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Abstract. In this paper, using Einstein and Landau and Lifshitz’s energy-

momentum complexes in both general relativity and teleparallel gravity, we calculate

the total energy distribution (due to matter and fields including gravitation) associated

with Locally Rotationally Symmetric(LRS) Bianchi type II cosmological models. We

show that energy density in these different gravitation theories is the same, so agree

with each other. We obtain that the total energy is zero. This result agrees with

previous works of Cooperstock and Israelit, Rosen, Johri et al., Banerjee and Sen,

Vargas, Aydogdu and Salti. Moreover, our result supports the viewpoints of Albrow

and Tryon.
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1. Introduction

Energy-momentum associated with a symmetry of space-time is regarded as the most

fundamental conserved quantity in physics. Also, because of its unusual nature and

various points of view, the definition of an energy-momentum density for the gravi-

tational field is one of the oldest and thorny problem of gravitation. Both Einstein’s

theory of general relativity and teleparallel gravity consider the problem of obtaining

energy-momentum definition. To find a generally accepted expression, there are dif-

ferent attempts. However, there is still no generally accepted expression known. The

first of such attempts was made by Einstein who suggested a definition for energy-

momentum distribution[1]. Following his definition, different people proposed different

energy-momentum complexes: e.g. Tolman[2], Papapetrou[3], Landau and Lifshitz[4],

Bergmann and Thomson[5], Møller[6], Weinberg[7], Qadir and Sharif[8] and telepar-

allel gravity analogs of Einstein, Landau and Lifshitz, Bergmann and Thomson[9] and

Møller[10] definitions. Except for the Møller definition, others are restricted to calculate

the energy-momentum distribution in quasi-cartesian coordinates. Therefore, they can

only give reasonable and meaningful result if calculations are carried out in cartesian
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coordinates. For a long time, attempts to deal with this problem were made only by

proposers of quasi-local approach[11, 12].

Virbhadra and his collaborators reviewed the problem of the energy-momentum

density, using energy-momentum complexes. For a general non-static spherical

symmetric metric of the Kerr-Schild class, Virbhadra shown that Einstein, Landau and

Lifshitz, Papapetrou, and Weinberg’s complexes give the same energy distribution as

in the Penrose energy-momentum complex[13, 14]. Rosen and Virbhadra[15] obtained

good results for Rosen-Einstein space-time. Using the Einstein’s energy-momentum

definition, Chamarro and Vibhadra[16] evaluated the energy of a charged dilation black

hole. Also, there are many papers about energy-momentum distributions, and in those

papers[17], the authors showed that these definitions could give the same results for a

given space-time.

Rosen[18], using Einstein energy-momentum complex, shown that the total energy

of the closed homogeneous isotropic universe described by Friedmann-Robertson-Walker

(FRW) metric is zero. Banerjee and Sen[19] computed the total energy of the Bianchi

type I space-times, with Einstein’s prescription. They found that the total energy is

zero everywhere. The total energy of a FRW spatially closed universe was calculated

by Johri et al.[20]. They obtained that it is zero at all times irrespective of the equa-

tions of state of the cosmic fluid. Using Landau and Lifshitz, Papapetrou and Weinberg

prescriptions, Xulu[21] calculated that energy-momentum distribution for the Bianchi

type I space-times vanishes everywhere. Vargas[9], using teleparallel gravity analogs of

Einstein and Landau and Lifshitz energy-momentum definitions, found that the energy

is zero in FRW space-times. This result agree with the previous works of Cooperstock

and Israelit[22], Rosen[18], Banerjee and Sen[19], Johri et al.[20]. In recent papers, Saltı

and Havare[23] considered Bergmann-Thomson’s complex in both general relativity and

teleparallel gravity for the viscous Kasner-type metric and in another work, Saltı[24],

using the Einstein and Landau and Lifshitz complexes in teleparallel gravity for the

same metric, found that energy-momentum densities are zero. At the last, Aydogdu

and Saltı[25] used the teleparallel gravity analog of Møller’s definition for the Bianchi

type I metric and found that the total energy is zero.

The basic purpose of this paper is to find the total energy in the LRS Bianci type II

universes, with the energy-momentum definitions of Einstein and Landau and Lifshitz

in both general relativity and teleparallel gravity. We will proceed according to the

following scheme. In the next section, we introduce LRS Bianchi type II cosmological

models. In section III, we give review Einstein and Landau Lifshitz energy-momentum

complexes in general relativity and than calculate energy density. In section IV, Einstein

and Landau Lifshitz energy-momentum complexes in teleparallel gravity are given and

than calculate the energy density. The final section is devoted to the discussion and

conclusion. Throughout this paper, Latin indices (i,j,k,...) represent the vector number

and Greek indices (µ, ν, λ, ....) represent the vector components. All indices run from 0
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to 3 and we use the convention that G = 1, c = 1 units.

2. LRS Bianchi type II cosmological models

The FRW models have a significant role in cosmology. Whether these models correctly

represent the universe or not isn’t known, but it is believed that they are good global

approximations of the present universe. Spatial homogeneity and isotropy characterize

these models. In last decades, theoretical interest in anisotropic cosmological models has

been increased. In current modern cosmology, the spatial homogeneous and anisotropic

Bianchi models which present a medium way between FRW models and completely

inhomogeneous and anisotropic universes play an important role. Here, we consider the

LRS model of Bianchi type II. The metric for Bianchi type II in the LRS case is given

by[26]

ds2 = dt2−D(t)2dx2−H(t)2dy2− [D(t)2+x2H(t)2]dz2−2xH(t)2dydz(1)

D(t) and H(t) which are expansion factors could be determined via Einstein’s field

equations. The non-vanishing components of the Einstein tensor Gµν(≡ 8πTµν , where

Tµν is the energy-momentum tensor for the matter field described by a perfect fluid with

density ρ, pressure p) are

G11 = DD̈ +D2
Ḧ

H
+

Ḋ

D

Ḣ

H
+

H2

4D2
(2)

G22 = 2H2
D̈

D
+H2

Ḋ2

D2
− 3H4

4D4
(3)

G33 = (2x2H2 +D2)
D̈

D
+D2

Ḧ

H
+ x2H2

Ḋ2

D2
+

D

H
ḊḢ +

H2

4D2
− x2

3H2

4D4
(4)

G00 =
Ḋ2

D2
− 2

Ḋ

D

Ḣ

H
+

H2

4D4
(5)

G23 = H2(2
D̈

D
+

Ḋ2

D2
− 3H2

4D4
) (6)

where dot represents derivation with respect to time.

For the line element (1)

gµν = δ0µδ
0

ν −D2δ1µδ
1

ν −H2δ2µδ
2

ν − (D2 + x2H2)δ3µδ
3

ν − xH2(δ3µδ
2

ν + δ2µδ
3

ν)(7)

gµν = δ
µ
0 δ

ν
0
−D−2δ

µ
1 δ

ν
1
−D2 + x2H2

H2D2
δ
µ
2 δ

ν
2
−D−2δ

µ
3 δ

ν
3
+xD−2(δµ3 δ

ν
2
+δ

µ
2 δ

ν
3
)(8)

The riemannian metric arises as

gµν = ηijh
i
µh

j
ν (9)

Using this relation, we obtain the tetrad components

hi
µ = δi

0
δ0µ +Dδi

1
δ1µ +Hδi

2
δ2µ +Dδi

3
δ3µ + xHδi

2
δ3µ (10)
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and its inverse is

h
µ
i = δ0i δ

µ
0 +D−1δ1i δ

µ
1 +H−1δ2i δ

µ
2 +D−1δ3i δ

µ
3 − x

D
δ3i δ

µ
2 (11)

From the Christoffel symbols defined by

Γα
µν =

1

2
gατ (∂µgτν + ∂νgτµ − ∂τgµν) (12)

we obtain non-vanishing components:

Γ0

11
= DḊ, Γ0

22
= HḢ, Γ0

33
= DḊ + x2HḢ, Γ1

01
=

Ḋ

D

Γ2

02
=

Ḣ

H
, Γ2

03
=

x(DḢ −HḊ)

HD
, Γ2

12
= −x2H2

2D2

Γ2

13
=

D2 − x2H2

2D2
, Γ3

03
=

Ḋ

D
, Γ3

12
=

x2H2

2D2
, Γ3

13
=

x2H2

2D2
(13)

3. Energy in general relativity

3.1. Energy in the Einstein prescription

Einstein’s[1] energy-momentum complex is given by

Θν
µ =

1

16π
Σνβ

µ,β (14)

where

Σνβ
µ =

gµα√−g

[

−g(gναgβσ − gβαgνσ)
]

,σ
(15)

Θ0

0
is the energy density, Θ0

α are the momentum density components, and Θα
0
are the

components of energy current density. Einstein’s energy-momentum density satisfies

the local conservation laws

∂νΘ
ν
µ = 0. (16)

Energy and momentum components are given by

Pν =
∫ ∫ ∫

Θ0

νdxdydz. (17)

Further Gauss’s theorem furnishes

Pν =
1

16π

∫ ∫

Σ0α
ν µαdS. (18)

µα stands for the 3-components of unit vector over an infinitesimal surface element dS.

Pi give momentum components P1, P2, P3 and P0 gives the energy.

From eq. (15) with eqs. (7) and (8), we obtain that the required non-vanishing Σνα
µ

component is

Σ01

1
= 2D(HḊ +DḢ) (19)

Using above result, we find

Θ0

0
= Θ0

i = 0 (20)
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From this result, we easily see that Einstein’s energy in the LRS Bianchi type II space-

time is

EE
GR = 0 (21)

3.2. Energy in the Landau and Lifshitz prescription

Landau and Lifshitz[4] energy-momentum complex is given by

Lµν =
1

16π
N

µναβ
,αβ (22)

where

Nµναβ = −g(gµνgαβ − gµαgνβ) (23)

The Landau and Lifshitz energy-momentum complex satisfies the local conservation

laws

∂νL
µν = 0 (24)

in any coordinate system. The energy and momentum components are given by

P µ =
∫ ∫ ∫

Lµ0dxdydz (25)

Further Gauss’s theorem furnishes

P µ =
1

16π

∫ ∫

Nµα0ν
,ν ηαdS. (26)

ηα stands for the 3-components of unit vector over an infinitesimal surface element dS.

P i give momentum components P 1, P 2, P 3 and P 0 gives the energy.

From eq. (23) with eqs. (7) and (8), we obtain that the required non-vanishing

Nµναβ component are

N1001 = −N1010 = D2H2 (27)

Using above result, we find

L00 = Li0 = 0 (28)

As a result of this, we easily see that Landau and Lifshitz’s energy in the LRS Bianchi

type II space-time is

ELL
GR = 0 (29)

4. Energy in teleparallel gravity

Teleparallel gravity which corresponds to a gauge theory for the translation group based

on the Weitzenböck geometry[27] is an alternative approach to gravitation[28]. In this

theory gravitation is attributed to torsion[29], which past the role of a force[30], whereas

the curvature tensor vanishes identically. The fundamental field is represented by a non-

trivial tetrad field, which gives rise to the metric as a by-product. The last translational
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gauge potentials appear as the nontrivial part of the tetrad field, thus induces on space-

time a teleparallel structure which is directly related to the presence of the gravitational

field. The interesting point of teleparallel gravity is that it can reveal a more appropriate

approach to consider same specific problem due to gauge structure. This is the case,

for example, of the energy-momentum problem, which becomes more transparent when

considered from the teleparallel point of view.

The energy-momentum complexes of Einstein and Landau and Lifshitz in

teleparallel gravity[9] are given by the following definitions, respectively:

hEµ
ν =

1

4π
∂λ(U

µλ
ν ) (30)

hLµν =
1

4π
∂ξ(hg

µκU νξ
κ ) (31)

where h = det(hi
µ) and U νξ

κ is the Freud’s super-potential, which is given by:

U νξ
κ = hS νξ

κ . (32)

Here Sµνλ is the tensor

Sµνλ = k1T
µνλ +

k2

2
(T νµλ − T λµν) +

k3

2
(gµλT βν

β − gνµT
βλ

β) (33)

with k1, k2 and k3 the three dimensionless coupling constants of teleparallel gravity[29].

For the teleparallel equivalent of general relativity, the specific choice of these three

constants are given

k1 =
1

4
, k2 =

1

2
, k3 = −1 (34)

To calculate this tensor, firstly, we must compute Weitzenböck connection:

Γσ
ζβ = h σ

i ∂βh
i
ζ (35)

After this calculation, we get torsion of the Weitzenböck connection:

T
µ
νλ = Γµ

λν − Γµ
νλ (36)

For the Einstein and Landau and Lifshitz’s definitions, energy and momentum

components are given as

PE
µ =

∫

Σ

hE0

µdxdydz (37)

P
µ
L =

∫

Σ

hLµ0dxdydz (38)

where Pi give momentum components P1, P2, P3 while P0 gives the energy and the

integration hyper-surface Σ is described by x0 = t =constant.

From eq. (35) the non-vanishing Weitzenböck connection components are obtained

as

Γ1

10
= Γ3

30
=

Ḋ

D
, Γ2

20
=

Ḣ

H
,

Γ2

30
=

x

DH
(DḢ −HḊ), Γ2

31
= 1 (39)
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The corresponding non-vanishing torsion components are found

T 1

01
= −T 1

10
= T 3

03
= −T 3

30
=

Ḋ

D
, T 2

02
= −T 2

20
=

Ḣ

H
,

T 2

13
= −T 2

31
= 1,

T 2

03
= −T 2

30
=

x

DH
(DḢ −HḊ) (40)

Using these results with eq. (33), the non-vanishing components of the tensor Sµνλ are

obtained as

S023 = − x

4D2
(
Ḣ

H
− Ḋ

D
) (41)

S101 = − x

2D2
(
Ḣ

H
+

Ḋ

D
), S123 =

1

4D4
(42)

S202 =
1

H2D
+

x2Ṙ

D3
, S203 =

3x

4D2
(
Ḣ

H
+

Ḋ

D
), S213 =

1

4D4
(43)

S303 =
1

2D2
(
Ḣ

H
+

Ḋ

D
), S302 = − −x

2D2
(
Ḣ

H
+

Ḋ

D
), S312 =

1

4D4
(44)

From eq. (32) the required non-vanishing components of Freud’s super-potential are

calculated as

U 01

0
= 0, U 01

1
= H2DḊ +D2HḢ (45)

Using above results with eqs. (30) and (31), we find the total energy in teleparallel

gravity:

EE
TP = LLL

TP = 0 (46)

5. Discussions

The subject of energy-momentum localization in both general relativity and teleparallel

gravity has been very exciting and interesting although it has been associated with some

debates. Recently, a large number researches have interested in studying the energy con-

tent of the universe in various models. Using Einstein’s energy-momentum definitions,

Rosen calculated the total energy of a FRW metric and obtained that to be zero. The

total energy of the same universe is found by Johri et al. with Landau and Lifshitz’s

energy-momentum complex. They obtained that it is zero at all times. Moreover, they

shown that the total energy enclosed within any finite volume of spatially flat FRW

universe is vanishing. Banerjee and Sen who considered Bianchi type I space-times ob-

tained that energy-momentum density is zero everywhere, with the energy-momentum

definition of Einstein.

In present paper, we used LRS Bianchi type II metric and calculated energy-

momentum density for this universe model with Einstein and Landau and Lifshitz’s
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energy-momentum definitions in both general relativity and teleparallel gravity. We

found that the total energy in these different gravitation theories give same result:

EE
GR = LLL

GR = EE
TP = LLL

TP = 0 (47)

which agree with the result that obtained by Cooperstock and Israelit, Rosen, Johri et

al., Banerjee and Sen, Vargas and Aydogdu and Salti. Furthermore, our result supports

the view points of Albrow[31] and Tryon[32]. Although Einstein’s energy-momentum

tensor has non-vanishing components, the total energy for the LRS Bianchi type II

space-time is zero; because the energy-momentum contributions from the matter and

field inside arbitrary two surfaces, in the case of the anisotropic model based on the LRS

Bianchi type II metric, cancel each other. Finally, our result that total energy density

is vanishing everywhere maintains the importance of the energy-momentum complexes.

Furthermore, the result obtained is also independent of the three teleparallel

dimensionless coupling constants, which means that it is valid not only in the teleparallel

equivalent of general relativity, but also in any teleparallel model.
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