν(x)F

µν(x))

Fµν = ∂µAν(x)− ∂νAµ(x) + g[Aµ(x), Aν(x)] (33)

LCS is the non-Abelian CS term

LCS = −µεµνλtr(Aµ(x)∂νAλ(x) +
2i

3
gAµ(x)Aν(x)Aλ(x)) (34)

The gauge group is SU(N). In matrix notation

Aµ = Aaµt
a ; Fµν = F aµνt

a (35)

The ta’s are antihermitian matrices in the fundamental representation of the group

[ta, tb] = ifabctc , tr(tatb) =
1

2
δab (36)

fabc are the structure constants of the SU(N) group.

To see the difference of the non-Abelian case from the Abelian one, consider a general

gauge transformation

Aµ(x) → U−1(Aµ(x)−
i

g
∂µ)U (37)

LM is gauge-invariant, LCS is not [2,3];

∫

d3xLCS →

∫

d3xLCS −
iµ

g

∫

d3xεµνλ∂µtr
(

(∂νU)U−1Aλ
)

+
8π2µ

g
iw (38)

where

w =
1

24gπ2

∫

d3xεµνλtr
[

(U−1∂µU)(U−1∂νU)(U−1∂λU)
]

(39)
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If we suppose that at ||x|| =
√

x20 + ~x2 → ∞ , Aµ → 0 faster than 1
||x|| then the second

term in (38) vanishes. The last term , however, coincides in euclidean space, with the

so called homotopy class or winding number, and is equal to 0,±1,±2, ... . This result

follows from the fact that if

U(x)||x||→∞ → 1, (40)

then 3-dimensional space can be mapped onto S3; for SU(2) group U(x) realizes the

mapping S3 → S3 and the winding number is equal to the degree of mapping S3 to the

SU(2) group. On the classical level, the gauge-transformation (37) results in

SCS → SCS + constant (41)

It is clear that this constant does not influence the equations of motion or any physical

quantity.

Now, we use the Fadeev-Popov trick to quantize the theory. Formally, the vacuum func-

tional of the theory is

Z0 = N

∫

DAµ exp i{SM + SCS} (42)

where N is a normalization factor that will be defined later. Introducing into the formal

equation (42) the identity operator in a general Lorentz covariant gauge

I = △(A)

∫

Dµ(G)δ(∂µAGµ − f(x)) (43)

where Dµ(G) is the measure of the SU(N) group, and

AGµ = U−1(Aµ −
i

g
∂µ)U U ∈ G. (44)

Eq.(43) defines the Fadeev-Popov determinant △(A).

We know that in perturbation theory we can forget about the Gribov ambiguity [18] and

consider only contributions to the functional integral from elements near the identity of

the group G;

U = 1 + iλ(x) +O(λ2) ; λ = λata (45)
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where λa(x) is infinitesimally small for all x. This means that in DFP method we must

consider gauge transformations which belongs to the zero homotopy class for which w = 0

since λ(x) must go to zero when ||x|| → ∞ 2. Substituting the identity operator (43) into

the expression (42), we get after the conventional manipulations

Z0 = NΩ(G)

∫

DAµ(x)DC̄(x)DC(x) exp{i(SM + SCS + Sg)} (46)

Here Ω(G) is the infinite group volume, and

Sg =

∫

d3xtr

(

−1

2α
(∂µA

µ(x))2 + ∂µC̄
a(x)(DµabCb(x))

)

(47)

where C(x) and C̄(x) are the well-known Fadeev-Popov ghosts that are scalar Grassmann

fields, and

Dab
µ = ∂µδ

ab + gfabcAcµ(x) (48)

Thus, the generating functional of the theory is now given by the expression:

Z[Jµ, η, η̄] = Z−1(0, 0, 0)

∫

DAµ(x)DC̄(x)DC(x) exp{i(SM + SCS + Sg)

+i

∫

d3x(Jaµ(x)A
µ
a(x) + η̄a(x)Ca(x) + C̄a(x)ηa(x))} (49)

here,

Z(0, 0, 0) = Z(Jµ, η̄, η) |Jµ=η̄=η=0 (50)

With the above generating functional, the expectation value of any observable is well-

defined. For example

〈

Ô(Â, ˆ̄C, Ĉ)
〉

= O(
−iδ

δJaµ(x)
,
−iδl

δηb(x)
,

iδl

δηc(x)
)Z[Jµ, η̄, η] |Jµ=η̄=η=0

= Z−1(0, 0, 0)

∫

DAµDC̄(x)DC(x)O(A, C̄, C)

× exp{i(SM + SCS + Sg)} (51)

This expression does not change under any gauge transformation of the total action .

We have seen above that the exponent in the generating functional of the theory

2In the general case when U = eiτ
aλa(x) and ||x|| → ∞ , λ(x) =

√

(λa)2 → 2πn where n is the winding

number.
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contains after quantization the term Sg that violates gauge-invariance. However, the total

action in the exponent preserves invariance under a special class of BRST [19] gauge

supertransformations

Aaµ(x) → Aaµ(x) + (DµC(x))
aǫ (52)

Ca(x) → Ca(x)−
1

2
fabcCb(x)Cd(x)ǫ (53)

C̄a(x) → C̄a(x) +
1

α
(∂µA

µa(x))ǫ (54)

where ǫ is an x-independent Grassmann parameter (ǫ2 = 0);

{ǫ, C̄}+ = {ǫ, C}+ = 0 = {ǫ,Aµ(x)}− (55)

It is well-known that Sg does not change under these transformations. If we formally write

down the transformation law of Aµ(x) in the form

A′
µ = U−1(Aµ −

i

g
∂µ)U (56)

where

U = exp{itaCaǫ} = 1 + itaCaǫ (57)

then under this transformation

SCS → SCS +
8π2µ2

g2
iw = SCS (58)

since w = 0 because ǫ2 = 0.

It is very important to stress that the BRST-invariance of the CS theory ensures satisfying

all the Ward-Fradkin-Takahishi-Slavnov-Taylor identities [20], and therefore the gauge-

invariant renormalizability of the theory [21]. We thus come to the conclusion that in

the framework of perturbation theory, it is not necessary to quantize the charge in CS

gluodynamics. The same holds also if coupling to matter is introduced into the theory as

well.

If one introduces spinor field into the theory (CS quantum chromodynamics (CSQCD)),
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then it is straight forward to generalize the generating functional eq.(49) to this case. The

resulting expression is

Z[Jaµ , η̄, η] = Z−1
0

∏

a

∫

DAaµ(x)Dψ̄(x)Dψ(x) exp{i(SCS + SM + Sg + S̃ψ)

+i

∫

d3x(Jaµ(x)A
µ
a(x) + η̄(x)ψ(x) + ψ̄(x)η(x))} (59)

Here SCS , SM and Sg were defined earlier,eqs.(3),(4) and (7),and

S̃ψ =

∫

d3xψ̄i(x)(∂/ + eA/(x)−m)ijψj(x) (60)

i, j = 1, ..., N above are the color indices of the SU(N) group in the fundamental repre-

sentation.It is straight forward to write down the Feynman propagator of the non-Abelian

gauge field; it will differ from the abelian one only by the appearence of color indices viz.

Dab
µν(x) = δabDµν(x) (61)

Before leaving this subsection, we would like to emphasize that starting from the

generating functionals for the various models that have been considered so far, one can

construct all the propagators and the primitive vertices, and thus develop the Feynman

rules for perturbation theory. For example, the Feynman propagator for the scalar field is

given as

G(x− y) = i
δ2Z[Jµ, j, j

∗]

δj(x)δj∗(y)
|Jµ=j=j∗=e=0

=
1

(2π)3

∫

d3p
eip(x−y)

p2 −m2 + iǫ
(62)

Similarly, we have for the spinor propagator from eq.(59)

S(x− y) = (−i)2
δlδrZ

η̄(x)η(y)
|Jµ=η=η̄=e=0

=
1

(2π)3

∫

d3p
eip(x−y)

p/−m
(63)

2.2 Path Integral Quantization Of Pure Chern-Simons Quantum Chro-

modynamic by Batalin-Fradkin-Vilkovisky Method

Here, we shall show how to construct the generating functional of the theory of spinors

coupled to the non-Abelian CS field by the BFV method. We shall consider however, a
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theory where the gauge field kinetic action is given solely by the non-abelian CS term, i.e

pure CSQCD. This will have a more complicated constraint structure than the one with

the Maxwell term (eq.(7)) included.The BFV quantization makes the BRST symmetry of

the theory, that is generated by the operator Ω introduced below, more transparent. We

start with the classical action:

S = SCS + Sψ (64)

where SCS and Sψ are given by eqs.(3) and (26). The action can be written in a more

transparent form:

SCS = −
µ

2

∫

d3x(Aa0(x)εijF
ija + εijȦ

ia(x)Aja(x) +
g

3
fabcεµνλA

µ
a(x)A

ν
b (x)A

λ
c (x))(65)

Sψ =

∫

d3x
(

ψ̄(x)(iγ0∂0 − i~γ.~∇−m)ψ(x)− gAµ(x)ψ̄(x)γ
µψ(x)

)

(66)

The canonical momenta of the theory turn out to be all primary constraints:

πai =
δL

δȦia
=

−µ

2
εijA

ja ; θai ≡ πai +
µ

2
εijA

ja ≈ 0 (67)

πψ =
δrL

δψ̇
= iψ† ; θ3 ≡ πψ − iψ† ≈ 0 (68)

πψ† =
δlL

δψ̇†
= 0 ; θ4 ≡ πψ† ≈ 0 (69)

πa0 =
δL

δȦa0
= 0 ; Ga ≡ πa0 ≈ 0 (70)

The standard Poisson brackets are:

{ψ(x), πψ(y)} = {ψ†(x), πψ†(y)} = δ(~x − ~y) (71)

{Aaµ(x), π
b
ν(y)} = gµνδ

abδ(~x− ~y) (72)

θi, θ3 and θ4 are second class constraints, while Ga is first class. The presence of the second

class constraints motivates one to define the Dirac brackets [22] using these constraints.

These can be worked out easily, and the ones that differ from the Poisson bracket are:

{ψ(x), ψ†(y)}D = iδ(~x− ~y) (73)

{Aai (x), A
b
j(y)}D =

−1

µ
δabεijδ(~x − ~y) (74)

{Aai (x), π
b
j(y)}D =

1

2
gijδ

abδ(~x− ~y) (75)
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The Hamiltonian assumes the form

H = H0 +Aa0T
a

= ψ̄(x)(i~γ.~∇+m)ψ(x)− ~A(x). ~J(x)

+ Aa0(x) ( J
a
0 (x) +

µ

2
εijF

ija + g
µ

2
fabcεijA

ib(x)Ajc(x) ) (76)

H0 is the Hamiltonian on the constraint surface, and T a is a first class constraint that

is the analogue of Gauss’ law constraint in QCD , and here also it is the generator of

the gauge symmetry. A0 appears here, as is the case in QED and QCD, as a Lagrange

multiplier. The first class constraint T a can be seen to satisfy the algebra :

{T a(x), T b(y)}D = −gfabcT cδ(x− y) ≈ 0 (77)

{T a(x),H(y)}D = 0 (78)

The BFV quantization method, in attempting to maintain Lorentz covariance and the

unitarity of the S-matrix expands the phase space of the theory by making the Lagrange

multiplier of the theory dynamical, and introducing new (ghost) degrees of freedom whose

statistics are oppositte to the first class constraints of the theory. In our case we will have

two pairs of these ghosts which are Grassmann fields ;

(Ca, P̄a) ; (Pa, C̄a).

Therefore, our canonical variables become now

QA = (Aai , ψ, ψ
†, Aa0, C

a,Pa) (79)

PA = (πai , πψ, πψ† , πa0 , P̄
a, C̄a) (80)

Generally, the BFV method introduces the so called complete Hamiltonian [16] that enters

into the expresion of the generating functional, which is defined as

Hcomp = H0 + {Ψ,Ω}D (81)

Ψ is the gauge fermion of the theory and contains all the gauge degrees of freedom. Ω is

the BRST charge of the theory, and satisfies :

{Ω,H}D = 0 (82)

{Ω,Ω}D = 0 (83)
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Generally, H′,Ψ and Ω are found as expansions in powers of the ghost fields by solving

eqs. (83) and (84) above. However, in our case, due to the simplicity of the algebra of the

constraints, we get H0 to zeroth order, Ψ to first order and Ω to second order in the ghost

fields. Thus

Ψ = C̄aχa + P̄aAa0 (84)

Ω = πb0P
b + T bCb −

1

2
P̄bf

bcdCdCc (85)

where χa is a gauge-fixing function

χai = ∂iA
a
i − fa(x) (86)

The vacuum functional of the theory is given now by the expression

Z0 = N

∫

Dµ(Q,P ) exp i{

∫

d3x(PAQ̇
A −Hcomp)} (87)

where PA and QA are given in eqs.(79) and (80), and

Dµ(Q,P ) = DAaiDA
a
0DψDψ̄DπψDπψ†DπaiDπ

a
0DCaDC̄aDPaDP̄a

×δ(πai +
µ

2
εijA

ja)δ(πψ − iψ†)δ(πψ† (Ber||{θl, θm}||)
1
2 (88)

Ber is the superdeterminant, or the Berezinian, which is introduced here due to the

presence of the fermionic degrees of freedom. Integrating over the matter and gauge

momenta and over πa0 , P̄
b and Pa we get

Z0 = N

∫

DAµDψDψ̄DCDC̄δ(Ȧa0(x)− ∂iA
a
i (x) + fa(x))

× exp i{

∫

d3x(Lcl − C̄a(∂µD
µabCb))} (89)

where

Lcl = iψ̄(∂/−m)ψ −AaµJ
µa −

µ

2
Aa0εijF

ija −
µ

2
εijȦ

iaAja

−g
µ

2
fabcAa0εijA

ibAjc (90)

and,

C̄a∂µD
µ
abC

b = C̄a(∂µ(δab∂
µ − facbAµc ))C

b (91)
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The above expression -upon including external sources- coincides with the generating func-

tional eq.(59) without the Maxwell term .

3 The S-Matrix Operator

Although the generating functionals of the theory, eqs.(11),(30) and (59) contain all

the information of the theory, and can be used to derive the scattering amplitudes, it is

more convenient to either introduce the path integral representation of the S-matrix of the

theory, or to construct the S-matrix opertator. The latter is particularly convenient for

the investigation of the imaginary parts of the Greens functions, Feynman diagrams and

the scattering matrix elements, or generally speaking, for the investigation of the unitarity

of the theory. We shall first construct the S-matrix operator of the pure CSQED, and then

generalize the results to the other cases. A peculiar property of the pure CSQED is the

absence of real topological photons, although the propagator and its imaginary part exist

(see eqs.(21) and (23) for example). As for the operator Âµ(x); we note that canonical

quantization in covariant gauges allows one to introduce (as in QED) operators for the

scalar as well as the longitudinal components of Aµ(x), and it can be proven that due to

the canonical commutation relations, the equation for the propagator

Dµν = −i〈TÂµ(x)Âν(y)〉

coincides with the classical equation (14) and have the same solution, eq.(15). However,

in the case of pure CS theory, this topological photon does not contribute to the physical

states of the Hilbert space, which can be defined as usual; ∂µÂ
+
µ |phys〉 = 0. Thus, starting

from this result, one can unambigously formulate rules for the construction of any matrix

elements of the different products of this operator. In this sense, one can formulate some

kind of Wick theorem for the operators of the topological CS photon. The S-matrix op-

erator for scalar pure CSQED has been construsted in the works [11,13], and those for

spinor CSQED in [14]. Here, we would like to elaborate on the construction given in these

references.
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In pure CSQED, the S-matrix operator formally has the same form as that in 2+1 dimen-

sional QED,

Ŝ = T exp{iSint(
ˆ̄ψ, ψ̂, Â)} (92)

here,

Sint(
ˆ̄ψ, ψ̂, Â) =

∫

d3x : e( ˆ̄ψγµÂµψ̂) : (93)

where ”: :” means normal ordering, and ψ̂(x) and ˆ̄ψ(x) operators are given as

ψ̂(x) =

∫

d3p

(2π)

√

m

E~p
[b(~p)u(p)e−ipx + d†(~p)v(p)eipx] (94)

ˆψ̄(x) =

∫

d3p

(2π)

√

m

E~p
[b†(~p)ū(p)eipx + d(~p)v̄(p)e−ipx], (95)

E~p =
√

~p2 +m2 and b(~p) (d(~p)) and b†(~p) (d†(~p)) are respectively the annihilation and cre-

ation operators of particles (antiparticles) satisfying the usual anticommutation relations

:

[b(~p), b†(~p′)]+ = [d(~p), d†(~p′)]+ = δ(~p − ~p′) (96)

The two-component spinors u(p), v(p) are respectively the positive and negative energy

solutions of the free Dirac equation in (2+1) dimensions, with the properties:

(p̂−m)u(p) = (p̂ +m)v(p) = 0 (97)

ū(p)u(p) = −v̄(p)v(p) = 1 (98)

ū(p)v(p) = v̄(p)u(p) = 0 (99)

u(p)ū(p) =
p/+m

2m
(100)

v(p)v̄(p) =
p/−m

2m
(101)

Let us next our attention to the operator Âµ: Using its above mentioned properties,

we can formulate the following rules of the matrix elements of its products : 1) The

vacuum expectation value of the products and the T-products of only an even number
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of the operators Aµ is nonvanishing, and reduces respectively to the sum of the vacuum

expectation values of the product and the T-product of two field operators defined as:

〈0|T (Âµ(x)Âν(y))|0〉 = −iDµν(x− y) (102)

〈0|Âµ(x)Âν(y)|0〉 = −iD+
µν(x− y)

= −i

∫

d3p

(2π)3

[(

i

µ
εµνλp

λ −
α

2
pµ

∂

∂ν

)

δ(p2)

]

θ(p0)e
ip(x−y)(103)

where Dµν(x− y) is given by eq.(21). For example, for four operator product we have:

〈0|T (Âµ(x)Âν(y)Âλ(z)Âδ(u)|0〉 = (−i)2{Dµν(x− y)Dλδ(z − u) +Dµλ(x− z)

Dνδ(y − u) +Dµδ(x− u)Dνλ(y − z)} (104)

and so on. 2) All the matrix elements between physical states of the normal product of

any number of the field operators Aµ are equal to zero . However, the vacuum expectation

value of the product of the normal products of equal number of these operators only is

different from zero. For example:

〈0| : Âµ(x)Âν(y) :: Âλ(z)Âδ(u) : |0〉 =

(−i)2{D+
µλ(x− z)D+

νσ(y − u) +D+
µσ(x− u)D+

νλ(y − z)} (105)

and so on.

Thus, the above rules are the same as the Wick rules except that we take into account

the absence of physical states with free topological photons (other than the vacuum state

!). Therefore, we make now the following observation: All the Feynman rules of the

theory are identical to those of QED given that one replaces the Maxwell propagator in

internal lines by the CS propagator, and excludes diagrams with external photon lines. In

mathematical language, the above rules mean that the total set of physical states in the

total Hilbert space of the theory does not contain states with real free topological photons

3 , but only the physical states of particles and antiparticles. The interesting consequences

3The absence of the real topological free photons can be seen most generally from the fact that the CS

term does not contribute to the free classical Hamiltonian due to its independence of the metric tensor gµν

in curved space-time.
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and applications of these statements will be considered in part IV.

Consider now the more general case of MCSQED, where the propagator is given by eq.(15)

and the free field solutions of the classical equations of motion by eq.(16). This solution

consists of two parts : massive physical part and massless topological part. The canonical

quantization of the massive part in the α = 0 gauge can be carried out, and gives the

following representation for the physical massive part Âmµ (x) of the operator Âµ ≡ Âmµ +

ÂCSµ
4

Âmµ (x) =
−1

2π

∫

d3peipxγ

(

e
δ
µ(p)−

i

µγ
εµνρp

ρ
e
νδ(p)

)

δ(p2 − µ2γ2)aδ(p) (106)

The S-matrix in this case looks formally the same as (93), but the Wick theorem is now

the usual one

〈0|TÂµ(x)Âν(y)|0〉 = −iDµν(x− y)+ : Âµ(x)Âν(y) : (107)

〈0|Âµ(x)Âν(y)|0〉 = −iD+
µν(x− y)+ : Âµ(x)Âν(y) : (108)

〈0| : Âµ(x)Âν(y) :: Âλ(z)Âσ(u) : |0〉 =

(−i)2{D+
µλ(x− z)D+

νσ(y − u) + D+
µσ(x− u)D+

νλ(y − z)}

−i{D+
µλ(x− z)〈0| : Âν(y)Âσ(u) : |0〉 + D+

µσ(x− u)〈0| : Âν(y)Âλ(z) : |0〉

+D+
νλ(y − z)〈0| : Âµ(x)Âσ(u) : |0〉 + D+

νσ(y − w)〈0| : Âµ(x)Âλ(z) : |0〉}

+〈0| : Âµ(x)Âν(y)Âλ(z)Âσ(u) : |0〉 (109)

and so on, where Dµν(x−y) is given by eq.(15).Only one important exception exists : Any

matrix element of the normal product of the operators Aµ reduces to that of the normal

product of the massive operators Amµ ;

〈f | : Aµ1(x1)...Aµn(xn) : |i〉 = 〈f | : Amµ1(x1)...A
m
µn (xn) : |i〉 (110)

Here, |i〉 and |j〉 are two arbitrary physical states of the total Hilbert space of the theory.

Now the total set of physical states includes, in addition to spinor particles, real massive

4The details of the canonical quantization, which is very similar to the Gupta-Bluer quantization will

be published in another paper.
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photons, but never the topological massless photons.

The generalization of the S-matrix operator to scalar or spinor pure CSQCD is straight

forward now. For the spinor case, the generating functional is given by eq.(90). The

S-matrix will have the form

S = T exp{i

∫

d3x

[

−µεµνλtr(
2i

3
e : Âµ(x)Âν(x)Âλ(x) :)−

1

2α
tr(: 2eF̂µν(x)[Â

µ(x), Âν(x)]−

+e[Âµ(x), Âν(x)]
2
− :) +e : ∂µ ˆ̄C

a
(x)fabcÂbµ(x)Ĉ

c(x) : +e : ˆ̄ψ(x)γµÂ
µ(x)ψ̂(x) :

]

}(111)

The Wick-type theorem for the operators ψ̂, ˆ̄ψ, Ĉ, ˆ̄C is as usual. As for the Âaµ operator,

we have the same rules as in the Abelian case, except that the Greens function will have

now an additional kronecker delta in the color indices.

4 Topological Unitarity Identities

In this part we are going to investigate the consequences of the peculiar property of the

CS theories, namely the absence of real topological photons in spite of the presence of the

propagator and the many-particle Greens function of the gauge field that contribute to the

interaction of the particles quantum mechanically ( It is well-known that on the classical

level, the CS field do not contribute to the interaction of the particles !). We will see

that the above property of the CS theories leads upon imposing the unitarity condition on

the theory to very interesting topological unitarity identities. These identities have been

derived in the work [14]. Here, we essentially follow the development in this reference,

however, we discuss in more details how do these identities hold in the general case when

the Maxwell term is present along with the CS term.

We consider first the case of CSQED. The propagator is given by eq.(21) , and the S-

matrix operator is given by eq.(92). As we have mentioned above, the absence of the real

CS photons means that the complete set of physical vector states in the total Hilbert space

of the theory does not contain these topological particles. To investigate the consequences

of this fact, we introduce the T̂ -matrix :

Ŝ = 1− iT̂ (112)
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where Ŝ is the S-matrix operator (the energy-momentum conserving δ-function has been

suppressed). The unitarity of the S-matrix operator leads to the well-known relation:

i
(

T̂ † − T̂
)

= T̂ T̂ † = 2ImT̂ (113)

For arbitrary non-diagonal (|i〉 6= |f〉) on-shell matrix elements between two physical states

of the total Hilbert space, we can write the two equivalent relations

2Im〈f |T̂ |i〉 = 〈f |T̂ T̂ †|i〉 (114)

and,

2Im〈f |T̂ |i〉 =
∑

n

〈f |T |n〉〈n|T †|i〉 (115)

where in eq.(115) we have inserted the complete set of physical states |n〉 which does

not contain the states of the topological photon, but only the states of charged particles.

From eq.(115) we see that in a given order of perturbation theory, the Feynman diagrams

that contribute to the imaginary part on the l.h.s can not have intermediate on-shell

topological photon lines because |n〉 are physical states. On the other hand,however,

investigating eq.(114) in the framework of perturbation theory, we can see that diagrams

with intermediate on-shell photon lines do appear since the vacuum expectation value of

the product of the normal products of equal number of the operator Aµ (see eq.(105))

does not vanish as a consequence of the non-vanishing of the imaginary part of the photon

propagator. Therefore, demanding the consistency of eqs. (114) and (115) leads to the

important conclusion that in a given order of perturbation theory, the gauge-invariant

sum of the imaginary parts of the Feynman diagrams with a given number of intermediate

on-shell photon lines is equal to zero. The vanishing of this sum of the imaginary parts

does not mean the vanishing of the sum of the real part , or the vanishing of the imaginary

part of each distinct diagram. As a rule, the sum of such diagrams will not vanish and

will give contribution to the process involved. Moreover, each diagram in this sum will

be an analytic function of invariant variables. The imaginary part of a distinct diagram

will vanish only if the diagram is gauge-invariant. These arguments will be demonstrated

later when we consider a specific example below.
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Now, we illustrate these unitarity identities by an explicit example. Consider the case of

scattering of a fermion-antifermion pair in one loop order in pure CSQED. The S-matrix of

this theory is given by eq.(93). The gauge-invariant Feynman diagrams with intermediate

CS topological photon lines are shown in figure 1 below. The analytic expression for the

imaginary part of each of these diagrams is

Aa =
2g4

(2π)3

∫

d3kd3k′
(

δ+(k2)δ+(k′2)δ(p + q − k − k′)Gµλ(k)Gνσ(k
′)

×
v̄(q)γν(p/− k/ +m)γµu(p)ū(p′)γλ(p′/− k/+m)γσv(q′)

((p − k)2 −m2 + iǫ)((p′ − k)2 −m2 + iǫ)
) , (116)

Ab =
2g4

(2π)3

∫

d3kd3k′
(

δ+(k2)δ+(k′2)δ(p + q − k − k′)Gµλ(k)Gνσ(k
′)

×
v̄(q)γν(k/ − q/+m)γµu(p)ū(p′)γσ(p′/− k/+m)γλv(q′)

((k − q)2 −m2 + iǫ)((p′ − k)2 −m2 + iǫ)
) . (117)

where Gµν(k) = εµνλk
λ, and δ+(k2) = θ(k0)δ(k

2). For simplicity, we restrict ourselves

to the case of forward scattering in which case the imaginary part of these diagrams give

their contribution to the total cross-section of the process. As was shown in [14],a lengthy

calculation gives (an overall irrelevant multiplicative constant has been suppressed)

Aa = −

∫

d3kδ+(k2)

(

1 +
p.k

m2
+
q.k

p.k

)

= −Ab (118)

or,

Aa +Ab = 0 (119)

The same result can be obtained in the case of non-forward scattering too. This example

demonstrates the unitarity identities in the one-loop order.

It is not difficult to generalize the unitarity identities to the case when Maxwell-type terms

are present. In such cases, one must divide the total gauge field propagator in eq.(15) or

(62) into two parts (in the α = 0 gauge for example ): physical massive part and topo-

logical massless part. The operator Âµ in the exponent of the S-matrix in eq.(12) can

be viewed as the sum of two parts too: the massive physical (∼ δ(γ2µ2 − k2)), and the

massless topological part (∼ δ(k2)). States of the massive photon will appear now in the

25



total Hilbert space of the theory. So, imposing the unitarity condition on this S-matrix

in the sense of eqs.(114) and (115) will lead to the appearence of the topological unitarity

identities in this case too.

For example if we consider the diagrams with two intermediate photon lines in the one-loop

fermion-antifermion scattering, we get the two unitarity identities illustrated diagramati-

cally in figure 2 ( the lines with × represent the topological part of the gauge field propaga-

tor). The first identity means that the sum of the four diagrams (which is gauge-invariant)

with one on-shell intermediate topological photon line is zero. The second identity means

the same for the diagrams with two intermediate on-shell topological lines.

The identities developed above can be also shown to hold outside the framework of per-

turbation theory. That they should hold in the non-Abelian case as well, could be demon-

strated without too much difficulty.

5 Concluding Remarks

In this paper, we have shown that the covariant path integral quantization of the theories

of scalar and spinor particles interacting through the Abelian and non-Abelian pure CS

gauge fields, is mathematically ill-defined due to the absence of the transverse compo-

nents of these gauge fields. To define the path integral, it is necessary to introduce into

the classical action the Maxwell or Maxwell-type (in the non-Abelian theory) term that is

the only bilinear term in the gauge field that does not violate the gauge-invariance of the

action. This term also guarantees the gauge-invariant regularization and renormalization

of the theory, which becomes then superrenormalizable [2,3].

The generating functionals of the various models considered were constructed, and seen

to be formally the same as those of QED (or QCD) in 2+1 dimensions, with the substi-

tution of the CS gauge field propagator for the photon (or gluon) propagator. The CS

propagator in these models is seen to consist of two parts: the first part is the propagator

of a real massive photon (gluon) which contributes to the classical free Hamiltonian, and

its states appear in the Hilbert space of the total set of physical states of the system.
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The second part is that of the topological massless photon which does not contribute to

the free Hamiltonian, but leads to additional (in comparison with QED or QCD) inter-

action between the charged particles. The general solution for the free gauge field, when

constructed in a covariant gauge, was therefore seen to consist of a massive part, and a

massless topological part.

Taking the limits γ → ∞ and µ → 0 of the propagators and the general solutions of the

gauge fields (see eqs.(21)-(24) ) after renormalization, which is possible due to the finite

renormalization of these parameters [5-7], we get respectively pure CSQED and QED in

2+1 dimensions.

We carried out very carefully the path integral quantization of some models with the

non-Abelian CS field by the De Witt-Fadeev-Popov and the Batalin-Fradkin-Vilkovisky

methods, and showed that it is not necessary to quantize the dimensionless charge of the

theory. First, in the DFP approach we use gauge transformations which have zero winding

number since the integral over the gauge group takes into account only the contributions

near the identity element of the group (these elements of the group have zero winding

numbers).Also, the action in the exponent (after path integral quantization) is not gauge

but BRST-invariant, and due to the Grassmann nature of the BRST transformation , one

gets a zero winding number too !. The BFV approach gives the same BRST-invariant

expression for the action in the exponent of the path integral expression. Finally, the

definition of the generating functional (see eqs.(49),(59)) shows that for any gauge trans-

formation, the terms proportional to the winding number in the path integral expression

for the expectation value of any observable are cancelled due to the normalization of the

generating functional (see the footnote in the work [3] about the argument of J.Schonfeld

in this respect). It is well-known that the existence of BRST-invariance in renormalizable

gauge theories guarantees the implementation of Ward-Fradkin-Takahashi-Slavnov -Taylor

identities, and gauge-invariant renormalization of the theory. This invariance, in turn does

not require the quantization of the charge.

Unfortunately, a path integral representation of the S-matrix is not available for theories

with the pure CS field. This is because the ”in” and ”out” limits of the transverse part of
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the pure CS gauge field do not exist. In the general case, when the Maxwell-type term is

included in the action, such a representation can be constructed, and this will depend only

on the ”in” and ”out” solutions of the massive part of the gauge field. We constructed in

the general case, the S-matrix operator for all the Abelian and non-Abelian models, and

showed that this operator gives the correct expression for all the Feynman diagrams of

the theory, and formally differs from the usual case of QED and QCD in 2+1 dimensions

only by a specific type of Wick theorem for the gauge field.

Starting from this S-matrix operator, we have shown that the requirement of the unitarity

of the S-matrix leads to topolgical unitarity identities that were derived in [14]. These

identities demand that at each order of perturbation theory, the gauge-invariant sum of

the imaginary parts of the Feynman diagrams with a given number of intermediate on-shell

topological photon lines should vanish. These identities were illustrated by some exam-

ples in the Abelian case. The importance of these identities stems from the fact that they,

not only provide additional check of the gauge-invariance of the theory, but also highly

facilitates the perturbative gauge-invariant calculations of Feynman diagrams. It is also

possible to get strong restrictions on the dependence on invariant variables of the gauge-

invariant sum of the real parts of the Feynman diagrams for which the gauge-invariant

sum of the imaginary parts vanishes (on account of the analytic properties of Feynman

diagrams in the momentum space representation).
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