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Abstract

We study some thermodynamics quantities for the Klein-Gordon equation with a linear plus

inverse-linear, scalar potential. We obtain the energy eigenvalues with the help of the quantization

rule coming from the biconfluent Heun’s equation. We use a method based on the Euler-MacLaurin

formula to compute the thermal functions analytically by considering only the contribution of pos-

itive part of spectrum to the partition function.
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I. INTRODUCTION

If the one-dimensional linear potential having a form proportional to |x| is considered as

the time-like component of a Lorentz vector then this potential becomes related with the

Coulomb potential [1, references therein]. The linear potential is also a basic ground for

confinement of the particles having an odd half-integer spin in the view of quantum field

theory. If we consider the linear potential as a Lorentz scalar, then it becomes important for

the structure of quarkonium. So, the one-dimensional linear potential has received a great

interest in literature. The solutions of the Dirac equation and the non-relativistic limit for a

linear scalar potential have been studied in Ref. [2]. The bound state solutions of the Dirac

equation have been analyzed for the one-dimensional linear potential with Lorentz scalar and

vector couplings [1]. Some other relativistic equations such as the Duffin-Kemmer-Petiau

[3], and the Klein-Gordon (KG) equation [4] have been also studied for the linear potential.

For the non-relativistic case, namely the Schrodinger equation, it is well known that the

analytical solutions are obtained in terms of Airy functions [4].

The potential writing as inversely linear (∼ |x|−1) denotes another interesting interaction.

This is because this potential represents the hydrogen atom in one-dimensional space [5].

The non-relativistic results for this potential show that the ground-state solution has an

infinite energy with an eigen function written in terms of delta function near the origin [5].

Analyzing this potential for the Klein-Gordon equation presents unacceptable solutions with

the help of continuous dimensionality technique [6]. As a result, it could be interesting to

solve the Klein-Gordon equation for the combination of the above potentials writing as

V (x) = a1 + a2|x|+
a3
|x| ,

to find the statistical quantities for the whole system.

The study of the thermodynamics quantities for quantum systems in different potentials

has been received a special interest for last few decades. In Ref. [7], the one-dimensional

Dirac-oscillator has been analyzed in a thermal bath, and then the three dimensional case

has been computed in Ref. [8]. The Dirac/Klein-Gordon oscillators have been analyzed in

thermodynamics point of view by using a different method in Ref. [9]. The Dirac equation on

graphene has been solved to study the thermal functions in Ref. [10]. The non-commutative

effects on thermodynamics quantities have been also discussed on graphene in literature [11,

12]. The spin-one DKP oscillator has been analyzed for the statistical functions by taking
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into account the non-commutative effects with an external magnetic field [13]. In Ref. [14],

the thermodynamics properties of a harmonic oscillator plus an inverse square potential have

been studied within the non-relativistic region.

The paper is organized as follows. In Section II, we obtain the bound state solutions

of the Klein-Gordon equation for the above potential with the help of the quantization

condition giving the biconfluent Heun’s eqution. We will see that the results reveal an

energy-eigenvalue equation which is independent of the potential parameter a1. In Section

III, we compute the partition function, Z(β), by using the Euler-MacLaurin formula in terms

of a dimensionless parameter m̄ by restricting ourselves to the case where the particle-particle

interactions appear only. For this case, the partition function does not involve a sum over

the negative-energy states [15]. We search then the other thermal quantities such as the

free energy, the mean energy, and the specific heat numerically. In Section IV, we give our

conclusions.

II. THE BOUND STATES

The time-independent one-dimensional Klein-Gordon equation with scalar, VS(x), and

vector, VV (x), potentials reads as [16]
{

− d2

dx2
+Q2[mc2 + VS(x)]

2 −Q2[VV (x)−E]2
}

ψ(x) = 0 , (1)

with Q = 1/~c, c is the speed of light, m is the rest mass, and E is the energy. Here we

tend to the vector potential as VV (x) = 0, and the scalar part given as above. So, we have

d2ψ(x)

dx2
− Q2

[

(mc2 + a1)
2 + 2a2a3 + 2a3(mc

2 + a1)
1

|x| +
a23
x2

+ 2a2(mc
2 + a1)|x| − a22x

2

]

ψ(x)

= −Q2E2ψ(x) , (2)

By defining a new variable y =
√
Qa2 |x|, and using the abbreviations

ε1 =
Q

a2
[E2 − (mc2 + a1)

2 − 2a2a3] ;A1 = −2Qa3(mc
2 + a1)

√

Q

a2

A2 = −Q2a23 ;A3 = −2

√

Q

a2
(mc2 + a1) , (3)

we have

d2ψ(y)

dy2
+

(

ε1 +
A1

y
+
A2

y2
+ A3y − y2

)

ψ(y) = 0 . (4)
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In order to get a more suitable form for Eq. (4) we write the wave function as

ψ(y) = |y|pe−qy2−ryφ(y) , (5)

with

p =
1

2
+

1

2

√

1− 4A2 , (6)

Now substituting Eq. (5) into Eq. (4), the resulting equation reads

yφ′′(y) + (2p− 2ry − 4qy2)φ′(y) +
[

(−4pq + r2 + ε1)y − (2pr − a1)
]

φ(y) = 0 , (7)

This equation is the biconfluent Heun’s differential equation having a general form [17]

ξu′′(ξ) + (1 + c1 − c2ξ − 2ξ2)u′(ξ) +

{

(c3 − c1 − 2)ξ − 1

2
[c4 + c2(1 + c1)]

}

u(ξ) = 0 , (8)

with solutions the so-called biconfluent Heun functions, HB

φ(y) ∼ HB

(

√

1− 4A2 , 2Q
√
a2 (mc

2 + a1), 1 + γ2 + ε1,
4Q2a3√
Qa2

(mc2 + a1), y

)

. (9)

The biconfluent Heun’s equation has many applications within different subjects to find-

ing the quantization condition and the wave functions for the system under consideration

[18-21]. The general solution of this equation can be computed by using the Frobenius

methods, and the biconfluent Heun series results in a polynomial form of degree n when [18]

ε1 +
1

4
A2

3 − 2p = 2n , (10)

with n = 0, 1, 2, . . .. By using Eq. (3), we obtain the bound states of the system

E2
n = 2a2a3 +

a2
Q

(

2n+ 1 +
√

1 + 4Q2a23

)

, (11)

with the eigenfunctions

ψ(y) ∼ |y| 12+ 1

2

√
1−4A2 e

1

2
(A3y−y2)

× HB

(

√

1− 4A2 , 2Q
√
a2 (mc

2 + a1), 1 + γ2 + ε1,
4Q2a3√
Qa2

(mc2 + a1), y

)

. (12)

We present plots of some eigenfunctions with different quantum number values in Fig.

(1). In addition, last two equations makes it possible to handle the single particle level
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density defined basically as the number of energy levels in the energy interval dE [22], that

is,

ρ(E) =
dE

dn
, (13)

which gives for the system under consideration

ρ(E) =
Q

a2

√
E . (14)

where it is clearly seen that the level density depends on the strength of linear and inverse-

linear part of potential.

In order to have an equation with same dimensions in the left and right hand sides in

(11), let us denote the quantity ”a2a3” as ε2 in the rest of computation which makes it

possible to write the Eq. (11) more clearly as

En = ∓ ε

√

2 + q−1(2n+ 1 +
√

1 + 4q2 ) . (15)

with a dimensionless parameter q = Qa3. In the next Section, we compute the thermal

functions in terms of a dimensionless parameter m̄ written with the help of ε.

III. THE THERMODYNAMICS QUANTITIES

The partition function given as a summation over all the quantum states can be written

as [7]

Z(β) =
∞
∑

n=0

e−(En−E0)β = eβE0

∞
∑

n=0

e−βε
√
σ1n+σ2 , (16)

where β = 1/kBT , kB Boltzmann constant, T temperature in Kelvin with the constants

σ1 = 2/q, and σ2 = 2 + (1/q)(1 +
√

1 + 4q2 ). We tend to compute the following thermal

quantities such as the free energy, the mean energy, and the specific heat written in terms

of the partition function

F (β) = − 1

β
lnZ(β) ,

U(β) = − ∂

∂β
lnZ(β) ,

C(β) = −kBβ2 ∂

∂β
U(β) , (17)
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The following integral equation [7, 8]

∫ ∞

0

e−β1

√
β2n+β3 dn =

2

β2
1β2

e−β1

√
β3 (1 + β1

√

β3 ) , (18)

shows that the partition function in Eq. (16) is convergent. The result in Eq. (18) makes it

possible to compute the partition function with the help of the Euler-MacLaurin formula

∞
∑

n=0

f(n) =
1

2
f(0) +

∫ ∞

0

f(x)dx−
∞
∑

i=1

1

(2i)!
B2if

(2i−1)(0) , (19)

where B2i are the Benoulli numbers, B2 = 1/6, B4 = −1/30, . . . [7, 8]. Up to i = 2, Eq. (16)

with the help of (13) gives the partition function of the system written in a dimensionless

parameter βε = 1/m̄ as

Z(m̄) =
1

2
+

2m̄2

σ1
(1 +

√
σ2
m̄

) +
σ1

24m̄
√
σ2

− σ3
1

5760m̄σ
5/2
2

(3 + 3

√
σ2
m̄

+
σ2
m̄2

) . (20)

We observe that the thermodynamic quantities in Eq. (17) depend the parameter q

including the potential parameter. So, we give our all numerical results as the variation

of them versus the temperature for three different values of parameter, namely, q = 0.5,

q = 1.0 and q = 1.5, in Figs. (2)-(4). Fig. (2) shows that the Helmholtz free energy increase

with increasingly value of a. In Fig. (3), we see that the effect of the parameter q on the

mean energy is more apparent for nearly low temperatures. On the other hand, the plots

for different q-values for the mean energy are closing to each other. We give the variation of

the specific heat according to the temperature in Fig. (4) where it has an upper value while

the temperature increases.

Now we give the results briefly for the thermal functions for high temperatures which

corresponds to β ≪ 1. For this case, Eq. (20) gives the results

Z(m̄) ∼ 2m̄2

σ1
∼ m̄2Qa3 ,

U(m̄) ∼ 2m̄ ,

C(m̄) ∼ 2 . (21)

where the upper limit for the specific heat can be seen clearly in Fig. (4).

Studying the partition function in Eq. (20) according to the potential parameters shows

that the descent contribution, which is inverse-linear, comes from the part of the potential

proportional to |x|. The other part of the potential proportional to 1
|x| gives a weaker
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contribution, which is linear in some terms and inverse-linear in others. On the other hand,

Eq. (21) gives that only the potential parameter a2 gives an inverse-linear contribution to

partition function while both parameters a2 and a3 give an inverse-squared contribution to

the mean energy for high temperature.

IV. CONCLUSIONS

We have obtained the thermodynamics quantities for the Klein-Gordon equation with a

linear plus inverse-linear potential by using the quantization condition appeared in bicon-

fluent Heun’s equation. The variation of a few eigenfunctions versus spatially coordinate

has been given in a figure, and the single particle level density analyzed briefly. The ther-

modynamics quantities such as the free energy, the mean energy, and the specific heat have

been computed by a method based on the Euler-MacLaurin formula. We have obtained the

variation of thermal functions according to temperature, and also discussed the results for

high temperatures.
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(a) The eigenfunction for n = 0. (b) The eigenfunction for n = 5.

(c) The eigenfunction for n = 10.

FIG. 1: Some eigenfunctions given in (12) with parameter set a1 = a2 = a3 = 0.1, m = 0.5

(~ = c = 1).
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FIG. 2: The variation of the free energy for the present potential versus m̄.
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FIG. 3: The variation of the mean energy for the present potential versus m̄.
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FIG. 4: The variation of the specific heat for the present potential versus m̄.
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