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Abstract

We compute the rates for q q annihilation into charginos and neutralinos by

taking into account the effects of supersymmetric soft phases. In particular,

the phase of the µ parameter gains direct accessibility via the production of

dissimilar charginos and neutralinos. The phases of the trilinear soft masses

do not have a significant effect on the cross sections. Our results can be

important for sparticle searches at the LHC.
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I. INTRODUCTION

Supersymmetry (SUSY), is one of the most favored extensions of the SM which is capable

of stabilizing the ino-sector of fundamental scalars against the ultraviolet divergences. The

(soft) breaking of SUSY, around the TeV scale, brings about two new ingredients compared

to the standard electroweak theory (SM): First, there are novel sources of flavor violation

coming through the off–diagonal entries of the squark mass matrices. Second, there are novel

sources of CP violation coming from the phases of the soft masses. The first effect, which

cannot be determined theoretically, is strongly constrained by the FCNC data [1] , and

therefore, as a predictive case, it is convenient to restrict all flavor–violating transitions to

the charged–current interactions where they proceed via the known CKM angles. However,

this very restriction of the flavor violation to the SM one does not evade new sources of CP

violation. Indeed, the model possesses various flavor–blind CP–odd phases contained in the

complex µ parameter, A parameters, and gauge fermion masses Mi.

These phases form the new sources of CP violation which shows up in the electric dipole

moments (EDMs) of leptons and hadrons (See [2] and references therein). For heavy quark

EDMs see [3]) and for the rate asymmetries of various heavy–light mesons [4]. Therefore, it

is of fundamental importance to determine appropriate collider processes where all or some

of the SUSY CP phases can be inferred or measured. In fact, the effects of the SUSY CP

phases on the Higgs production have been already analyzed in [5,6]. In this work we will

discuss the chargino and neutralino production at LHC energies and ways of isolating the

phase of the µ parameter from the cross section. We shall compute the cross section for

qq̄ → χ̃+
i χ̃

−
j as a function of ϕµ = Arg[µ] for various values of |µ| and the SU(2) gaugino

masses M1,M2. We shall also compute the cross section for qq̄ → χ̃0
i χ̃

0
j for various SUSY

parameters.
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II. QQ̄ → χ̃+
I χ̃

−
J

Our analysis is similar to that used for the linear collider processes [7]. The relevant Feynman

diagrams are depicted in Fig. 1. In what follows we mainly deal with the first two diagrams

since the third one is suppressed by presumably heavy squarks. Then it is obvious that the

amplitude for the process depends exclusively on the phases in the chargino sector, i.e, the

phase of the µ parameter.

Here we summarize the masses and couplings of the charginos for completeness (See [10] for

details). The charginos which are the mass eigenstates of charged gauginos and Higgsinos

are described by a 2× 2 mass matrix

MC =




M2

√
2MW cos β

√
2MW sin β |µ|eiϕµ


 (1)

where M2 is the SU(2) gaugino mass taken to be real throughout the work. The masses of

the charginos as well as their mixing matrices follow from the bi-unitary transformation

C†
RMCCL = diag(mχ1 , mχ2) (2)

where CL and CR are 2× 2 unitary matrices, and mχ1 , mχ2 are the masses of the charginos

χ1, χ2 such that mχ1 < mχ2 . It is convenient to choose the following explicit parametrization

for the chargino mixing matrices:

CL =




cos θL sin θLe
iϕL

− sin θLe
−iϕL cos θL


 (3)

CR =




cos θR sin θRe
iϕR

− sin θRe
−iϕR cos θR


 ·



eiφ1 0

0 eiφ2


 (4)

where the angle parameters θL,R, ϕL,R, and φ1,2 can be determined from the defining equation

(1). A straightforward calculation yields
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tan 2θL =

√
8MW

√
M2

2 cos
2 β + |µ|2 sin2 β + |µ|M2 sin 2β cosϕµ

M2
2 − |µ|2 − 2M2

W cos 2β

tan 2θR =

√
8MW

√
|µ|2 cos2 β +M2

2 sin
2 β + |µ|M2 sin 2β cosϕµ

M2
2 − |µ|2 + 2M2

W cos 2β

tanϕL =
|µ| sinϕµ

M2 cot β + |µ| cosϕµ

tanϕR = − |µ| cotβ sinϕµ

|µ| cotβ cosϕµ +M2

(5)

in terms of which the remaining two angles φ1 and φ2 read as follows

tanφi =
Im[Qi]

Re[Qi]
(6)

where i = 1, 2 and

Q1 =
√
2MW [cos β sin θL cos θRe

−iϕL + sin β cos θL sin θRe
iϕR]

+ M2 cos θL cos θR + |µ| sin θL sin θRei(ϕµ+ϕR−ϕL)

Q2 = −
√
2MW [cos β sin θR cos θLe

−iϕR + sin β cos θR sin θLe
iϕL ]

+ M2 sin θL sin θRe
i(ϕL−ϕR) + |µ| cos θL cos θReiϕµ . (7)

The origin of the phases θL,R, ϕL,R, and φ1,2 is easy to trace back. The angles θL and θR would

be sufficient to diagonalize, respectively, the quadratic mass matrices M †
CMC and MCM

†
C if

MC were real. As a result one needs the additional phases ϕL,R which are identical to the

phases in the off–diagonal entries of the matrices M †
CMC and MCM

†
C , respectively. However,

these four phases are still not sufficient for making the chargino masses real positive due to

the bi-unitary nature of the transformation, and hence, the phases φ1 and φ2 can not also

be made real positive. Finally, inserting the unitary matrices CL and CR into the defining

equation (1) one obtains the following expressions for the masses of the charginos

m2
χ1(2)

=
1

2

{
M2

2 + |µ|2 + 2M2
W − (+)[(M2

2 − |µ|2)2 + 4M4
W cos2 2β

+ 4M2
W (M2

2 + |µ|2 + 2M2|µ| sin 2β cosϕµ)]
1/2

}
. (8)
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The fundamental SUSY parameters M2, |µ|, tanβ and the phase parameter cosϕµ can be

extracted from the chargino χ̃±
1,2 parameters [7] i.e. the masses mχ̃±

1,2
and the two mixing

angles φL and φR of the left and right chiral components of the wave function. These mixing

angles are physical observables and they can be measured just like the chargino masses mχ̃±

1,2

in the process q + q̄ → χ̃+
i + χ̃−

j . The two angles φL and φR and the nontrivial phase angles

{ϕL, ϕR, φ1, φ2} define the couplings of the chargino-chargino-Z vertices:

〈
χ̃−
1L |Z| χ̃−

1L

〉
= − e

sW cW
[s2W − 3

4
− 1

4
cos 2θL]

〈
χ̃−
1L |Z| χ̃−

2L

〉
= +

e

4sW cW
e−iϕL sin 2θL

〈
χ̃−
2L |Z| χ̃−

2L

〉
= − e

sW cW
[s2W − 3

4
+

1

4
cos 2θL]

〈
χ̃−
1R |Z| χ̃−

1R

〉
= − e

sW cW
[s2W − 3

4
− 1

4
cos 2θR]

〈
χ̃−
1R |Z| χ̃−

2R

〉
= +

e

4sW cW
e−i(ϕR−φ1+φ2) sin 2θR

〈
χ̃−
2R |Z| χ̃−

2R

〉
= − e

sW cW
[s2W − 3

4
+

1

4
cos 2θR] (9)

where sW = sin θW is the weak angle. Note that every vertex here is an explicit function

of ϕµ via the various mixing angles. However, the Z coupling to unlike charginos χ̃+
i χ̃

−
j is

manifestly complex, and its phase vanishes in the CP–conserving limit, ϕµ → 0, π.

Obviously, the photon vertex is independent of the SUSY phases:

〈
χ̃−
iL,R |γ| χ̃−

jL,R

〉
= eδij (10)

The process qq̄ → χ̃+
i χ̃

−
j is generated by the two mechanisms shown in Fig. 1.: the s-channel

γ and Z exchanges, and t-channel q̃ exchange, where the latter is consistently neglected

below. The transition amplitude can be parameterized as

4



T (qq̄ → χ̃+
i χ̃

−
j ) =

e2

s
Qαβ[v̄(q̄)γµPαu(q)][ū(χ̃

−
i )γ

µPβv(χ̃
+
j )] (11)

where the charges Qαβ are defined such that the first index corresponds to the chirality of the

qq current and the second one to chargino current. For various final states, their expressions

are given by:

(i) χ̃−
1 χ̃

+
1 for q = u, c

QLL = 1 +
DZ

s2W c2W
(
1

2
− 2

3
s2W )(s2W − 3

4
− 1

4
cos 2φL)

QLR = 1 +
DZ

s2W c2W
(
1

2
− 2

3
s2W )(s2W − 3

4
− 1

4
cos 2φR)

QRL = 1 +
DZ

c2W
(−2

3
)(s2W − 3

4
− 1

4
cos 2φL)

QRR = 1 +
DZ

c2W
(−2

3
)(s2W − 3

4
− 1

4
cos 2φR) (12)

(ii) χ̃−
1 χ̃

+
1 for q = d, s

QLL = 1 +
DZ

s2W c2W
(−1

2
+

1

3
s2W )(s2W − 3

4
− 1

4
cos 2φL)

QLR = 1 +
DZ

s2W c2W
(−1

2
+

1

3
s2W )(s2W − 3

4
− 1

4
cos 2φR)

QRL = 1 +
DZ

c2W
(+

1

3
)(s2W − 3

4
− 1

4
cos 2φL)

QRR = 1 +
DZ

c2W
(+

1

3
)(s2W − 3

4
− 1

4
cos 2φR) (13)

(iii) χ̃−
1 χ̃

+
2 for q = u, c

5



QLL =
DZ

4s2W c2W
(
1

2
− 2

3
s2W )e−iϕL sin 2φL

QLR =
DZ

4s2W c2W
(
1

2
− 2

3
s2W )e−i(ϕR−φ1+φ2) sin 2φR

QRL =
DZ

4c2W
(−2

3
)e−iϕL sin 2φL

QRR =
DZ

4c2W
(−2

3
)e−i(ϕR−φ1+φ2) sin 2φR (14)

(iv) χ̃−
1 χ̃

+
2 for q = d, s

QLL =
DZ

4s2W c2W
(−1

2
+

1

3
s2W )e−iϕL sin 2φL

QLR =
DZ

4s2W c2W
(−1

2
+

1

3
s2W )e−i(ϕR−φ1+φ2) sin 2φR

QRL =
DZ

4c2W
(+

1

3
)e−iϕL sin 2φL

QRR =
DZ

4c2W
(+

1

3
)e−i(ϕR−φ1+φ2) sin 2φR (15)

(v) χ̃−
2 χ̃

+
2 for q = u, c

QLL = 1 +
DZ

s2W c2W
(
1

2
− 2

3
s2W )(s2W − 3

4
+

1

4
cos 2φL)

QLR = 1 +
DZ

s2W c2W
(
1

2
− 2

3
s2W )(s2W − 3

4
+

1

4
cos 2φR)

QRL = 1 +
DZ

c2W
(−2

3
)(s2W − 3

4
+

1

4
cos 2φL)

QRR = 1 +
DZ

c2W
(−2

3
)(s2W − 3

4
+

1

4
cos 2φR) (16)
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(vi) χ̃−
2 χ̃

+
2 for q = d, s

QLL = 1 +
DZ

s2W c2W
(−1

2
+

1

3
s2W )(s2W − 3

4
+

1

4
cos 2φL)

QLR = 1 +
DZ

s2W c2W
(−1

2
+

1

3
s2W )(s2W − 3

4
+

1

4
cos 2φR)

QRL = 1 +
DZ

c2W
(+

1

3
)(s2W − 3

4
+

1

4
cos 2φL)

QRR = 1 +
DZ

c2W
(+

1

3
)(s2W − 3

4
+

1

4
cos 2φR) (17)

Here all the amplitudes are built up by the γ and Z exchanges, and D(Z) stands for the Z

propagator: DZ = s/(s−m2
Z + imZΓZ).

In what follows, for convenience we will introduce four combinations of the charges

Q1 =
1

4
[|QRR|2 + |QLL|2 + |QRL|2 + |QLR|2]

Q2 =
1

2
Re[QRRQ

∗
RL +QLLQ

∗
LR]

Q3 =
1

4
[|QRR|2 + |QLL|2 − |QRL|2 − |QLR|2]

Q4 =
1

2
Im[QRRQ

∗
RL +QLLQ

∗
LR] (18)

so that the differential cross section can be expressed simply as

dσ

d cosΘ
(qq̄ → χ̃+

i χ̃
−
j ) =

πα2

2s
λ1/2{[1− (µ2

i − µ2
j)

2 + λ cos2Θ]Q1 + 4µiµjQ2 + 2λ1/2Q3 cosΘ}

(19)

with the usual two body phase space factor:

λ(1, µ2
i , µ

2
j) = [1− (µi + µj)

2][1− (µi − µj)
2] (20)

defined via the reduced mass µ2
i = m2

χ̃±

i

/s.
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Integrating the differential cross section over the center–of–mass scattering angle Θ we arrive

at the total cross section

σ = σ(ϕµ, µ,M2, s, tanβ) (21)

whose dependencies on ϕµ,M2 and |µ| will be analyzed numerically.

Besides the total cross section, it is necessary to analyze the rate asymmetries for having

better information about ϕµ. Concerning this point, we investigate the normal polarization

vector of the charginos which are inherently CP–odd and exist therefore if CP is broken in

the fundamental theory.

Defining the polarization vector ~P = (PL, PT , PN) in the rest frame of the chargino, where

PL denotes the component parallel to the charginos flight direction, PT the transverse com-

ponent in the production plane, and PN is the component normal to the production plane,

these three components can be expressed by helicity amplitudes in the following way [8]:

PL =
1

4

∑

σ=±

{
|〈σ; ++〉|2 + |〈σ; +−〉|2 − |〈σ;−+〉|2 − |〈σ;−−〉|2

}
/N

PT =
1

2
Re

{ ∑

σ=±

[|〈σ; ++〉〈σ;−+〉∗ + |〈σ;−−〉〈σ; +−〉∗]
}
/N

PN =
1

2
Im

{ ∑

σ=±

[|〈σ;−−〉〈σ; +−〉∗ − |〈σ; ++〉〈σ;−+〉∗]
}
/N (22)

The longitudinal and transverse components are P–odd and CP–even. The normal compo-

nent is P–even and CP–odd, and it can be generated by complex production amplitudes,

c.f. Ref. [9].

Therefore, the normal polarization vector is defined as:

PN = 8λ1/2µj sinΘ
Q4

N
(23)

for χ̃+
j χ̃

−
j , the j–th chargino, and is defined as:

PN [χ̃
±
i,j] = ±4λ1/2µj,i(F

2
R − F 2

L) sinΘ sin 2φL

× sin 2φR sin(βL − βR + γ1 − γ2)/N (24)
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for non-diagonal pairs χ̃+
i χ̃

−
j where i 6= j. Here

N = 4[(1− (µ2
i − µ2

j)
2 + λ cos2Θ)Q1 + 4µiµjQ2 + 2λ1/2Q3 cosΘ] (25)

and

FR =
DZ

4c2W
, FL =

DZ

4s2W c2W
(s2W − 1

2
). (26)

The polarization can be measured from the two final–state leptons, in the χ̃±
1,2 leptonic

decays. A non-vanishing PN will be sufficient to establish non-vanishing CP violation in the

system. Therefore, the value of non-vanishing PN implies the strength of the CP invariance

braking in SUSY.

III. QQ̄ → χ̃0
I χ̃

0
J

We also calculate neutralino pair production to investigate SUSY parameters, since neu-

tralino masses are relatively small to be produced at LHC energies.

The neutral supersymmetric fermionic partners of the B and W3 gauge bosons, B̃ and W̃ 3,

can mix with the neutral supersymmetric fermionic partners of the Higgs bosons, H̃1
0
and

H̃2

0
to form the mass eigenstates.

The neutralino mass matrix is

MN =




M1e
iϕ1

0

−mZswcβ

mZswsβ

0

M2

mZcwcβ

−mZcwsβ

−mZswcβ

mZcwcβ

0

|µ| eiϕµ

mZswsβ

−mZcwsβ

|µ| eiϕµ

0




(27)

whose diagonalization gives the physical states χ̃0
i , which are called neutralinos.

Since MN is a complex, symmetric matrix, it can be diagonalized by just one unitary matrix

N, such that
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N∗MNN
† = diag(mχ̃0

1
, mχ̃0

2
, mχ̃0

3
, mχ̃0

4
). (28)

The only Feynman diagram considered here is the last one given in Fig. 1, that is s-channel

Z exchange.

The matrix element for the process qq̄ → χ̃0
i χ̃

0
j is

T (qq̄ → χ̃0
i χ̃

0
j ) =

e2

s
Qij

αβ[v(q)γµPαu(q)]× [u(χ̃0
i )γ

µPβv(χ̃
0
j)] (29)

where the associated quark and neutralino currents are

(i) χ̃0
1χ̃

0
1 for q = u, c

QLL = +
DZ

s2W c2W
(
1

2
− 2

3
s2W )Z11

QLR = +
DZ

s2W c2W
(
1

2
− 2

3
s2W )Z∗

11

QRL = +
DZ

c2W
(−2

3
)Z11

QRR = +
DZ

c2W
(−2

3
)Z∗

11 (30)

(ii) χ̃0
1χ̃

0
1 for q = d, s

QLL = +
DZ

s2W c2W
(−1

2
+

1

3
s2W )Z11

QLR = +
DZ

s2W c2W
(−1

2
+

1

3
s2W )Z∗

11

QRL = +
DZ

c2W
(+

1

3
)Z11

QRR = +
DZ

c2W
(+

1

3
)Z∗

11 (31)
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and

Zij =
1

2
(Ni3N

∗
j3 −Ni4N

∗
j4) (32)

Z∗
ij = Zij

Using the predefined charge combinations, differential cross section can be expressed as

dσ

d cosΘ
(qq̄ → χ̃0

1χ̃
0
1) =

πα2

2s
λ1/2{[1 + λ cos2Θ]Q1 + 4µ2

1Q2 + 2λ1/2Q3 cosΘ} (33)

where

λ(1, µ2
1, µ

2
1) = [1− 4µ1

2] (34)

is defined via the reduced mass µ2
1 = m2

χ̃0
1
/s. Q1, Q2, and Q3 are as defined before.

Integrating the differential cross section over the center–of–mass scattering angle Θ we arrive

at the total cross section

σ = σ(M1, µ,M2, s, tanβ) (35)

whose dependence on M1, |µ| and s will be analyzed numerically for M2 = 150 GeV and

tan β = 30.

IV. NUMERICAL ESTIMATES

A. Chargino production

In this section we will discuss the dependence of the chargino production cross section on

ϕµ,M2, |µ| and
√
s. We everywhere apply the existing collider constraint that mχ2 >

104 GeV .
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In Table 1. we give the cross section values for qq̄ → χ̃+
1 χ̃

−
1 and qq̄ → χ̃+

1 χ̃
−
2 where M2 = 150,

200, 250 GeV, µ = 150, 200, 250 GeV, tanβ = 4, 10, 30, 50, and ϕµ = π/3 are used in the

calculations.

In Fig. 2 and Fig. 5 we show the dependence of the cross sections qq̄ → χ̃+
1 χ̃

−
1 and

qq̄ → χ̃+
1 χ̃

−
2 on ϕµ for M2 = 150, 300 GeV, µ = 150, 300 GeV, and tanβ = 30.

For the process qq̄ → χ̃+
1 χ̃

−
1 , the dependence of the cross section on ϕµ is very weak for the

light charginos. As seen from the Figs. 3 and 4, the more spectacular enhancement implies

the heavier chargino mass.

In Fig. 6 we show the dependence of the cross sections qq̄ → χ̃+
1 χ̃

−
2 on ϕµ for µ = 150 GeV,

and tanβ = 30, as a function of M2. Again, there is small dependence of the cross section

on ϕµ.

The increase of the cross section is tied up to the variation of the chargino masses with

the phases. It is clear that as ϕµ : 0 → π the mass splitting of the charginos decrease,

as expected from the Equation 8. This is an important effect which implies that the cross

section is larger than what one would expect from the CP–conserving theory [7].

Apart from the cross section itself, one can analyze various spin and charge asymmetries

which are expected to have an enhanced dependence on ϕµ. The normal polarization in

qq̄ → χ̃+
1 χ̃

−
1 is zero since the χ̃+

1 χ̃
−
1 γ and χ̃+

1 χ̃
−
1 Z vertices are real even for non-zero phases

in the chargino mass matrix.

In Fig. 7 we show the normal polarization PN of the unlike charginos in qq̄ → χ̃+
1 χ̃

−
2 which

has a different dependence on the phases. Here again M2 = 150, 300 GeV, µ = 150, 300

GeV, tanβ = 30, and ϕµ = π/2.

The dependence of the normal polarization on the value of Θ and ϕµ is shown in Fig. 8,

where the normal polarization has its maximum at Θ = π/2 as expected from the Eqn. 23,

and at ϕµ = π/2 as stated above.

However, we believe that for clarifying the essence of measuring ϕµ the first quantity to be
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tested is the cross section itself.

B. Neutralino production

In this section, the dependence of the neutralino production cross-section on center of mass

energy
√
s is investigated for µ = 150, 200 GeV, M1 = 150, 200 GeV and for M2 = 150, 200

GeV. In Fig. 9 we show the dependence of the cross section for qq̄ → χ̃0
1χ̃

0
1 on

√
s, for

ϕµ = 0, π
2
, π and 3π

2
, where M1 = 150 GeV, M2 = 100 GeV and µ = 200 GeV. The cross-

section is maximum at about
√
s = 230 GeV and drops as

√
s becomes higher. The variation

of the cross section on ϕµ is seen clearly. The highest cross section is obtained for ϕµ = π,

when M1 < µ, as expected from the CP–conserving theory [7].

In Fig. 10, we show the dependence of the cross section for qq̄ → χ̃0
1χ̃

0
1 on

√
s and µ, for

ϕµ = π
2
, M1 = 150 GeV, M2 = 150 GeV and tanβ = 30.

Finally, in Fig. 11, we plot the cross section for qq̄ → χ̃0
1χ̃

0
1 as a function of µ and ϕµ, for

M1 = 150 GeV, M2 = 150 GeV and tan β = 30. The dependence of the cross section on ϕµ

is seen clearly in this figure. At ϕµ = π the cross section is lowest when M1 > µ and highest

when M1 < µ respectively.

V. DISCUSSION AND CONCLUSION

We have analyzed the production of charginos and neutralinos at LHC energies with the aim

of isolating the phase of the µ parameter. The measurement of these processes will be an

important step for determining the CP violation sources of low–energy supersymmetry. Our

numerical results suggest that there is a strong dependence on the phase of the µ parameter

especially when |µ| is comparable to the gaugino masses.

In true experimental environment, the cross sections we have discussed above form the

subprocess cross sections to be integrated over appropriate structure functions. However,

13



given the energy span of LHC that it will be possible to probe sparticles up to 2 TeV, it is

clear that the center–of–mass energies we discuss are always within experimental reach. If the

experiment concludes ϕµ ∼ O(1) then, given strong bounds from the absence of permanent

EDMs for electron, neutron, atoms and molecules, one would conclude that the first two

generations of sfermions will be hierarchically split from the ones in the third generation.

In case the experiment reports a small ϕµ then presumably all sfermion generations can lie

right at the weak scale in agreement with the EDM bounds. In this case, where ϕµ is a

small fraction of π, one might expect that the minimal model is UV–completed above the

TeV scale such that the µ parameter is promoted to a dynamical SM–singlet field (e.g. the

Z ′ models).
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FIGURE CAPTIONS

FIGURE 1. The lowest order Feynman diagrams for qq̄ → χ̃+
i χ̃

−
j and qq̄ → χ̃0

i χ̃
0
j processes.

FIGURE 2. The plot of cross section for qq̄ → χ̃+
1 χ̃

−
1 as a function of ϕµ for the values of

µ = 150, 300 GeV, M2 = 150, 300 GeV and tanβ = 30 .

FIGURE 3. The plot of cross section for qq̄ → χ̃+
1 χ̃

−
1 as a function of ϕµ and M2, for the

values of µ = 150 GeV and tanβ = 30 .

FIGURE 4. The plot of cross section for qq̄ → χ̃+
1 χ̃

−
1 as a function of ϕµ and µ, for the

values of M2 = 200 GeV and tanβ = 30 .

FIGURE 5. The plot of cross section for qq̄ → χ̃+
1 χ̃

−
2 as a function of ϕµ for the values of

µ = 150, 300 GeV, M2 = 150, 300 GeV and tanβ = 30 .

FIGURE 6. The plot of cross section for qq̄ → χ̃+
1 χ̃

−
2 as a function of ϕµ and M2, for the

values of µ = 150 GeV and tanβ = 30 .

FIGURES 7. The plot of normal polarization for qq̄ → χ̃+
1 χ̃

−
2 as a function of Θ for the

values of µ = 150, 300 GeV, M2 = 150, 300 GeV and tan β = 30, when ϕµ = π/2 .

FIGURES 8. 3-dimensional plot of normal polarization for qq̄ → χ̃+
1 χ̃

−
2 as a function of Θ

and ϕµ for the values of µ = 150 GeV, M2 = 150 GeV and tanβ = 30.

FIGURE 9. The plot of cross section for qq̄ → χ̃0
1χ̃

0
1 as a function of

√
s for the values of

ϕµ = 0, π
2
, π and 3π

2
,where M1 = 150 GeV, M2 = 150 GeV, µ = 200 GeV and tanβ = 30.

FIGURE 10. The plot of cross section for qq̄ → χ̃0
1χ̃

0
1 as a function of

√
s and µ , where

ϕµ = π
2
, M1 = 150 GeV, M2 = 150 GeV and tan β = 30.

FIGURE 11. The plot of cross section for qq̄ → χ̃0
1χ̃

0
1 as a function of ϕµ and µ , where

√
s

= 500 GeV, M1 = 150 GeV, M2 = 150 GeV and tan β = 30.
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TABLES

TABLE I. The cross section values for qq̄ → χ̃+
1 χ̃

−
1 and qq̄ → χ̃+

1 χ̃
−
2 processes for ϕµ = π/3,

µ = 150, 200, 250 GeV, M2 = 150, 200, 250 GeV, and tanβ = 4, 10, 30, 50.

tanβ M2(GeV ) µ(GeV ) σ(qq̄ → χ̃+
1 χ̃

−
1 )(pb) σ(qq̄ → χ̃+

1 χ̃
−
2 )(pb)

4 150 150 4.76 0.25

4 150 200 5.41 0.26

4 150 250 5.90 0.16

4 200 150 4.02 0.15

4 200 200 4.45 0.16

4 200 250 4.93 0.00

4 250 150 3.57 0.07

4 250 200 3.64 0.00

4 250 250 3.75 0.00

10 150 150 4.76 0.24

10 150 200 5.42 0.25

10 150 250 5.91 0.15

10 200 150 3.98 0.14

10 200 200 4.42 0.15

10 200 250 4.91 0.00

10 250 150 3.53 0.06

10 250 200 3.58 0.00

10 250 250 3.66 0.00

continued
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30 150 150 4.75 0.24

30 150 200 5.43 0.25

30 150 250 5.92 0.15

30 200 150 3.96 0.14

30 200 200 4.40 0.15

30 200 250 4.89 0.00

30 250 150 3.50 0.06

30 250 200 3.54 0.00

30 250 250 3.60 0.00

50 150 150 4.75 0.24

50 150 200 5.43 0.25

50 150 250 5.92 0.15

50 200 150 3.95 0.14

50 200 200 4.39 0.15

50 200 250 4.89 0.00

50 250 150 3.50 0.06

50 250 200 3.53 0.00

50 250 250 3.59 0.00
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