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Time dependence of joint entropy of oscillating quantum systems
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Abstract

The time dependent entropy (or Leipnik’s entropy) of harmonic and damped harmonic oscillators

is extensively investigated by using time dependent wave function obtained by the Feynman path

integral method. Our results for simple harmonic oscillator are in agrement with the literature.

However, the joint entropy of damped harmonic oscillator shows remarkable discontinuity with time

for certain values of damping factor. According to the results, the envelop of the joint entropy

curve increases with time monotonically. This results is the general properties of the envelop of

the joint entropy curve for quantum systems.
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I. INTRODUCTION

The investigation of time dependent entropy of the quantum mechanical systems attracts

much attention in recent years. For both open and closed quantum systems, the different

information-theoretic entropy measures have been discussed [2, 3, 4]. In contrast, the

joint entropy [5, 6] can also be used to measure the loss of information, related to evolving

pure quantum states [7]. The joint entropy of the physical systems which are named MACS

(maximal classical states) were conjectured by Dunkel and Trigger [8]. According to Ref. [8],

the joint entropy of the quantum mechanical systems increase monotonically with time but

this results are not sufficient for simple harmonic oscillator [9].

The aim of this study is to calculate the complete joint entropy information analytically

for simple harmonic and damped harmonic oscillator systems.

This paper is organized as follows. In section II, we explain fundamental definitions

needed for the calculations. In section III, we deal with calculation and results for harmonic

oscillator systems. Moreover, we obtain the analytical solution of Kernel, wave function in

both coordinate and momentum space and its joint entropy. We also obtain same quantities

for damped harmonic oscillator case. Finally, we present the conclusion in section IV.

II. FUNDAMENTAL DEFINITIONS

We deal with a classical system with d = sN degrees of freedom, where N is the particle

number and s is number of spatial dimensions [8]. We assume that the density function

g(x, p, t) = g(x1, ..., xd, p1, ..., pd, t) which is the non-negative time dependent phase space

density function of the system has been normalized to unity,

∫

dxdpg(x, p, t) = 1. (1)

The Gibbs-Shannon entropy is described by

S(t) = − 1

N !

∫

dxdpg(x, p, t)ln(hdg(x, p, t)), (2)

where h = 2πh̄ is the Planck constant. Schrödinger wave equation with the Born interpre-

tation [10] is given by

ih̄
∂ψ

∂t
= Ĥψ. (3)
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The quantum probability densities are defined in position and momentum spaces as |ψ(x, t)|2

and |ψ̃(p, t)|2, where |ψ̃(p, t)|2 is given as

ψ̃(p, t) =

∫

dxe−ipx/h̄

(2πh̄)d/2
ψ(x, t). (4)

Leipnik proposed the product function as [8]

gj(x, p, t) = |ψ(x, t)|2|ψ̃(p, t)|2 ≥ 0. (5)

Substituting Eq. (5) into Eq. (2), we get the joint entropy Sj(t) for the pure state ψ(x, t)

or equivalently it can be written in the following form [8]

Sj(t) = −
∫

dx|ψ(x, t)|2 ln |ψ(x, t)|2 −
∫

dp|ψ̃(p, t)|2 ln |ψ̃(p, t)|2 −

− ln hd. (6)

We find time dependent wave function by means of the Feynman path integral which has

form [11]

K(x′′, t′′; x′, t′) =

∫ x′′=x(t′′)

x′=x(t′)

Dx(t)e
i

h̄
S[x(t)]

=

∫ x′′

x′

Dx(t)e
i

h̄

R

t
′′

t′
L[x,ẋ,t]dt. (7)

The Feynman kernel can be related to the time dependent Schrödinger’s wave function

K(x′′, t′′; x′, t′) =
∞
∑

n=0

ψ∗
n(x

′, t′)ψn(x
′′, t′′). (8)

The propagator in semiclassical approximation reads

K(x′′, t′′; x′, t′) =
[ i

2πh̄

∂2

∂x′∂x′′
Scl(x

′′, t′′; x′, t′)
]1/2

e
i

h̄
Scl(x

′′,t′′;x′,t′). (9)

The prefactor is often referred to as the Van Vleck-Pauli-Morette determinant [12, 13]. The

F (x′′, t′′; x′, t′) is given by

F (x′′, t′′; x′, t′) =
[ i

2πh̄

∂2

∂x′∂x′′
Scl(x

′′, t′′; x′, t′)
]1/2

. (10)
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III. CALCULATION AND RESULTS

A. Simple Harmonic Oscillator (SHO)

To get the path integral solution for the SHO, we must calculate its action function. The

Lagrangian of the system is given by

L(x, ẋ, t) =
m

2
(ẋ2 − 1

2
ω2x2) (11)

Following a straightforward calculation, it is given by:

S(xcl(t
′′), xcl(t

′)) =
mω

2 sinωt
[(x′′2cl + x′2cl) cosωt− 2x′clx

′′
cl] (12)

with t = t′′ − t′ and x′cl = x0, x
′′
cl = x. Substituting Eq. (9) into Eq. (7), we obtain the

Feynman kernel [11]:

K(x, x0; t) = (
mω

2πh̄i sinωt
)
1

2 exp{−mω
2ih̄

[(x2 + x0
2) cotωt− 2x0x

sinωt
]}. (13)

By the use of the Mehler-formula

e−(x2+y2)/2
∞
∑

n=0

1

n!
(
z

2
)2Hn(x)Hn(y) =

1√
1− z2

exp[
4xyz − (x2 + y2)(1 + z2)

2(1− z2)
] (14)

where Hn is Hermite polynomials, we can write the Feynman kernel defining x ≡
√

mω/h̄x0,

y ≡
√

mω/h̄x and z = e−iωT

K(x, x0; t) =

∞
∑

n=0

e−itEn/h̄Ψ∗(x0)Ψ(x) (15)

with energy-spectrum and wave-functions:

En = h̄ω(n+
1

2
), (16)

Ψn(x) = (
mω

22nπh̄n!2
)
1

4Hn(

√

mω

h̄
x) exp(−mω

2h̄
x2). (17)

Time dependent wave function of the SHO is defined as

Ψ(x, t) =

∫

K(x, x0; t)Ψ(x0, 0)dx0. (18)

It can be written as

Ψ(x, t) =
(mω

πh̄

)1/4

exp
{

− ᾱ

4
− α2

2
− iωt

2

}

exp
[

− ᾱ2

4
e−2iωt + αᾱe−iωt

]

(19)
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where x̄ or ᾱ is mean of the Gaussian curve. The probability density has

|Ψ(x, t)|2 =
(mω

πh̄

)1/2

exp
[

− (α− ᾱ cosωt)2
]

(20)

where α =
√

mω
h̄
x. Thus it can be written as

|Ψ(x, t)|2 =
(mω

πh̄

)1/2

exp
[

− mω

h̄
(x− x̄ cosωt)2

]

(21)

This has been shown in Fig.1. In momentum space, the probability density has the form

|ψ̃(p, t)|2 =
( 1

mωπh̄

)1/2

exp
[ −p2
mωh̄

+
mωx̄2

2h̄

(

cos 2ω(t)− 1
)

− 2px̄

h̄
sinω(t)

]

. (22)

The joint entropy of harmonic oscillator becomes

Sj(t) = ln
e

2
+

4mω

h̄
x̄2 sin2 ω(t). (23)

In Fig.2, the joint entropy of this system was plotted by using Mathematica in three dimen-

sion. As known from fundamental quantum mechanics and classical dynamics, displacement

of simple harmonic oscillator from equilibrium depends on harmonic functions (e.g sine or

cosine function). Therefore, other properties of the SHO systems indicate the same har-

monic behavior. If the frequency of the SHO is sufficiently small, the system shows the

same behavior as the free particle[8]. As seen from Fig.3 and Fig.4, envelop of the sinusoidal

curve is also monotonically increase with omega and constant with time at constant omega,

respectively. When the frequency increases, the joint entropy of this system indicates a fluc-

tuation with increasing amplitude with time. If t goes to zero, it is important that Eq.(20)

is in agreement with following general inequality for the joint entropy:

Sj(t) ≥ ln(
e

2
) (24)

originally derived by Leipnik for arbitrary one-dimensional one-particle wave functions.

B. Damped Harmonic Oscillator (DHO)

The DHO is very important physical system in all physical systems defining an interaction

with its environment. The Lagrangian of the DHO is given by

L(x, ẋ, t) = eγt
(m

2
ẋ2 − m

2
ω2x2 + j(t)x)

)

. (25)
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Damped free particle kernel is

K(x, t; x0, 0) =
( γmeγt/2

4πih̄ sinh 1
2
γt

)2

exp
( iγmeγt/2

4h̄ sinh 1
2
γt

(x− x0)
2
)

. (26)

The DHO kernel has the form [14]

K(x, t; x0, 0) =
( mωeγt/2

2πih̄ sinhωt

)1/2

exp
( i

h̄
Scl(x, x0, t)

)

, (27)

or explicitly

K(x, t; x0, 0) =
( mωeγt/2

2πih̄ sinωt

)1/2

exp
[im

2h̄
(ax2 + 2bx20 + 2xx0c+ 2xd+ 2x0e− f)

]

. (28)

Where the coefficients a, b, c, d, f are [14]

a = (−γ
2
+ ω cotωt)eγt, (29)

b = (
γ

2
+ ω cotωt), (30)

c = (− ω

sinωt
eγt), (31)

d =
eγt

m sinωt

∫ t

0

j(t′)eγt
′/2 sinωt′dt′, (32)

e =
1

m sinωt

∫ t

0

j(t′)eγt
′/2 sinω(t− t′)dt′, (33)

f =
1

m2ω

∫ t

0

∫ t′

0

j(t′)j(s)eγ(s+t′/2) sinω(t− t′) sinωsdsdt′. (34)

The wave function ψn(x, 0) and energy eigenvalues become

ψn(x, 0) = N0Hn(α0x) exp
[

− 1

2
α0x

2
]

(35)

and

En =
(

n+
1

2

)

h̄ω0 (36)

where Hn(x) is the Hermite polynomial of order n and the coefficients are

α0 = (
mω

h̄
)1/2, N0 =

α1/2

(2nn!
√
π)1/2

. (37)
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The time dependent wave function is obtained as [14]

ψn(x, t) =

∫ ∞

−∞

dx0K(x, t; x0, 0)ψ(x, 0)

= N
1

(2nn!)1/2
exp

{

− i
[(

n+
1

2

)

cot−1×

×
( γ

2ω
+ cotωt+ f

)]}

exp[−(Ax2 +

+ 2Bx)]Hn[D(x− E)]. (38)

To simplify the evaluation, we set j(t) = 0. Such that kernel and wave function of the DHO

[15] become

K(x, t; x0, 0) =
( mωeγt/2

2πih̄ sinωt

)1/2

exp
[im

4h̄

(

γ(x20 − eγtx2) +
2ω

sinωt
×

× [(x20 + x2eγt) cosωt− 2eγt/2xx0]
)]

(39)

where ω = (ω2
0 − γ2/4)1/2 and

ψn(x, t) =
N

(2nn!)1/2
exp

{

− i
[(

n+
1

2

)

cot−1
( γ

2ω
+ cotωt

)]}

Hn[Dx] exp[−Ax2]. (40)

Where D, A and N are

D(t) =
αeγt/2

η(t) sinωt
, (41)

η2(t) =
γ2

4ω2
+
γ

ω
cosωt+ csc2 ωt, (42)

A(t) =
mω

2h̄
eγt

[ 1

η2(t) sin2 ωt
+ i

( γ

2ω
− cotωt+

γ/2ω + cotωt

η2 sin2 ωt

)]

, (43)

and

N(t) =
(mω

πh̄

)1/4 exp(γt
4
)

η(t)(sinωt)1/2
. (44)

The ground state wave function is given by

ψ0(x, t) = N(t) exp
{

− i
[(1

2

)

cot−1
( γ

2ω
+ cotωt

)]}

exp[−A(t)x2]. (45)

So the probability distribution in coordinate space becomes

|ψ0(x, t)|2 = N(t)2 exp[−2A′(t)x2] (46)

where A′ is defined by

A′(t) =
mω

2h̄
eγt

[ 1

η2(t) sin2 ωt

]

. (47)
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The probability density in coordinate space is shown in Fig.5 and Fig.6 for the different

values of γ. The probability density in momentum space can be written easily

|ψ0(p, t)|2 =
N(t)2

√

2A(t)A(t)†h̄
exp

[

− p2

2h̄2
A′(t)

A(t)A(t)†

]

. (48)

The time dependent joint entropy can be obtained from Eq. (2) as

Sj(t) = N(t)2
√

π

2A′(t)

[

(lnN(t)2 − 1

2
)− 1

2

√

1

2A(t)A(t)†

(

ln
N(t)2

2A(t)A(t)†
− 1

2

)]

− ln 2π.(49)

The joint entropy depends on damping factor γ. When γ → 0, all the above results

are converged to simple harmonic oscillator. However, when the γ 6= 0, the joint entropy

has remarkably different features of the SHO. As can be seen in Fig.7 and Fig.8, the joint

entropy of the DHO has very interesting properties. One of the most important properties

of the joint entropy is the probability of taking values for small γ values. As we know

from literature the joint entropy must be positive and monotonically increase.However, this

system has different properties from literature because of periodically discontinuity of the

joint entropy. On the other hand, envelop of this curve is also monotonically increase with

time for large γ. As can be shown these results, the envelop of the joint entropy curves

has general properties as monotonically increase for quantum systems. Thus, we have found

that the joint entropy is depend on properties of investigated system.

IV. CONCLUSION

We have investigated the joint entropy for explicit time dependent solution of one-

dimensional harmonic oscillators. We have obtained the time dependent wave function by

means of Feynmann Path integral technique. Our results show that in the simple harmonic

oscillator case, the joint entropy fluctuated with time and frequency. This result indicates

that the information periodically transfer between harmonic oscillators.

On the other hand, in the DHO case, the joint entropy shows a remarkable smooth

discontinuities with time. It also depends on choice of initial values of parameter i.e. ω.

These results can be explained as the information exchange between harmonic oscillator

and system which is supplied damping. But the information exchange appears in certain

values of time for damping. If the damping factor increases, the information entropy has

not periodicity anymore. Moreover, for certain values of the damping factor, the transfer of

information between systems is exhausted.
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FIG. 5: The probability function as a function of time and coordinate at γ = 0.1.
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FIG. 6: The probability function as a function of time and coordinate at γ = 0.5.

15



FIG. 7: The 3D graph of the joint entropy of damped harmonic oscillator for damping factor(γ)

at ω0 = 2.
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FIG. 8: The 3D graph of the joint entropy of damped harmonic oscillator for damping factor(γ)

at ω0 = 1.
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